
Is TLS Fast Yet?
Yes, it can be. Let’s take a peek under the hood...

TLS all the tubes!

+Ilya Grigorik
@igrigorik

IP
TCP
TLS

HTTP

Transport Layer
Security

... Authentication
identity verification of server + client

Data integrity
protection against malicious
middlemen

Encryption
privacy of exchanged communication

HTTPS-100 @ Google
● Chrome and Firefox

● Move all existing services to HTTPS only
● All new services deployed as HTTPS only
● All data encrypted in transit and at rest

We’re not there yet, but we’re making rapid progress.

“Lightweight signal to
start... but we may

decide to strengthen it”.

TLS has exactly one performance
problem: it is not used widely
enough.

Everything else can be optimized.

Following along? Do this...

Verify your TLS configuration
● https://www.ssllabs.com/ssltest/

Optimize TLS performance
● http://www.webpagetest.org/

○ Use 300ms RTT profile

Easier to detect performance problems

https://www.ssllabs.com/ssltest/
https://www.ssllabs.com/ssltest/
http://www.webpagetest.org/
http://www.webpagetest.org/

Verify your TLS configuration

● You should have “A” rating or higher.
○ https://www.ssllabs.com/ssltest/

● Follow the recommendations for
○ protocol support
○ ciphersuite list
○ key strength
○ etc.

Optimal configuration will vary based on
your visitors - e.g. support for older clients,
etc.

You should read this.

https://www.ssllabs.com/ssltest/
https://www.ssllabs.com/ssltest/

Optimize TLS performance
Let’s take a peek under the hood...

First, let’s get the basics right…
●

Upgrade to latest kernel (3.7+)
● Lots of TCP performance improvements

Upgrade to latest OpenSSL (1.0.1j+)
● Security patches, performance improvements

Upgrade to latest server build
● Security, feature, performance improvements

* https://wiki.mozilla.org/Security/Server_Side_TLS

https://wiki.mozilla.org/Security/Server_Side_TLS

Computational costs
Asymmetric crypto (public key)
● O(1 ms) per handshake - expensive, relatively speaking.

● Used for the TLS handshake.

Symmetric crypto
● 150Mbps+ per core with sha256 and 1024 byte blocks (on my laptop).
● Used to encrypt application data.

 # upgrade to latest

 $> openssl version

 # run benchmarks on own hardware

 $> openssl speed sha ecdh

Tip: do fewer handshakes!

“We have deployed TLS at a large scale using both
hardware and software load balancers. We have found
that modern software-based TLS implementations
running on commodity CPUs are fast enough to
handle heavy HTTPS traffic load without needing to
resort to dedicated cryptographic hardware.”

Doug Beaver, Facebook.

“On our production frontend machines, SSL/TLS
accounts for less than 1% of the CPU load, less than
10 KB of memory per connection and less than 2% of
network overhead. Many people believe that SSL/TLS
takes a lot of CPU time and we hope the preceding
numbers will help to dispel that.”

Adam Langley, Google.

“In practical deployment, we found that enabling and
prioritizing ECDHE cipher suites actually caused
negligible increase in CPU usage. HTTP keepalives
and session resumption mean that most requests do
not require a full handshake, so handshake
operations do not dominate our CPU usage.”

Jacob Hoffman-Andrews, Twitter.

Elliptic Curve Ephemeral Diffie-Hellman… enables Forward Secrecy.

TLS resumption 101

Re-use negotiated parameters
for the symmetric cipher

● Eliminates asymmetric crypto on the server via reuse of parameters
● Eliminates full roundtrip, allowing 1-RTT connection establishment

TLS Resumption

Session identifiers
● Server assigns session ID
● Server caches parameters
● Client sends session ID
● Session is resumed

Session tickets
● Server encrypts parameters
● Server sets opaque ticket to client
● Client sends opaque ticket on reconnect
● Server decrypts ticket and resumes session

Shared state is on the
server

Shared state is on the client

TLS handshake with session resumption...
 $> openssl s_client -connect example.com:443 -tls1 -tlsextdebug -status

 SSL-Session:
 Protocol : TLSv1
 Cipher : RC4-SHA
 Session-ID: 8BE63F4825DDE238E0FE7574D7637080D1278537ECD783512872BFD6FDFB861E
 Session-ID-ctx:
 Master-Key: 2FA185F11A791EFB5BA24847FA448B7A0CE73F2D095191F949A35F68CE40FD4EC389E025CCD75
 Key-Arg : None
 TLS session ticket lifetime hint: 600 (seconds)
 TLS session ticket:
 0000 - e4 34 51 9b 4c 13 9d ec-1f 1a 5a ea 89 c6 1f a7 .4Q.L.....Z.....
 0010 - b7 d5 25 4e 20 56 b6 00-c2 8d ce 6c 06 8b c9 ff ..%N V.....l....
 (snip)

Session Identifier

Session Ticket

● You can enable both: older clients may not support session tickets
● Most servers support both, check the docs for configuration options

A few things to think about…
1. Session identifiers

a. Require a shared cache between servers for best results
b. Sessions must be expired and rotated in a secure manner

2. Session tickets
a. Require a shared ticket encryption key
b. Shared encryption key must be rotated in a secure manner

https://www.imperialviolet.org/2011/11/22/forwardsecret.html

Disclaimer...
Shared (e.g. server cluster) session identifiers and ticket encryption keys
require careful deployment best practices to provide Perfect Forward Secrecy.

Do this at home...
a. Is your session cache large enough?

i. Apache provides stats via mod_status
ii. Add logging for others, process logs.

b. What is the ticket timeout?
i. Most server defaults are too low (~300s)

ii. Most sites can use ~1 day

Optimizing latency
Your worst case should be one extra RTT!

How many RTTs does your handshake incur?

What you will probably see...

No TLS

Optimized TLS handshake: 1-RTT for new and resumed connections

Tip: set WPT to use 300ms 3G profile, makes it much easier to detect handshake problems

Textbook TLS handshake

Certificate verification
(asymmetric crypto)

Symmetric key
negotiation

encrypted app data

2
RTTs

1-RTT non-resumed handshake with TLS False Start

In practice… some
servers break with False
Start, hence it’s done as
an opt-in behavior.

Client’s ChangeCipherSpec followed
by encrypted request

Server’s ChangeCipherSpec followed
by encrypted response

Deploying False Start...
● Chrome and Firefox
Chrome and Firefox
● NPN/ALPN advertisement - e.g. “http/1.1”
● Forward secrecy ciphersuite - e.g. ECDHE

Safari
● Forward secrecy ciphersuite

Internet Explorer
● Blacklist + timeout
● If handshake fails, retry without False Start

TL;DR: enable NPN advertisement and forward secrecy to get 1RTT handshakes.

DNS TCP HTTP
Request HTTP Response

Optimized
TLS

handshake

You server should be delivering 1-RTT TLS handshakes
● False Start: 1-RTT handshake for new visitors
● Resumption: 1-RTT handshake for returning visitors

● Plus, we skip (expensive) asymmetric crypto!

1-RTT TLS handshake

Large, multi-RTT TLS record(s)

http → https → https://www …

OCSP check: DNS + TCP + HTTP

Common perf pitfals and misconfigurations...

DNS TCP HTTP
Request HTTP ResponseNot so optimized TLS handshake...

Missing intermediary cert: DNS + TCP + HTTP

If your TLS handshake is not 1-RTT, chances are… it is due to one, or more, of above issues.

1. Missing intermediary certificates

$> cat site.cert intermediate.cert > full.cert Unnecessary

● Provide site certificate + CA intermediary certificate!
○ Otherwise, client must pause and fetch the intermediate cert.

2. Online Certificate Status Protocol (OCSP)

Browser pauses navigation and queries the OCSP server
● DNS lookup, TCP handshake, HTTP request, …

Has this certificate been revoked?

OCSP stapling improves security and performance. Use it.
● Enables revocation checks for non-EV certificates.
● Does not require client lookups, does not pause navigation.

TLS handshake with stapled OCSP response...
 $> openssl s_client -connect example.com:443 -tls1 -tlsextdebug -status

 OCSP Response Data:
 OCSP Response Status: successful (0x0)
 Response Type: Basic OCSP Response
 Version: 1 (0x0)
 Responder Id: C = IL, O = StartCom Ltd., CN = StartCom Class 1 Server OCSP Signer
 Produced At: Feb 18 17:53:53 2014 GMT
 Responses:
 Certificate ID:
 Hash Algorithm: sha1
 Issuer Name Hash: 6568874F40750F016A3475625E1F5C93E5A26D58
 Issuer Key Hash: EB4234D098B0AB9FF41B6B08F7CC642EEF0E2C45
 Serial Number: 0B60D5
 Cert Status: good

Stapled OCSP means no blocking!

Server performs the OCSP check and “staples” the signed response to the certificate.

3. Audit your redirect chains

Redirects are extremely expensive with HTTPS
● New DNS lookup, new TCP connection, new TLS handshake

DNS TCP HTTP
Request HTTP

Optimized
TLS

handshake

301

DNS TCP HTTP
Request HTTP

Optimized
TLS

handshake

301

DNS ...

Response

Response

I’m willing to bet your site has at least one unnecessary chain:
● http://… → http://www
● http://… → https://… → https://www... (hint: http://…→ https://www…)

P.S. Set HSTS policy on the “naked” origin by requesting a special resource from www, or some such...

HSTS eliminates HTTPS redirects

 Strict-Transport-Security: max-age=10886400; includeSubDomains

recommendedin seconds

Browser remembers (for specified max-age) that it should automatically
request HTTPS resources for this origin and its subdomains.

P.S. for bonus points, submit your site to HSTS preload list.

https://hstspreload.appspot.com/

https://hstspreload.appspot.com/
https://hstspreload.appspot.com/
https://hstspreload.appspot.com/

 1-RTT Time to First Byte (TTFB)
 +1-RTT for the rest of response

2-RTT Time to First Byte
… delays HTML processingWhy do we have a TTFB delay?

4. Optimize your TLS record size

TLS record size + latency gotchas...

TLS allows up to 16KB of application per record
● New connection + 16KB record = CWND overflow and an extra RTT
● Lost or delayed packet delays processing of entire record

This record is split across 8 TCP packets

Optimizing record size…

1. Implement dynamic record sizing (Google servers)
a. New connections start with 1400 byte records (aka, single MTU)
b. After ~1MB is sent, switch to 16K records
c. After ~1s of inactivity, reset to 1400 byte records

2. Check your server configuration...
a. Apache doesn’t allow custom configuration.
b. Nginx supports static override (via ssl_buffer_size)

i. Not optimal, but still worth setting to 4k.
c. HAProxy & ATS supports dynamic record sizing.

TL;DR: there is no “perfect record size”. Adjust dynamically.

a. Does your infrastructure support False Start?
i. Enable ALPN / NPN

ii. Enable Forward Secrecy

b. Does your WPT run show 1-RTT handshakes?
i. Provide full certificate chain

ii. Configure OCSP stapling
iii. Eliminate redirects
iv. Optimize record size

Do this at home...

CDNs are not just for static content.

Edge termination can significantly
reduce TCP and TLS handshake
costs!

Terminate TLS at the CDN edge…

RTT with origin

RTT with CDN edge

E.g. Server in London, client in NYC.
● RTT to origin is ~50ms.
● RTT to edge server is ~10ms.

● TCP + TLS handshake with origin:
● 2 x 50ms = 100ms

● TCP + TLS handshake with CDN:
● 2 x 10ms = 20ms

Pick your server (and CDN) wisely
We have a lot of optimization work to do across the industry...

● Most servers have a lot of room for improvement.
● Apache Traffic Server is the only one that’s all green!

There is way too much red here… Bug your CDN about fixing this!

isTLSfastyet.com

What if I told you that…
HTTPS is actually faster and more efficient?

Courtesy of SPDY and HTTP/2!

SPDY and HTTP/2 improve client latency

Some Google services are faster with SPDY than over plaintext HTTP, and
more efficient too! Why? Multiplexing, prioritization, header compression.

Google News Google Sites Google Drive Google Maps

 Median 43% 27% 23% 24%

 95th percentile 44% 33% 36% 28%

Page load time improvement with SPDY enabled...

Improvement over HTTPS/1.1

http://blog.chromium.org/2013/11/making-web-faster-with-spdy-and-http2.html

http://blog.chromium.org/2013/11/making-web-faster-with-spdy-and-http2.html
http://blog.chromium.org/2013/11/making-web-faster-with-spdy-and-http2.html

Designed to use a single connection:

1. Fewer sockets → fewer TLS handshakes

2. Fewer buffers → memory savings

3. Connection re-use → faster data delivery

… TLS + SPDY → lower operational costs

SPDY and HTTP/2 improve server
performance

a. If you enabled HTTPS… enable SPDY!
i. Fewer connections, fewer handshakes, ...

ii. Better client and server performance

b. Start investigating HTTP/2
i. Already available in Chrome and Firefox stable!

ii. IE11 techinical preview supports it as well!

Do this at home...

Thanks! Questions?

+Ilya Grigorik
@igrigorik

Slides
bit.ly/1A2HVEX

Learn more
isTLSfastyet.com

