
Prototypes, Papers,
and Production

Developing a globally distributed purging system

Bruce Spang
@brucespang

Tyler McMullen
@tbmcmullen

What is a CDN?

You probably already know what a CDN is, but bear with me. A CDN is a “Content Delivery Network”. It’s a globally-distributed network of servers and at
it’s core the point is to make the internet better for everyone who doesn’t live across the street from your datacenter. You might use it for images, APIs, …

Or websites. For instance, this website about how much GitHub loves Fastly… (Don’t worry, this is the last slide that is anything at all resembling a sales
pitch.)

— well-known personality in community

Or even this tweet of terrible advice. This tweet becomes more relevant as we go along…

So, our goal is to deliver whatever your users are requesting as quickly as possible. To do this, we have a network of servers all over the world which cache
content.

😐

Suppose you live in Australia

😐

and you want to visit a site which is hosted on servers in New York

😐

normally, you would go directly to this site half way around the world, and it would take some time. Note that this is greatly simplified, as your request
would likely bounce between 20 or 30 routers and intermediaries before getting to the actual server.

😐😄

with fastly, instead you would go to one of our servers in say, Sydney. normally, a copy of the website would be on that server, and it would be much faster.

😐😄

If the content isn’t already there, we could request it from other local servers.

😐😄

But ultimately, if it’s a new piece of content, you may still have to make a request to New York.

😐😄

However, next time you or someone else visits the site, it would be stored on the server in sydney, and would be much faster.

Cache Invalidation

however, once a site is stored on a server, you might want to remove it for some reason; we call this a purge.
for example, you might get a DMCA notice and have to legally take it down.
Or even as something as simple as your CSS or an image changing.

New Customer Use

One of the points of Fastly though, from the very beginning, was making it possible to purge content quickly. For instance, The Guardian is caching their
entire homepage on Fastly. When a news story breaks, they post a new article, and need to update their homepage as quickly as possible.
That purge needs to get around the world to all of our servers quickly and reliably.

Step One
Make it

rsyslog

E

D

F

C

A

B

Z

So, here’s how it works. We have a bunch of edge nodes spread around world. A might be in New Zealand. F could be in Paris.

E

D

F

C

A

B

Z

PURGE

A purge request comes in to A. The purge could be for any individual piece of content.

E

D

F

C

A

B

Z

PURGE

A forwards it back to our central rsyslog “broker” of sorts, Z. Which might in, say, Washington DC.

E

D

F

C

A

B

Z

PURGE

And the broker sends it to each edge node.

It also probably looks pretty familiar. It’s really the simplest possible way of solving this problem. And for a little while it worked for us.

Already deployed

Minimal code

Easy to reason about

The way Rsyslog works is trivial to reason about.
That also means that it’s really easy to see why this system is ill-suited for the problem we’re trying to solve.
At its core, it’s a way to send messages via TCP to another node in a relatively reliable fashion.

Why does it fail?

High latency

Two servers sitting right next to each other, would still need to bounce the message through a central node in order to communicate with each other.

Partition intolerant

Obvious and enormous SPOF in the central node

Wrong consistency model

This system has stronger consistency guarantees than we actually need.
For instance, this system uses TCP and thus guarantees us in-order delivery.
How does that actually affect the behavior in production?

A B
200ms

Let’s say we’re sending 1000 messages per second. One message every millisecond. Let’s say the node we’re sending to is 200ms away

A B11 10 9 8 7 6 5 4 3 2 1

That means that at any time there are ~200 messages on the wire.

A B11 10 9 8 7 6 5 4 3 2

Let’s say a packet gets dropped at the last hop. Instead of having one message be delayed, what actually happens is the rest of the packets get through but are buffered in
the kernel at the destination server and don’t actually make it to your application yet.

A B
22 21 20 19 18 17 16 15 14

SACK

13 12

The destination server then sends a SACK (which means “Selective Acknowledgement”) packet back to the the origin. Which effectively says, “Hey I got everything from
packet #2 to packet #400, but I’m missing #1.”. While that is happening, the origin is still sending new packets which are still being buffered in the kernel.

A B
SACK

1

Then finally, the origin receives the SACK and realizes the packet was lost, and retransmits it.

So, what we end up having is 400ms of latency added to 600 messages.
- 240,000ms of unnecessary delay

Each of those could have been delivered as they were received. We and our customers would have been just as happy with that. But instead they were delayed. Thus, this
is the wrong consistency model.

Step Two
Make it Interesting

Atomic Broadcast

read papers on Atomic Broadcast, because it seemed like the closest fit to what we’re trying to do

Strong Guarantees
Too Strong

Thought Real Hard

“Distributed systems, don't read the literature. Most of it is outdated and unimaginative. Invent and reinvent. The field is fertile. Really.”

E

D

F

C

A

B

Graph of
Responsibility

What we do is define a “graph of responsibility”. This defines which nodes are responsible for making sure each other stay up to date. So in this case, A is
responsible for both B and D.

E

D

F

C

A

B

Graph of
Responsibility

B is responsible for D and E.

E

D

F

C

A

B

Graph of
Responsibility

And so on...

E

D

F

C

A

B

PURGE

So, let’s follow a purge through this system. A purge request comes in to A.

E

D

F

C

A

B

PURGE

A immediately forwards it via simple UDP messages to every other server.

E

D

F

C

A

B

PURGE

Each of the servers that receives a message then sends a “confirmation” to the server that is responsible for it.

E

D

F

C

A

B

PURGE

What is more interesting is what happens when a message fails to reach a server.

If a server receives a purge but does *not* get a confirmation from one of it’s “children”. It will send “reminders” to it.

E

D

F

C

A

B

PURGE

So, in this case D and B will start sending reminders to E until it confirms receipt.

You can think of this as a primitive form of an “active anti-entropy”, which is a mechanism in which servers actively make sure that each other are up-to-
date.

This also worked.

We ran a system designed this way for quite some time. And once again, it worked.

Way faster!!

This system is much faster. It gets us close to the theoretical minimal latency in the happy path.
However, there are problems with it.

Arbitrary Partitions

The graph of responsibility must be designed very carefully to avoid having common network partitions cause the graph to become completely split.
Additionally, even if it is carefully designed it can’t handle *arbitrary* partitions. The best way to get close to fixing them is by increasing the number of
nodes that are responsible for each other.

Which of course increases load on the system.

Unbounded Queues

Because every node is responsible for keeping other nodes up to date, it needs to know what each of its dependents have seen. Which means if a node is
offline for a while, that queue grows arbitrarily large.

Failure Dependence

And the end result of that is Failure Dependence. One node failing means that multiple other nodes have to spend more time remembering messages and
trying to send reminders to the failed node.
So, under duress this system is prone to having a single node failure become a multi-node failure, and a multi-node failure become a whole-system failure.

The problem with
thinking real hard…

So, I said that we designed this problem by thinking really hard. The problem with that is that we didn’t manage to find the existing research on this
problem. It turns out that this type of system…

… was actually described in papers in the 1980s, when Devo was popular. The problems that we found with it are thus well-known. Luckily around that
time, the venerable Bruce Spang started working with us.

Step Three
Make it Scale

This is where I came in, and started working on building a system that scaled better and solved some of the problems with the previous one.

I am Lazy
Inventing distributed algorithms is hard

As Tyler showed just now, it turns out that inventing distributed algorithms is really hard. Even though Tyler came up with an awesome idea and implemented it
well, it still had a bunch of problems that have been known since the eighties. I didn’t want to think equally as hard, just to come up with something from five
years later.

Read Papers

Instead, I decided to read papers and see if I could find something that we could use. Because we had a system in production that was working well
enough, I had enough time to dig into the problem. But why would you read papers?

Impress your friends!

Papers are super cool and if you read them, you will also be cool.

Understand Problems

Get a better sense of the problem you are trying to solve, and learn about other ways people have tried to solve the same problem.

Learn what is
impossible

Lots of papers prove that something is impossible, or show a bunch of problems with a system. By reading these papers, you can avoid a bunch of time
trying to build a system that does something impossible and debugging it in production.

Find solutions to
 your problem

Finally, some papers may describe solutions to your problem. Not only will you be able to re-use the result from the paper, but you will also have a better chance of
predicting how the thing will work in the future (since papers have graphs and shit). You may even find solutions to future problems along the way.

Read Papers

So I started reading papers by searching for maybe relevant things on google scholar.

Reliable Broadcast

The first class of papers that I came across attempted to solve the problem of reliable message broadcast. This is the problem of sending a message to a
bunch of servers, and guaranteeing its delivery, which is a lot like our purging problem.

papers from the 80s like “an efficient reliable broadcast protocol”…

…or “scalable reliable multicast”

Reliable Broadcast

As it turns out, these papers were a lot like the last version of the system. They tended to use retransmissions, with clever ways of building the
retransmission graphs. This means that they had similar problems, so I kept looking for new papers by looking at other papers that cited these ones, and
at other work by good authors.

Gossip Protocols

Eventually, I came across a class of protocols called gossip protocols that were written from the late 90s up until now

papers like plumtree

or sprinkler

“Designed for Scale”

the main difference between these papers and reliable broadcast papers was that they were designed to be much more scalable
- tens of thousands of servers
- hundreds of thousands or millions of messages per second

Probabilistic Guarantees

to get this higher scale, usually these systems provide probabilistic guarantees about whether a message will be delivered, instead of guaranteeing that all
messages will always be delivered.

after reading a bunch of papers, we eventually decided to implement bimodal multicast

Bimodal Multicast

• Quickly broadcast message to all servers

• Gossip to recover lost messages

two phases: broadcast and gossip

send message to all other servers as quickly as possible
it doesn’t matter if it’s actually delivered here
you can use ip multicast if it’s available, udp in a for loop like us, a carrier pigeon, whatever…

every server picks another server at random and sends a digest of all the messages they know about
- a picks b, b picks c, …
a server looks at the digest it received, and checks if it has any messages missing
- b is missing 3, c is missing 2

each server asks for any missing messages to be resent

Questions?

after reading the paper, we wanted more intuition about how this algorithm would actually work on many servers. we decided to implement a small
simulation to figure it out.

http://brucespang.com/bimodal/simulation

- we still wanted a better guarantee before deploying it into production.
- the paper includes a bunch of math to predict the expected % of servers receiving a message after some number of round of gossip
- describe graph
- after 10 rounds, 97% of servers have message.
- turns out to be independent of the number of servers
- good enough for us

One Problem
Computers have limited space

started to implement it, ran across this problem

Throw away messages

it needs to keep enough messages to recover for another server
throw away messages to bound resource usage

- paper throws messages away after 10 rounds (97%)
- this makes sense during normal operation where there is low packet loss
- however, we often see more packet loss. we don’t deal with theory, we deal with real computers…

Computers are Terrible
We see high packet loss all the time

- same graph as before, this time with 50% packet loss
- 40% of servers isn’t good enough
- we’ll probably lose purges during network outages, get calls from customers, etc…

The Digest

“I have 1, 2, 3, …”

why would the paper throw away after 10 rounds?
digest is a list, which is limited by bandwidth
need to limit the size of the digest

The Digest

Doesn’t Have to be a List

it can be any data structure we want, as long as another node can understand it.

The Digest

Send ranges of ids of known messages

“messages 1 to 3 and 5 to 1,000,000"

- normally just a few integers to represent millions of messages
- we keep messages around for a day, or about 80k rounds

same graph, 80k rounds, 99% packet loss
99.9999999999% expected percent of servers to receive message
this is cool

http://brucespang.com/bimodal/convergence/

“with high probability” is fine

as long as you know what that probability is

Real World

End-to-End Latency

42ms

74ms

83ms

133ms

New York

London

San Jose

Tokyo

0.00

0.05

0.10

0.00

0.05

0.10

0.00

0.05

0.10

0.00

0.05

0.10

0 50 100 150
Latency (ms)

D
en

si
ty

Density plot and 95th percentile of purge latency by server location

- usually < 0.1% packet loss on a link
- 95th percentile delivery latency is network latency

End-to-End Latency
42ms

74ms

83ms

133ms

New York

London

San Jose

Tokyo

0.00

0.05

0.10

0.00

0.05

0.10

0.00

0.05

0.10

0.00

0.05

0.10

0 50 100 150
Latency (ms)

D
en

si
ty

Density plot and 95th percentile of purge latency by server location

Most purges are sent from the US

Firewall Partition

firewall misconfiguration prevented two servers (B and D) from communicating with servers outside the datacenter. A and C were unaffected.

APAC Packet Loss

extended packet loss in APAC region for multiple hours, up to 30% at some points
no noticeable difference in throughput

DDoS

• `

The victim server was completely unreachable via ssh during the attack

So what?

CONCLUSION
- this is the system we implemented
- but why does it matter how well it works? why should you care?

Good systems are boring

BRUCE
We can go home at night, and don’t need to worry about this thing failing due to network problems.
We don’t have to debug distributed systems algorithms it at two in the morning.
We’ve been able to grow the number of purges by an order of magnitude without having to rewrite parts of the system.
etc...

What did we learn?

so this is great for us, but why do you care about the history of how we built our purging system?
handoff to tyler

— well-known personality in community

So, this was supposed to be a sponsored talk, but instead of trying to sell you on Fastly, the reason we give this talk is actually as a sort of Public Service Announcement.
Don’t heed advice like this. Certainly spend time inventing and thinking, but don’t ignore the research.
It would have taken us quite a lot more trial and error to come to a system that we’re as happy with now and long-term if we hadn’t based it on solid research. And
because we did, we now have a good foundation to invent new, and actually original, ideas on top of.

One weird trick…

So, essentially, if you take away one thing from this talk, remember this one weird trick to save yourself 20 or 30 years worth of research work…

Read More Papers.

Read more papers.

Thanks!

Questions?
Come to our booth!

