O
Is TLS Fast Yet?

Yes, it can be. Let’s take a peek under the hood...

tllya Grigorik
@igrigorik

urte | Authentication

oo identity verification of server + client
TLS Data integﬁrit
T CP ;r)rglpdtslc;t’l)g)gnagamst alicibus
IP pErigg/I;Ye CE!ggf communication

Transport Layer
Security

HTTPS-100 @ Google

e Move all existing services to HTTPS only
e All new services deployed as HTTPS only
e All data encrypted in transit and at rest

We're not there yet, but we're making rapid progress.

Google Webmaster Central Blog

Official news on crawling and indexing sites for the Google index

HTTPS as a ranking signal

Posted: Wednesday, August 06, 2014 g+1 7 48k W Tweet 2,102 {4.1k

Webmaster level: all

Security is a top priority for Google. We invest a lot in making sure that our services use industry-leading security,
like strong HTTPS encryption by default. That means that people using Search, Gmail and Google Drive, for
example, automatically have a secure connection to Google.

Beyond our own stuff, we're also working to make the Internet safer more broadly. A big part of that is making sure
that websites people access from Google are secure. For instance, we have created resources to help
webmasters prevent and fix security breaches on their sites.

We want to go even further. At Google 1/0 a few months ago, we called for “HTTPS everywhere” on the web.

We've also seen more and more webmasters adopting HTTPS (also known as HTTP over TLS, or Transport Layer
Security), on their website, which is encouraging.

For these reasons, over the past few months we've been running tests taking into account whether sites use
secure, encrypted connections as a signal in our search ranking algorithms. We've seen positive results, so we're
starting to use HTTPS as a ranking signal. For now it's only a very lightweight signal — affecting fewer than 1% of
global queries, and carrying less weight than other signals such as high-quality content — while we give
webmasters time to switch to HTTPS. But over time, we may decide to strengthen it, because we’d like to
encourage all website owners to switch from HTTP to HTTPS to keep everyone safe on the web.

“Lightweight signal to

start... but we may
decide to strengthen it".

\V,

TLS has exactly one performance

problem: it is not used widely
enough.

Everything else can be optimized.

Following along? Do this...

Verify your TLS configuration connce. [

Protocol Support 95

0 20 40 60 80 1

e https://www.ssllabs.com/ssltest/

Cipher Strength 90

00

Optimize TLS performance Connection Mobile 3G (1.6 Mbps/768 Kbps 300ms RTT) 4
e http://www.webpagetest.org/ R °

o Use 300ms RTT profile

Easier to detect performance problems

O

https://www.ssllabs.com/ssltest/
https://www.ssllabs.com/ssltest/
http://www.webpagetest.org/
http://www.webpagetest.org/

Verify your TLS configuration BULLETPROOF
SSL AND TLS

Understanding and Deploying SSL/TLS and

® You ShOUId have llA" rating or higher. PKI to Secure Servers and Web Applications
o https://www.ssllabs.com/ssltest/

e Follow the recommendations for
o protocol support
o ciphersuite list
o key strength
o etc.

Ivan Risti¢

Optimal configuration will vary based on

your visitors - e.qg. support for older clients, You should read this.
etc.

O

https://www.ssllabs.com/ssltest/
https://www.ssllabs.com/ssltest/

Optimize TLS performance

Let's take a peek under the hood...

First, let's get the basics right...

Upgrade to latest kernel (3.7+)

e Lots of TCP performance improvements

Upgrade to latest OpenSSL (1.0.1j+)

e Security patches, performance improvements

Upgrade to latest server build
e Security, feature, performance improvements

4 T htips://wiki.mozilla.org/Security/Server_Side_TLS

https://wiki.mozilla.org/Security/Server_Side_TLS

Computational costs

Asymmetric crypto (public key)

e 0O(1 ms) per handshake - expensive, relatively speaking.
e Used for the TLS handshake. ® Tip: do fewer handshakes!

Symmetric crypto

e 150Mbps+ per core with sha256 and 1024 byte blocks (on my laptop).
e Used to encrypt application data.

upgrade to latest
$> openssl version

run benchmarks on own hardware
$> openssl speed sha ecdh

O

G

“We have deployed TLS at a large scale using both
hardware and software load balancers. We have found
that modern software-based TLS implementations
running on commodity CPUs are fast enough to
handle heavy HTTPS traffic load without needing to
resort to dedicated cryptographic hardware.”

Doug Beaver, Facebook.

“On our production frontend machines, SSL/TLS
accounts for less than 1% of the CPU load, less than
10 KB of memory per connection and less than 2% of
network overhead. Many people believe that SSL/TLS
takes a lot of CPU time and we hope the preceding
numbers will help to dispel that.”

Adam Langley, Google.

Elliptic Curve Ephemeral Diffie-Hellman... enables Forward Secrecy.

“In practical deployment, we found that enabling and
prioritizing ECDHE cipher suites actually caused
negligible increase in CPU usage. HTTP keepalives
and session resumption mean that most requests do
not require a full handshake, so handshake
operations do not dominate our CPU usage.”

Jacob Hoffman-Andrews, Twitter.

TLS resumption 101

Client Server

Session Par-a.me'/'er—s Erom last tine..
—~— —>

L ooks éooc', let's Je:

Re-use negotiated parameters
for the symmetric cipher

(aPPliCa‘(’l'on c|e.+a)

Client Server

e Eliminates asymmetric crypto on the server via reuse of parameters
e Eliminates full roundtrip, allowing 1-RTT connection establishment

O

TLS Resumption

Shared state is on the
server

Session identifiers ®

e Server assigns session ID
e Server caches parameters
e Client sends session ID

e Session is resumed

Session tickets S Shared state is on the client

e Server encrypts parameters

e Server sets opaque ticket to client

e Client sends opaque ticket on reconnect

e Server decrypts ticket and resumes session

O

TLS handshake with session resumption...

$> openssl s client -connect example.com:443 -tlsl -tlsextdebug -status

SSL-Session: . . r-
Protocol : TLSv1 Session ldentifier
Cipher : RC4-SHA

Session-ID: 8BE63F4825DDE238EOFE7574D7637080D1278537ECD783512872BFD6FDFB861E
Session-ID-ctx:

Master-Key: 2FA185F11A791EFB5BA24847FA448B7A0CE73F2D095191F949A35F68CE40FD4EC389EQ25CCD7/5

Key-Arg : None : :
TLS session ticket lifetime hint: 600 (seconds) Session Ticket
TLS session ticket:

0000 - e4 34 51 9b 4c 13 9d ec-1f 1la 5a ea 89 c6 1f a7 .4Q.L..... Z.oooo
0010 - b7 d5 25 4e 20 56 b6 00-c2 8d ce 6¢c 06 8b c9 ff «.%N V..... 1....
(snip)

e You can enable both: older clients may not support session tickets
e Most servers support both, check the docs for configuration options

O

A few things to think about...

1. Session identifiers
a. Require a shared cache between servers for best results
b. Sessions must be expired and rotated in a secure manner

2. Session tickets

a. Require a shared ticket encryption key
b. Shared encryption key must be rotated in a secure manner

Disclaimer...
Shared (e.g. server cluster) session identifiers and ticket encryption keys

require careful deployment best practices to provide Perfect Forward Secrecy.

4 https://www.imperialviolet.org/2011/11/22/forwardsecret.htmli

Do this at home...

a. Is your session cache large enough?

i. Apache provides stats via mod_status
ii. Add logging for others, process logs.

b. What is the ticket timeout?

i. Most server defaults are too low (~300s)
ii. Most sites can use ~1 day

Optimizing latency

Your worst case should be one extra RTT!

How many RTTs does your handshake incur?

I DNS Lookup | M Initial Connection = [l SSL Negotiation | [l Time to First Byte = [Jll Content Download

htti::/ecz-so-w-sa-zos.us-west—i.com... 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0 2.2 2.4 2.6 2.8

10ec2-50-18-85-20. . . .anazonaws .com - / H!ﬂ?’z ms

https://ec2-50-18-86-205 .us-west-1.co...

& I ec2-50-18-88-2. . .amazonaus .com -/ | | |
. £c2-50-16-88-2. . .anazonaus..con -/ [S SR 57 s

, 0.2 0.4 06 0.8 1.0 1.2 1.4 1.6 1.8 2.0 2.2 2.4 2.6 2.8

&

Optimized TLS handshake: 1-RTT for new and resumed connections

What you will probably see...

(\ Tip: set WPT to use 300ms 3G profile, makes it much easier to detect handshake problems

Textbook TLS handshake

l Client

Send e your certiCicate

S —

=]

—p-

Here it is

L ooks éooé, [want fo use X ciPL.

er

P —

YeP, lets J°:

O

(«PP' ication data)

Certificate verification
(asymmetric crypto)

Symmetric key

negotiation

1-RTT non-resumed handshake with TLS False Start

Client Server In practice... some
Send me your certificate servers break with False
- o — Start, hence it's done as

Looks 500d, | want fo use X cipler an opt-in behavior.
,4'

[encfyp‘l‘er:’ aPPlica+ion c’o.‘f'a]

Client’s ChangeCipherSpec followed

- ——— - — -
-------------------—_———- wmmme e

Ok, lets 50 by encrypted request
F
[reoly]
}s --------------- . Server's ChangeCipherSpec followed
ot . by encrypted response

O

Deploying False Start...

Chrome and Firefox

e NPN/ALPN advertisement - e.g. “http/1.1"
e Forward secrecy ciphersuite - e.g. ECDHE

Safari
e Forward secrecy ciphersuite

Internet Explorer

e Blacklist + timeout
e |f handshake fails, retry without False Start

TL,;DR: enable NPN advertisement and forward secrecy to get TRTT handshakes.

1-RTT TLS handshake

Optimized
DNS TCP TLS Rlc;ITuTePst HTTP Response
handshake g

You server should be delivering 1-RTT TLS handshakes

e False Start: 1-RTT handshake for new visitors

e Resumption: 1-RTT handshake for returning visitors
e Plus, we skip (expensive) asymmetric crypto!

O

Common perf pitfals and misconfigurations...

HTTP

DNS TCP Not so optimized TLS handshake...
Request

HTTP Response

Missing intermediary cert: DNS + TCP + HTTP

OCSP check: DNS + TCP + HTTP

k Large, multi-RTT TLS record(s)

http — https — https://www ...

If your TLS handshake is not 1-RTT, chances are... it is due to one, or more, of above issues.

O

1. Missing intermediary certificates

Site certificate

Owner’s Name

Owner’s Public key Intermediate certificate

issuer

Issuer’s (CA) Name Owner’s Name
Issuer’s Signature , Owner’s Public key . Root CA certificate
verifies issuer
Issuer’s (CA) Name Root Name
P 0 <
Issuer’s Signature verifies Root Public key z
Root Signature R

$> cat site.cert intermediate.cert > full.cert

e Provide site certificate + CA intermediary certificate!
o Otherwise, client must pause and fetch the intermediate cert.

O

2. Online Certificate Status Protocol (OCSP)

https://www..wellsfargo.com

1. ocsp.verisign.com - /

& 2. www.wellsfargo.com - /

3. gtasl-ocsp.geotrust.com - /

B 4. wwdl.wellsfar...om - homepage.css

0.2

0.2

0.4

0.4

0.6

0.6

0.3

1.0 1.2 1.4 1.6 1.8 2.0 2.2

110 1.2 1.4 1.6 1.8 2.0 2.2

Has this certificate been revoked?

Browser pauses navigation and queries the OCSP server
e DNS lookup, TCP handshake, HTTP request, ...

OCSP stapling improves security and performance. Use it.
e Enables revocation checks for non-EV certificates.
e Does not require client lookups, does not pause navigation.

O

TLS handshake with stapled OCSP response...

$> openssl s client -connect example.com:443 -tlsl -tlsextdebug -status

OCSP Response Data:
OCSP Response Status: successful (0x0)
Response Type: Basic OCSP Response
Version: 1 (0x0)
Responder Id: C = IL, O = StartCom Ltd., CN = StartCom Class 1 Server OCSP Signer
Produced At: Feb 18 17:53:53 2014 GMT
Responses:
Certificate ID:
Hash Algorithm: shal
Issuer Name Hash: 6568874F40750F016A3475625E1F5C93E5A26D58
Issuer Key Hash: EB4234D098BOABOFF41B6BO8F7CC642EEFOE2CA45
Serial Number: ©B6OD5
Cert Status: good

Stapled OCSP means no blocking!

Server performs the OCSP check and “staples” the signed response to the certificate.

O

3. Audit your redirect chains

Optimized
DNS TCP TLS RZITuT;st HTTP Response
handshake g I
301
* Optimized
DNS TCP TLS RZITJ;,[HTTP Response
handshake a I
. . . 301
Redirects are extremely expensive with HTTPS v
e New DNS lookup, new TCP connection, new TLS handshake
DNS

I'm willing to bet your site has at least one unnecessary chain:
e http://.. — http://www
e http://.. — https://... — https://www... (hint: http://..— https://www...)

(‘ P.S. Set HSTS policy on the “naked” origin by requesting a special resource from www, or some such...

HSTS eliminates HTTPS redirects

Strict-Transport-Security: max-age=10886400; includeSubDomains

s emmm

Browser remembers (for specified max-age) that it should automatically
request HTTPS resources for this origin and its subdomains.

P.S. for bonus points, submit your site to HSTS preload list.

{» htips://hstspreload.appspot.com/

https://hstspreload.appspot.com/
https://hstspreload.appspot.com/
https://hstspreload.appspot.com/

4. Optimize your TLS record size

1-RTT Time to First Byte (TTFB)

+1-RTT for the rest of response

Il ONS Lookup | I Initial Connection | lll SSL Negotiation | [l Time to First Byte ’ Il Content Download

http://ec2-50-18-88-205 .us-west-1.com... | ©.2 0.4 0.6 0.8 1.0]11.2 1.4 1.6 1.8 2.0 2.2 2.4 2.6 2.8

o
1. ec2-50-18-88-20. . ..anazonaws.com - / ﬁbﬂz ms

https://ec2-50-18-836-205 .us-west-1.co...

B 1. ec2-50-18-88-2...amazonaws.com - / 1873 ms
0.2 04 06 0.8 1.0 1.2 1.4 1.6 183920 2.2 2.4 2.6 2.8

2-RTT Time to First Byte
.. delays HTML processing

Why do we have a TTFB delay?

O

TLS record size + latency gotchas...

v [8 Reassembled TCP Segments (11221 bytes): #169(1460), #170(1460), #172(1460), #174(1460),
#175(1460), #177(1460), #179(1460), #180(1001)]

[Frame: 169, payload: 0-1459 (1460 bytes)]
[Frame: 170, payload: 1460-2919 (1460 bytes)]

[Frame: 172, payload: 2920-4379 (1460 bytes)] . . .
(Frame: 174, payload: 4380-5839 (1460 bytes)] This record is split across 8 TCP packets
[Frame: 175, payload: 5840-7299 (1460 bytes)]

[Frame: 177, payload: 7300-8759 (1460 bytes)]
[Frame: 179, payload: 8760-10219 (1460 bytes)]
[Frame: 180, payload: 10220-11220 (1001 bytes)]
[Segment count: 8]
[Reassembled TCP length: 11221]
v Secure Sockets Layer
¥ TLSvl Record Layer: Application Data Protocol: http
Content Type: Application Data (23)
Version: TLS 1.0 (0x0301)
Length: 11216 ®

TLS allows up to 16KB of application per record
e New connection + 16KB record = CWND overflow and an extra RTT
e Lost ordelayed packet delays processing of entire record

O

Optimizing record size...

1. Implement dynamic record sizing (Google servers)
a. New connections start with 1400 byte records (aka, single MTU)
b. After ~1MB is sent, switch to 16K records
c. After ~1s of inactivity, reset to 1400 byte records

2. Check your server configuration...
a. Apache doesn't allow custom configuration.

b. Nginx supports static override (via ssl_buffer_size)
i. Not optimal, but still worth setting to 4k.

c. HAProxy & ATS supports dynamic record sizing.
TL;DR: there is no “perfect record size". Adjust dynamically.

y

Do this at home...

a. Does your infrastructure support False Start?
i. Enable ALPN / NPN
ii. Enable Forward Secrecy

b. Does your WPT run show 1-RTT handshakes?

i. Provide full certificate chain
ii. Configure OCSP stapling
lii. Eliminate redirects
iv. Optimize record size

Terminate TLS at the CDN edge...

New York, US

local proxy

I
I RTT with origin

London, UK

.., N
..>§ s

origin servers

I
| <@

< >,
RTT with CDN edge

O

|
|
|
|
|
|
-
|

CDNs are not just for static content.

Edge termination can significantly
reduce TCP and TLS handshake
costs!

E.g. Server in London, client in NYC.

e RITT to originis ~50ms.
e RTT to edge serveris ~10ms.

e TCP + TLS handshake with origin:
e 2x50ms=100ms

e TCP + TLS handshake with CDN:
e 2x10ms=20ms

Pick your server (and CDN) wisely

We have a lot of optimization work to do across the industry...

Session Session OCSP Dynamic ALPN Forward SPDY &

identifiers tickets stapling r;;&': / NPN secrecy HTTP/2

Apache
ATS
bud

HAProxy

IS

NetScaler

NGINX

node. S

e Most servers have a lot of room for improvement.
e Apache Traffic Server is the only one that's all green!

O

O

Dynamic ALPN
OCsP record / Forward SPDY &

NPN secrecy HTTP/2

Session Session
identifiers tickets stapling

sizing

Akamai

CloudFlare
AWSELB

AWS
CloudFront

EdgeCast
Fastly

Google App
Engine

Heroku

tmetighe | SRS ISR ICHNN (ST R =N
wacon | ST ISR NG (SR = IS

There is way too much red here... Bug your CDN about fixing this!

O

isTLSfastyet.com

(] Is TLS Fast Yet?

C' [https://istIsfastyet.com oy

TLS has exactly one performance problem:

it is not used widely enough.

Everything else can be optimized.

Data delivered over an unencrypted channel is insecure, untrustworthy, and trivially intercepted. We
owe it to our users to protect the security, privacy, and integrity of their data — all data must be
encrypted while in flight and at rest. Historically, concerns over performance have been the common

excuse to avoid these obligations, but today that is a false dichotomy. Let's dispel some myths.

What if | told you that...

HTTPS is actually faster and more efficient?

Courtesy of SPDY and HTTP/2!

SPDY and HTTP/2 improve client latency

Page load time improvement with SPDY enabled...

Google News | Google Sites Google Drive Google Maps

Median 43% 27% 23% 24%

95th percentile 44% 33% 36% 28%

Improvement over HTTPS/1.1

Some Google services are faster with SPDY than over plaintext HTTP, and
more efficient too! Why? Multiplexing, prioritization, header compression.

http://blog.chromium.org/2013/11/making-web-faster-with-spdy-and-http2.html

http://blog.chromium.org/2013/11/making-web-faster-with-spdy-and-http2.html
http://blog.chromium.org/2013/11/making-web-faster-with-spdy-and-http2.html

SPDY and HTTP/2 improve server
performance

Designed to use a single connection:

1. Fewer sockets — fewer TLS handshakes
2. Fewer buffers — memory savings

3. Connection re-use — faster data delivery

... ILS + SPDY — lower operational costs

Do this at home...

a. If you enabled HTTPS... enable SPDY!

i. Fewer connections, fewer handshakes, ...
ii. Better client and server performance

b. Start investigating HTTP/2

i. Already available in Chrome and Firefox stable!
ii. IET1 techinical preview supports it as well!

Slides Learn more
bit.ly/1A2HVEX isTLSfastyet.com

Thanks! Questions?

+llya Grigorik
@igrigorik

