Prototypes, Papers,
and Production

Developing a globally distributed purging system




3ruce Spang

@brucespang




Tyler McMullen

@tbmcmullen







What is a CDN?

You probably already know what a CDN is, but bear with me. A CDN is a “Content Delivery Network”. It's a globally-distributed network of servers and at

it's core the point is to make the internet better for everyone who doesn’t live across the street from your datacenter. You might use it for images, APIs, ...



@
@
8
B
©
Il

fastly.com ¢ t a3 (V]

CAREERS CONTACTUS BLOG NEWS&EVENTS SUPPORT LOGIN

Solutions Products Pricing Customers About

» Try Fastly Now!

"Fastly is impacting our end users in a very, very
positive way. We're able to find the places on our
site where we can efficiently serve content through
a CDN and aggressively move it over to Fastly in a
very efficient manner. We trust that Fastly is going
to serve things quickly and consistently across their
global network."

Jesse Newland, Systems Engineer

GitHub, the easiest way for developers to write software
together, has scaled into a collaboration of 5.8 million
developers across more than 12 million repositories
worldwide. GitHub worked with Fastly to customize their
CDN set up, ensuring rapid and efficient delivery of their
content. Fastly serves all static assets and sits in front of
GitHub.com, Pages (their website hosting service), and
raw.github.com.

Or websites. For instance, this website about how much GitHub loves Fastly... (Don’t worry, this is the last slide that is anything at all resembling a sales

pitch.)



@ |

Distributed systems, don't read the literature. Most
of it is outdated and unimaginiive. Invent and
reinvent. The field is fertile. Really.

6:41 PM - 29 Oct 2014

16 RETWEETS 23 FAVORITES

— well-known personality in community

Or even this tweet of terrible advice. This tweet becomes more relevant as we go along...



FASTLY GLOBAL CONTENT DELIVERY NETWORK

Amsterdam

Seattle N\
Denver Chicago London :O
San Jose
ﬂ New York Frankfurt South Korea
@l 6 Tokyo

Ashbum @—-—

Los Angeles ®
Dallas _ / \ Atlanta
Hong Kong
Miami @®

Singapore

Brazil

Fastly Map Key @

@ POP Locations

@® Coming Soon
Sydney Auckland
)

Wellington @

So, our goal is to deliver whatever your users are requesting as quickly as possible. To do this, we have a network of servers all over the world which cache

content.



Suppose you live in Australia

FASTLY GLOBAL CONTENT DELIVERY NETWORK

Amsterdam
Seattle
Chicago London ik
San Jose
New York Frankfurt

Los Angeles Ashburn

Dallas o Atlanta

Brazil
Fastly Map Key

@ POP Locations
@® Coming Soon

i Soﬁ Korea

. Tokyo
. ‘ 4

Hong Kong

Singapore

o——

) Sydney - Auckland

Wellington 3 ;’




FASTLY GLOBAL CONTENT DELIVERY NETWORK

Amsterdam

Seattle 4
Chicago London ik
San Jose
New York Frankfurt

Ashburn

Soﬁ Korea

Tokyo

Los Angeles ¥
Dallas prese Atlanta Hong K
ong Kong

® Singapore
Brazil
Fastly Map Key

@ POP Locations
@® Coming Soon i {
Sydney - Auckland

Wellington ;’

and you want to visit a site which is hosted on servers in New York



FASTLY GLOBAL CONTENT DELIVERY NETWORK

Seattle

sandose @
ﬂ f

Los Angeles ®
Dallas /

Fastly Map Key

@ POP Locations
@® Coming Soon

Amsterdam

Denver Chicago London :O ®
New York Frankfurt )O

Ashburn

N\ Atlanta
N Miami

Brazil

.

South Korea

Tokyo
@ Y

Hong Kong

©7

Sydney Auckland
ey SR e

Wellington ®

would likely bounce between 20 or 30 routers and intermediaries before getting to the actual server.

normally, you would go directly to this site half way around the world, and it would take some time. Note that this is greatly simplified, as your request




FASTLY GLOBAL CONTENT DELIVERY NETWORK

Amsterdam

Seattle
\© Denver Chicago London :O ®
San Jose
ﬂ New York Frankfurt South Korea
Ashburn @ @M

Los Angeles ®
Dallas _ / \ Atlanta
Hong Kong
Miami @®

Singapore

Brazil

Fastly Map Key @ { an

)
=
@ POP Locations
@® Coming Soon
Sydney Auckland
)

Wellington @

with fastly, instead you would go to one of our servers in say, Sydney. normally, a copy of the website would be on that server, and it would be much faster.



FASTLY GLOBAL CONTENT DELIVERY NETWORK

Amsterdam

Seattle
\© Denver Chicago London ®
San Jose _CO
T\ New York Frankfurt
Ashburn

Los Angeles ®
Dallas  / Atlanta

Miami

Brazil

Fastly Map Key @

@ POP Locations
@® Coming Soon

South Korea

Tokyo
o=

Hong Kong

Oi

Wellington @

If the content isn't already there, we could request it from other local servers.




FASTLY GLOBAL CONTENT DELIVERY NETWORK

Seattle
Denver Chicago

New York

Amsterdam

London ! @
Frankfurt ﬁ

San Jose ® O
Ashburn

Los Angeles ®
Dallas _ / \ Atlanta
N Miami

Fastly Map Key @’

@ POP Locations
@® Coming Soon

Brazil

South Korea

Tokyo
@ Y

Hong Kong

Oi

Auckland

Wellington @

But ultimately, if it's a new piece of content, you may still have to make a request to New York.




FASTLY GLOBAL CONTENT DELIVERY NETWORK

Amsterdam

Seattle
\© Denver Chicago London :0 ®
San Jose
ﬂ New York Frankfurt South Korea
Ashburn 6 @M

Los Angeles ®
Dallas  / Atlanta

Hong Kong
Miami @®
Singapore
@ ~noepore
Brazil
Fastly Map Key O’ /,A "
=

@ POP Locations
@® Coming Soon

Sydney Auckland

Wellington @

However, next time you or someone else visits the site, it would be stored on the server in sydney, and would be much faster.



Cache Invalidation

JTURE FILMS

FEA

however, once a site is stored on a server, you might want to remove it for some reason; we call this a purge.
for example, you might get a DMCA notice and have to legally take it down.

Or even as something as simple as your CSS or an image changing.



New Customer Use

([T

Ediion: UK | US AU | Signin Aboutus v Subscribe v

Sign into the Guardian using your Facebook account

Winner of the Pulitzer prize for public service | Last updated four minutes ago

guardian
News US| World Sports Comment Culture Business Money | Environment Science Travel Tech Media |Life & style Data

NSA files UK | Gun control | Egypt  Israel Iran | Eurozone |China | Syria | Development 'Soccer | Sustainable business

Breaking news: UN vote on Syria crisis faces Russia veto, again - AP

Weatrer | NowYork &>

Obama vows to resolve On LinkedIn

T I Ty s YR v our guilt about consumption is ll-consuming

1l Gheck outecommended
ads:

JESSICAVALENTI

Sports a
s vast =
Rooney can make all the difference £

One of the points of Fastly though, from the very beginning, was making it possible to purge content quickly. For instance, The Guardian is caching their
entire homepage on Fastly. When a news story breaks, they post a new article, and need to update their homepage as quickly as possible.

That purge needs to get around the world to all of our servers quickly and reliably.



Step One

Make it




rsyslog




So, here’s how it works. We have a bunch of edge nodes spread around world. A might be in New Zealand. F could be in Paris.



PURGE

A purge request comes in to A. The purge could be for any individual piece of content.




'\.4 PURGE

A forwards it back to our central rsyslog “broker” of sorts, Z. Which might in, say, Washington DC.




B
| |

B

|

/"
/ §.4 PURGE

And the broker sends it to each edge node.

It also probably looks pretty familiar. It’s really the simplest possible way of solving this problem. And for a little while it worked for us.



Already deployed




Minimal code




—asy to reason about

The way Rsyslog works is trivial to reason about.
That also means that it's really easy to see why this system is ill-suited for the problem we're trying to solve.

At its core, it's a way to send messages via TCP to another node in a relatively reliable fashion.



Why does it fail?




High latency

Two servers sitting right next to each other, would still need to bounce the message through a central node in order to communicate with each other.



Partition intolerant

Obvious and enormous SPOF in the central node




Wrong consistency model

This system has stronger consistency guarantees than we actually need.
For instance, this system uses TCP and thus guarantees us in-order delivery.

How does that actually affect the behavior in production?



200ms

Let’'s say we're sending 1000 messages per second. One message every millisecond. Let’s say the node we’re sending to is 200ms away



That means that at any time there are ~200 messages on the wire.



Let’s say a packet gets dropped at the last hop. Instead of having one message be delayed, what actually happens is the rest of the packets get through but are buffered in
the kernel at the destination server and don’t actually make it to your application yet.



SACK

s

The destination server then sends a SACK (which means “Selective Acknowledgement”) packet back to the the origin. Which effectively says, “Hey | got everything from
packet #2 to packet #400, but I’'m missing #1.”. While that is happening, the origin is still sending new packets which are still being buffered in the kernel.



SACK

Then finally, the origin receives the SACK and realizes the packet was lost, and retransmits it.

So, what we end up having is 400ms of latency added to 600 messages.
- 240,000ms of unnecessary delay

Each of those could have been delivered as they were received. We and our customers would have been just as happy with that. But instead they were delayed. Thus, this
is the wrong consistency model.



Step Two

Make it Interesting




Atomic

Broadcast

read papers on Atomic Broadcast, because it seemed like the closest fit to what we're trying to do




Zab: High-performance broadcast for
primary-backup systems

Flavio P. Junqueira, Benjamin C. Reed, and Marco Serafini
Yahoo! Research
{fpj,breed, serafini}@yahoo-inc.com

Abstract—Zab is a crash-recovery atomic broadcast algorithm
we designed for the ZooKeeper coordination service. ZooKeeper
implements a primary-backup scheme in which a primary
process executes clients operations and uses Zab to propagate the
corresponding incr I state ch to backup processes'.
Due the depend of an incr state change on the
sequence of changes previously generated, Zab must guarantee
that if it delivers a given state change, then all other changes it
depends upon must be delivered first. Since primaries may crash,
Zab must satisfy this requirement despite crashes of primaries.

Applications using ZooKeeper demand high-performance from
the service, and consequently, one important goal is the ability
of having multiple outstanding client operations at a time.
Zab enabl ey ding state ch by ing
that at most one primary is able to broadcast state changes
and have them incorporated into the state, and by using a
synchronization phase while establishing a new primary. Before
this synchr phase a new primary does not
broadcast new state ch Finally, Zab uses an identification

h for state ct that enables a process to easily identify
missing changes. This feature is key for efficient recovery.

Experiments and experience so far in production show that our
design enables an implementation that meets the performance
requirements of our licati Our impl ion of Zab
can achieve tens of th of broad per second, which
is sufficient for demanding systems such as our Web-scale
applications.

Index Terms—Fault tolerance, Distributed algorithms, Primary
backup, Asynchronous Atomic broad

guar

I. INTRODUCTION

Atomic broadcast is a commonly used primitive in dis-
tributed computing and ZooKeeper is yet another application
to use atomic broadcast. ZooKeeper is a highly-available
coordination service used in production Web systems such as
the Yahoo! crawler for over three years. Such applications
often comprise a large number of processes and rely upon

scheme [5], [6], [7] to maintain the state of replica processes
consistent. With ZooKeeper, a primary process receives all
incoming client requests, executes them, and propagates the
resulting non-commutative, incremental state changes in the
form of transactions to the backup replicas using Zab, the
ZooKeeper atomic broadcast protocol. Upon primary crashes,
processes execute a recovery protocol both to agree upon a
common consistent state before resuming regular operation
and to establish a new primary to broadcast state changes. To
exercise the primary role, a process must have the support of
a quorum of processes. As processes can crash and recover,
there can be over time multiple primaries and in fact the
same process may exercise the primary role multiple times. To
distinguish the different primaries over time, we associate an
instance value with each established primary. A given instance
value maps to at most one process. Note that our notion
of instance shares some of the properties of views of group
communication [8], but it presents some key differences. With
group communication, all processes in a given view are able to
broadcast, and configuration changes happen when any process
joins or leaves. With Zab, processes change to a new view (or
primary instance) only when a primary crashes or loses support
from a quorum.

Critical to the design of Zab is the observation that each
state change is incremental with respect to the previous state,
so there is an implicit dependence on the order of the state
changes. State changes consequently cannot be applied in any
arbitrary order, and it is critical to guarantee that a prefix of the
state changes generated by a given primary are delivered and
applied to the service state. State changes are idempotent and
applying the same state change multiple times does not lead to
inconsistencies as long as the application order is consistent

y

SR IO R TR PV RISSUE SNV S,

e




The Part-Time Parliament

Leslie Lamport

This article appeared in ACM Transactions on Computer Sys-
tems 16, 2 (May 1998), 133-169. Minor corrections were made
on 29 August 2000.




Strong Guarantees

Too Strong




Thought Real Hard

“Distributed systems, don't read the literature. Most of it is outdated and unimaginative. Invent and reinvent. The field is fertile. Really.”



Graph of
: Responsibility

k\ B
\\
E * A

\\ “

\ \

A 1

\\ |‘

\\
A
F
C

What we do is define a “graph of responsibility”. This defines which nodes are responsible for making sure each other stay up to date. So in this case, A is
responsible for both B and D.



Graph of
Responsibility

~
\ .
-

B is responsible for D and E.



And so on...

-
-
-
- -

Graph of
Responsibility




PURGE

So, let’s follow a purge through this system. A purge request comes in to A.




—

PURGE

A immediately forwards it via simple UDP messages to every other server.




PURGE

Each of the servers that receives a message then sends a “confirmation” to the server that is responsible for it.



. \'

s

PURGE

What is more interesting is what happens when a message fails to reach a server.

If a server receives a purge but does *not* get a confirmation from one of it’s “children”. It will send “reminders” to it.



So, in this case D and B will start sending reminders to E until it confirms receipt.

You can think of this as a primitive form of an “active anti-entropy”, which is a mechanism in which servers actively make sure that each other are up-to-
date.



This also worked.

We ran a system designed this way for quite some time. And once again, it worked.



Way faster!!

This system is much faster. It gets us close to the theoretical minimal latency in the happy path.

However, there are problems with it.



Arbitrary Partitions

The graph of responsibility must be designed very carefully to avoid having common network partitions cause the graph to become completely split.
Additionally, even if it is carefully designed it can’t handle *arbitrary* partitions. The best way to get close to fixing them is by increasing the number of

nodes that are responsible for each other.

Which of course increases load on the system.



Unbounded Queues

Because every node is responsible for keeping other nodes up to date, it needs to know what each of its dependents have seen. Which means if a node is

offline for a while, that queue grows arbitrarily large.



Failure Dependence

And the end result of that is Failure Dependence. One node failing means that multiple other nodes have to spend more time remembering messages and
trying to send reminders to the failed node.

So, under duress this system is prone to having a single node failure become a multi-node failure, and a multi-node failure become a whole-system failure.



ne problem with
thinking real hard...

So, | said that we designed this problem by thinking really hard. The problem with that is that we didn’t manage to find the existing research on this
problem. It turns out that this type of system...



o

\AUS

... was actually described in papers in the 1980s, when Devo was popular. The problems that we found with it are thus well-known. Luckily around that

time, the venerable Bruce Spang started working with us.



Step Three

Make it Scale

This is where | came in, and started working on building a system that scaled better and solved some of the problems with the previous one.



| am Lazy

Inventing distributed algorithms is hard

As Tyler showed just now, it turns out that inventing distributed algorithms is really hard. Even though Tyler came up with an awesome idea and implemented it
well, it still had a bunch of problems that have been known since the eighties. | didn’t want to think equally as hard, just to come up with something from five

years later.



Read Papers

Instead, | decided to read papers and see if | could find something that we could use. Because we had a system in production that was working well

enough, | had enough time to dig into the problem. But why would you read papers?



Impress your friends!

Papers are super cool and if you read them, you will also be cool.



Understand Problems

Get a better sense of the problem you are trying to solve, and learn about other ways people have tried to solve the same problem.



L earn what iIs
impossible

Lots of papers prove that something is impossible, or show a bunch of problems with a system. By reading these papers, you can avoid a bunch of time

trying to build a system that does something impossible and debugging it in production.



Find solutions to
your problem

Finally, some papers may describe solutions to your problem. Not only will you be able to re-use the result from the paper, but you will also have a better chance of

predicting how the thing will work in the future (since papers have graphs and shit). You may even find solutions to future problems along the way.



Read Papers

So | started reading papers by searching for maybe relevant things on google scholar.



Rellable Broadcast

The first class of papers that | came across attempted to solve the problem of reliable message broadcast. This is the problem of sending a message to a

bunch of servers, and guaranteeing its delivery, which is a lot like our purging problem.



AN EFFICIENT RELIABLE BROADCAST PROTOCOL

M. Frans Kaashoek
Andrew S. Tanenbaum
Susan Flynn Hummel
Henri E. Bal

Dept. of Mathematics and Computer Science
Vrije Universiteit
Amsterdam, The Netherlands

Email: kaashoek@cs.vu.nl

ABSTRACT

Many distributed and parallel applications can make good use of broad-
cast communication. In this paper we present a (software) protocol that simu-
lates reliable broadcast, even on an unreliable network. Using this protocol,
application programs need not worry about lost messages. Recovery of com-
munication failures is handled automatically and transparently by the proto-
col. In normal operation, our protocol is more efficient than previously pub-
lished reliable broadcast protocols. An initial implementation of the protocol
on 10 MC68020 CPUs connected by a 10 Mbit/sec Ethernet performs a reli-
able broadcast in 1.5 msec.

1. INTRODUCTION

Most current distributed operating systems are based on remote procedure call (RPC) [Birrell
and Nelson 1984]. For many distributed and parallel applications, however, this sender-to-
receiver-and-back communication style is inappropriate. What is frequently needed is broad-
casting, in which an arbitrary one of the n user processes sends a message to the other n — 1
processes. Although broadcasting can always be simulated by sending n — 1 messages and
waiting for the n — 1 acknowledgements, this algorithm is slow, inefficient, and wasteful of
network bandwidth. In this paper we discuss a new protocol that allows 100% reliable
A Iiakl 1 H

benndanntine ta ha lmanl Y | IO PO

papers from the 80s like “an efficient reliable broadcast protocol”...



...or "scalable reliable multicast”

A Reliable Multicast Framework for Light-weight Sessions
and Application Level Framing

Sally Floyd, Van Jacobson, Ching-Gung Liu, Steven McCanne, and Lixia Zhang
to appear in IEEE/ACM Transactions on Networking, December 1997

Abstract—This paper! describes SRM (Scalable Reliable Multicast), a
reliable multicast framework for light-weight sessions and application level
framing. The algorithms of this framework are efficient, robust, and scale
well to both very large networks and very large sessions. The SRM frame-
work has been prototyped in wb, a distributed whiteboard application,
which has been used on a global scale with sessions ranging from a few
to a few hundred participants. The paper describes the principles that have
guided the SRM design, including the IP multicast group delivery model,
an end-to-end, receiver-based model of reliability, and the application level
framing protocol model. As with unicast communications, the performance
of a reliable multicast delivery algorithm depends on the underlying topol-
ogy and operational envil We i igate that via anal-
ysis and si ion, and d -ate an adaptive algorithm that uses the
results of previous loss recovery events to adapt the control parameters used
for future loss recovery. With the adaptive algorithm, our reliable multicast
delivery algorithm provides good performance over a wide range of under-
lying topologies.

1 Introduction

Several researchers have proposed generic reliable multicast pro-
tocols, much as TCP is a generic transport protocol for reliable
unicast transmission. In this paper we take a different view: un-
like the unicast case where requirements for reliable, sequenced
data delivery are fairly general, different multicast applications
have widely different requirements for reliability. For exam-
ple, some applications require that delivery obey a total order-
ing while many others do not. Some applications have many or
all the members sending data while others have only one data
source. Some applications have replicated data, for example in
an n-redundant file store, so several members are capable of
transmitting a data item while for others all data originates at a
single source. These differences all affect the design of a reliable
multicast protocol. Although one could design a protocol for
the worst-case reanirements e o onaranteeino totallv ardered

recognized. In 1990 Clark and Tennenhouse proposed a new
protocol model called Application Level Framing (ALF) which
explicitly includes an application's semantics in the design of
that application's protocol [6]. ALF was later elaborated with
a light-weight rendezvous mechanism based on the IP multicast
distribution model, and with a notion of receiver-based adap-
tation for unreliable, real-time applications such as audio and
video conferencing. The result, known as Light-Weight Ses-
sions (LWS) [19], has been very successful in the design of
wide-area, large-scale, conferencing applications. This paper
further evolves the principles of ALF and LWS to add a frame-
work for Scalable Reliable Multicast (SRM).

ALF says that the best way to meet diverse application re-
quirements is to leave as much functionality and flexibility as
possible to the application. Therefore SRM is designed to meet
only the minimal definition of reliable multicast, i.e., eventual
delivery of all the data to all the group members, without en-
forcing any particular delivery order. We believe that if the need
arises, machinery to enforce a particular delivery order can be
easily added on top of this reliable delivery service.

It has been argued [36, 34] that a single dynamically config-
urable protocol should be used to accommodate different appli-
cation requirements. The ALF argument is even stronger: not
only do different applications require different types of error re-
covery, flow control, and rate control mechanisms, but further,
these mechanisms must explicitly account for the structure of
the underlying application data itself.

SRM is also heavily based on the group delivery model that
is the centerpiece of the IP multicast protocol [8]. In IP multi-
cast, data sources simply send to the group's multicast address
(anormal IP address chosen from a reserved range of addresses)
without needing any advance knowledge of the group member-




Rellable Broadcast

As it turns out, these papers were a lot like the last version of the system. They tended to use retransmissions, with clever ways of building the
retransmission graphs. This means that they had similar problems, so | kept looking for new papers by looking at other papers that cited these ones, and

at other work by good authors.



Gossip Protocols

Eventually, | came across a class of protocols called gossip protocols that were written from the late 90s up until now



papers like plumtree

Epidemic Broadcast Trees *

Jodo Leitdo José Pereira Luis Rodrigues
University of Lisbon University of Minho University of Lisbon
jleitao@1lasige.di.fc.ul.pt jop@di.uminho.pt ler@di.fc.ul.pt
Abstract

There is an inherent trade-off between epidemic and deterministic tree-based broadcast primitives. Tree-based
approaches have a small message complexity in steady-state but are very fragile in the presence of faults. Gossip,
or epidemic, protocols have a higher message complexity but also offer much higher resilience.

This paper proposes an integrated broadcast scheme that combines both approaches. We use a low cost scheme
to build and maintain broadcast trees embedded on a gossip-based overlay. The protocol sends the message
payload preferably via tree branches but uses the remaining links of the gossip overlay for fast recovery and
expedite tree healing. Experimental evaluation presented in the paper shows that our new strategy has a low

overhead and that is able to support large number of faults while maintaining a high reliability.

1. Introduction

Many systems require highly scalable and reliable broadcast primitives. These primitives aim at ensuring that

all correct participants receive all broadcast messages, even in the presence of network omissions or node failures.




or sprinkler

Sprinkler — Reliable Broadcast for
Geographically Dispersed Datacenters

Haoyan Geng and Robbert van Renesse

Cornell University, Ithaca, New York, USA

Abstract. This paper describes and evaluates Sprinkler, a reliable high-
throughput broadcast facility for geographically dispersed datacenters.
For scaling cloud services, datacenters use caching throughout their in-
frastructure. Sprinkler can be used to broadcast update events that inval-
idate cache entries. The number of recipients can scale to many thousands
in such scenarios. The Sprinkler infrastructure consists of two layers: one
layer to disseminate events among datacenters, and a second layer to dis-
seminate events among machines within a datacenter. A novel garbage
collection interface is introduced to save storage space and network band-
width. The first layer is evaluated using an implementation deployed on
Emulab. For the second layer, involving thousands of nodes, we use a
discrete event simulation. The effect of garbage collection is analyzed
using simulation. The evaluation shows that Sprinkler can disseminate
millions of events per second throughout a large cloud infrastructure,
and garbage collection is effective in workloads like cache invalidation.

Keywords: Broadcast, performance, fault tolerance, garbage collection

1 Introduction

Today’s large scale web applications such as Facebook, Amazon, eBay, Google+,
and so on, rely heavily on caching for providing low latency responses to client
queries. Enterprise data is stored in reliable but slow back-end databases. In
order to be able to keep up with load and provide low latency responses, client
query results are computed and opportunistically cached in memory on many
thousands of machines throughout the organization’s various datacenters [21].
But when a database is updated, all affected cache entries have to be invali-
dated. Until this is completed, inconsistent data can be exposed to clients. Since
the databases cannot keep track of where these cache entries are, it is necessary
to multicast an invalidation notification to all machines that may have cached
query results. The rate of such invalidations can reach hundreds of thousands per
second. If any invalidation gets lost, inconsistencies exposed to clients may be




Designed for Scale”

the main difference between these papers and reliable broadcast papers was that they were designed to be much more scalable
- tens of thousands of servers

- hundreds of thousands or millions of messages per second



Probabilistic Guarantees

to get this higher scale, usually these systems provide probabilistic guarantees about whether a message will be delivered, instead of guaranteeing that all

messages will always be delivered.



Bimodal Multicast

KENNETH P. BIRMAN

Cornell University

MARK HAYDEN

Digital Equipment Corporation/Compaq
OZNUR OZKASAP and ZHEN XIAO
Cornell University

MIHAI BUDIU
Carnegie Mellon University
and

YARON MINSKY
Cornell University

There are many methods for making a multicast protocol “reliable.” At one end of the
spectrum, a reliable multicast protocol might offer atomicity guarantees, such as all-or-
nothing delivery, delivery ordering, and perhaps additional properties such as virtually
synchronous addressing. At the other are protocols that use local repair to overcome transient
packet loss in the network, offering “best effort” reliability. Yet none of this prior work has
treated stability of multicast delivery as a basic reliability property, such as might be needed
in an internet radio, television, or conferencing application. This article looks at reliability
with a new goal: development of a multicast protocol which is reliable in a sense that can be
rigorously quantified and includes throughput stability guarantees. We characterize this new
protocol as a “bimodal multicast” in reference to its reliability model, which corresponds to a
family of bimodal probability distributions. Here, we introduce the protocol, provide a
theoretical analysis of its behavior, review experimental results, and discuss some candidate
applications. These confirm that bimodal multicast is reliable, scalable, and that the protocol
provides remarkably stable delivery throughput.

Categories and Subject Descriptors: C.2.1 [Computer-Communication Networks]: Network

This work was supported by DARPA/ONR contracts N0014-96-1-10014 and ARPA/RADC
F30602-96-1-0317, the Cornell Theory Center, and the Turkish Research Foundation.
Authors’ addresses: K. P. Birman, Department of Computer Science, Cornell University, 4126
Upson Hall, Ithaca, NY 14853; email: ken@cs.cornell.edu; M. Hayden, Systems Research
Center, Digital Equipment Corporation/Compaq, 130 Lytton Avenue, Palo Alto, CA 94301;
email: hayden@srec.dec.com; O. Ozkasap and Z. Xiao, Department of Computer Science, Cornell
University, 4126 Upson Hall, Ithaca, NY 14853; email: ozkasap@cs.cornell.edu;
xiao@cs.cornell.edu; M. Budiu, Department of Computer Science, Carnegie Mellon University,
Ithaca, NY 14853; email: mihaib@cs.cmu.edu; Y. Minsky, Department of Computer Science,
Cornell University, 4126 Upson Hall, Ithaca, NY 14853.

Permission to make digital/hard copy of part or all of this work for personal or classroom use

after reading a bunch of papers, we eventually decided to implement bimodal multicast



two phases: broadcast and gossip

Bimodal Multicast

e Quickly broadcast message to all servers

» (Gossip to recover lost messages




receives {r1, r2} 4

receives {r,, r.}

P S U PRI S S R S R P P R P p——

Broadcast

i s ' s S| sl ' S

send message to all other servers as quickly as possible
it doesn’t matter if it's actually delivered here

you can use ip multicast if it's available, udp in a for loop like us, a carrier pigeon, whatever...




‘I have{r,, r}"

"I have{r,,r, r}"

"I have{r,, r.}'

Gossip

every server picks another server at random and sends a digest of all the messages they know about
- a picks b, b picksc, ...
a server looks at the digest it received, and checks if it has any messages missing

- b is missing 3, c is missing 2



Recover

each server asks for any missing messages to be resent




Questions?

"I have{r, r}"
"send{r}" "send{r,}"

"I have{r,,r,r}"

( )
receives {r,, r,}\._
"I have{r,r}"

Broadcast Gossip Recover




OO
OO
ON©)
OO
OO
ONONONONONONONONG)
ONONONONONONONONG)
ONONONONONONONONG)
ONONONONONONONONG)
ONONONONONONONONG)

ONONONGO
ONONONGO
OO0OO0
ONONONGO
ONONONGO
ONONONG
ONONONONG)

OHONONONONONONONONS

after reading the paper, we wanted more intuition about how this algorithm would actually work on many servers. we decided to implement a small

simulation to figure it out.


http://brucespang.com/bimodal/simulation

Expected percent of infected processes after n rounds

100

/0
10
e upper bound: 96.5190856144421

75

% of processes
w
o

0 1 2 3 4 5 6 7 8 9 10 11 12 13
# of rounds

lower bound == upper bound
Highcharts.com
Number of rounds 12 P(message loss) <0 % of processes who received initial broadcast 0.01
J

we still wanted a better guarantee before deploying it into production.
the paper includes a bunch of math to predict the expected % of servers receiving a message after some number of round of gossip
describe graph
after 10 rounds, 97% of servers have message.
turns out to be independent of the number of servers

good enough for us



One Problem

Computers have limited space

started to implement it, ran across this problem




Throw away messages

it needs to keep enough messages to recover for another server

throw away messages to bound resource usage



100

75

% of processes
w
o

Number of rounds 12
J

Expected percent of infected processes after n rounds

4 5 6 7 8
# of rounds

lower bound == upper bound

P(message loss) <0

/0

10
e upper bound: 96.5190856144421

hcharts.com

Highc!
% of processes who received initial broadcast 0.01

- paper throws messages away after 10 rounds (97%)

- this makes sense during normal operation where there is low packet loss

- however, we often see more packet loss. we don’t deal with theory, we deal with real computers...




Computers are Terrible

We see high packet loss all the time




Expected percent of infected processes after n rounds
100

75

g
@
i‘g 10
g 50 lower bound: 37.22383378299554
< >
R

25

0
0 2.5 5 7.5 10 12.5 15 17.5 20 225 25
# of rounds
lower bound == upper bound
Number of rounds 25 P(message loss) < 0.51 % of processes who received initial broadcast 0.01

ighcharts.col

- same graph as before, this time with 50% packet loss
- 40% of servers isn't good enough

- we'll probably lose purges during network outages, get calls from customers, etc...



he Digest

‘I'have 1, 2, 3, ...7

why would the paper throw away after 10 rounds?
digest is a list, which is limited by bandwidth

need to limit the size of the digest




he Digest

Doesn’t Have to be a List

it can be any data structure we want, as long as another node can understand it.



he Digest

Send ranges of ids of known messages

“messages 1to 3 and 5 to 1,000,000"

normally just a few integers to represent millions of messages

- we keep messages around for a day, or about 80k rounds



Expected percent of infected processes after n rounds

100 L4

81160
© upper bound: 99.99999999999999

% of processes
w
)

Ok 5k 10k 15k 20k 25k 30k 35k 40k 45k 50k 55k 60k 65k 70k 75k 80k
# of rounds

lower bound - upper bound e
Number of rounds 81283 ) P(message loss) < 0.99 % of processes who received initial broadcast 0.01
0

same graph, 80k rounds, 99% packet loss
99.9999999999% expected percent of servers to receive message

this is cool


http://brucespang.com/bimodal/convergence/

“with high probability” is fine

as long as you know what that probability is




Real World




—nd-to-

0.10
0.05

0.00 T

-nd Latency

Tokyo
133ms

100 150
Latency (ms)

- usually < 0.1% packet loss on a link

- 95th percentile delivery latency is network latency




Most purges are sent from the US

Density

d-to-End Latency

Density plot and 95" percentile of purge latency by server location

New York
'
i
i
i
)
London
74ms
'
i
i
i
i
_ San Jose
83ms
'
i
i
i
;
- Tokyo
133ms
'
i
i
i
T 1
T T \
0 50 100 150

Latency (ms)




-irewall Partition

Purge performance under network partition

60 120
—_ — |
[2) o w
5E £ i
c @ \ ¢ Cache server
S @ ! [ A
o @ H ]:' {
2 1F E N §i 4 B
5 F e il I M - ¢
e g f it 4
3 =) | i i D
A ;.,\iﬁh/f‘.s\j-,-'. Doadbon b AR G oy a3 a0 ;'5 i il .l
o AR MU LR AL TL, P AR AR 2 ko TR [ |
i ‘ LA i w R “/-L PR ool b KL jfz )
o - AT TN T \
. W hj \.N)!‘?“J\a V,Ia‘, ‘wﬁ-‘\'\'lf’% 4 ‘“k,l ",‘.‘,\,,/'V W4
T T T T [4] T T T T
02:30 03:00 03:30 04:00 02:30 03:00 03:30 04:00
Time Time

firewall misconfiguration prevented two servers (B and D) from communicating with servers outside the datacenter. A and C were unaffected.



APAC Packet Loss

Purge performance

1251 400
)
8 00 g
2 2 300
2 )
@ &
E 754 8 Cache server
é Eom Affected
£ 3 Unattected
3 501 2
2 g
= © 1004
2 £
§ 25 =
o

0

(=]

16:30 17:00 17:30 18:00
Time

16:30 17:00 17:30 18:00
Time

extended packet loss in APAC region for multiple hours, up to 30% at some points

no noticeable difference in throughput



DDoS

Purge performance under denial-of-service attack

60 | 150
= 10 " |'\ z
|
g f/ ~ 4 |
8 g1009| I
= @ iy | Cache server
o 1 E | — Victim
§ 3 ‘ Unatfected
3 | S 50 ‘ |
S0 [ 3 \ A I
& Eyoye—rfyy e £ | R
o Yy W Yy AL L = l& aw V) | u ‘ V“‘ h* ’
A, W \ f ‘ p |
W W oA
. . . I ] - Y WA
23:40 23:50 00:00 00:10 00:20 23:40 23:50 00:00 00:10 00:20
Time Time

The victim server was completely unreachable via ssh during the attack



So what?

CONCLUSION
- this is the system we implemented

- but why does it matter how well it works? why should you care?



BRUCE

Good systems are boring

We can go home at night, and don’t need to worry about this thing failing due to network problems.

We don’t have to debug distributed systems algorithms it at two in the morning.
We've been able to grow the number of purges by an order of magnitude without having to rewrite parts of the system.

etc...




What did we learn?

so this is great for us, but why do you care about the history of how we built our purging system?

handoff to tyler



@ |

Distributed systems, don't read the literature. Most
of it is outdated and unimaginiive. Invent and
reinvent. The field is fertile. Really.

6:41 PM - 29 Oct 2014

16 RETWEETS 23 FAVORITES

— well-known personality in community

So, this was supposed to be a sponsored talk, but instead of trying to sell you on Fastly, the reason we give this talk is actually as a sort of Public Service Announcement.
Don’t heed advice like this. Certainly spend time inventing and thinking, but don’t ignore the research.
It would have taken us quite a lot more trial and error to come to a system that we're as happy with now and long-term if we hadn’t based it on solid research. And

because we did, we now have a good foundation to invent new, and actually original, ideas on top of.



One weird trick...

So, essentially, if you take away one thing from this talk, remember this one weird trick to save yourself 20 or 30 years worth of research work...



Read more papers.

Read More Papers.




Thanks!




Questions?

Come to our booth!




