
The Machine is dead, long
live the Machine
Service resilience and deployment automation at the

I am Yavor Atanasov
or Явор Атанасов if you
read Bulgarian
Today I will be speaking with you as a software engineer from BBC’s central
engineering team.

Built (in a irreproducible
way) hereCurrently deployed here

The BBC
Depth of audience and breadth of services

● 5th largest site in UK, 55th globally

● Top 20 in News, Sport, Arts, Kids and Teens

Source: Alexa

Our team helps others deliver
software fast and reliably - now and
in the long term

We provide tools used for building and deploying services on AWS

What are we speaking about today?

● Where we were before

● Where we are now

● Principles we’ve followed

● How we followed them

● What does it all mean

Our previous platform

● Shared tenancy of services

● Strong separation of Ops and Dev

● Devs deploy to test, Ops deploy to live

● Limited set of technologies

What this means for people

● Long release cycle - harder risk management and
frustration

● Separation of OPS and Dev - friction and alienation

● Limited technologies - forcing people to cut an apple
with a chainsaw

What this means for our services

● Higher risk of breaking due to updates

● Slower resolution of live issues

● Wider impact area in case of a problematic release

The need for change

● Better service isolation

● Faster, more continuous deployments

● Easier infrastructure provisioning

● No hard limit on technologies

● Let Dev and OPS eat each other’s dog food

Brand new world
Continuous Delivery, Cloud, DevOps

Freedom and responsibility

● Services have dedicated infrastructure

● Teams can create infrastructure

● Teams control their deployment cycles

● Teams choose their technologies

● Teams are responsible for their service

How are we doing in numbers

● > 300 deployments per day

● 60,000 Deployments in first 18 months

● Time to live from 2 days to 10 minutes

Who is using our tools and services

● All key video transcoding/packaging for BBC iPlayer

● Pipeline delivering election results to BBC News

● Live text for all BBC Sport events

● … a lot more

How does it look like
The path from keyboard to audiences

jenkins

SVN

GIT
repo bakery

cosmos

Service A
test

Service A
live

commit

pull

build

push

register

bake

deploy

promote

Building your service

Building blocks

source package container machine

Source built into a
package installed
on a machine

Source built into a
package installed
in a container put
on a machine

Source put on a
machine directly

Source put in a
container put on a
machine

A. B.

C. D.

C. D.

What is wrong with these?

How do you express dependencies of
your software without packaging?

...don’t tell me bash scripts

Leave dependency management to
systems designed for that!

Whether you use containers or deploy directly onto a machine - package your code

That leaves us 2 options

A. B.

Deploying (docker) containers is a
dynamic topic

C.

- Deployment and management tools are still immature
- Dependency management between things in the

container and the underlying host is an open topic (fat
vs thin containers)

- Cloud vendors may need to think about billing based on
container usage if they want to abstract completely the
underlying virtual instances

- etc...

So for now our service is
this ...

A.

source package machine

We need to build two
binaries

● Packages - e.g. RPM, DEB, etc.

● Machine images- e.g. AMI

Important principles

● Build binaries in a reproducible way

● Build them once

● Leave dependency management to tools made for it

Building a package

Different levels of package managers

 yum

 pip npm bundler OS portable

OS specific

CentOS

Which manager to package for?

If all your dependencies come from one package manager - package for that.

e.g. I only depend on node modules, so I’ll build an npm package

Dependencies across package
managers?

If you have dependencies stretching across different managers - package for the lower level
one, resolve all higher level dependencies at build time and include them in the package.

?

CI is critical, choice of CI is
irrelevant
Building within clean chroots using mock or within docker containers
ensures all your build dependencies are specified correctly and your build is
reproducible.

http://fedoraproject.org/wiki/Using_Mock_to_test_package_builds
https://www.docker.com/

How we build packages

● We use Jenkins

● We build within chroots using mock

● Our services are built as RPM packages

Building the
machine

Important principles

● Build binaries in a reproducible way

● Build them once

● Leave dependency management to tools made for it

What’s in a machine image?

environment config

service

Base OS

software
binary

Machines and environments
Keep the binaries the same, do the minimal change - configuration

Bake it all vs bootstrap
full bake bootstrap

Image per service per
environment

no startup dependencies

build binaries once

Just one base image

network dependencies on
startup

building your service every
time on every instance

Bake it all vs bootstrap

● Think about network dependencies on startup

● Think about startup time and reliability

● Think about building binaries once

How we bake Amazon
Machine Images (AMIs)

Our Bakery

● Takes repositories information, packages to install and
environment specific configuration

● Bakes AMIs using a 2 step snapshot process – 1
snapshot just for the software and 1 for the software
with the configuration

2 step snapshotting

snap-5cf68ba0
snap-85f68b79

snap-5cf68ba0
snap-85f68b79

snap-c611a5b1
snap-85f68b79

Provisioning
cloud
infrastructure

Hardware is now software,
let’s treat it as such...

Important principles

● Build binaries in a reproducible way

● Build them once

● Leave dependency management to tools made for it

Infrastructure as code and
AWS CloudFormation
● Manages infrastructure dependencies

● Handles underlying AWS API interactions

● Supports rollbacks

● Reproducible

● We can version infrastructure with our code

What does that mean for
my service?

● I can build identical copies of my service in different environments

● I can version my infrastructure templates with my code and reproduce the

full stack at any point in time

So my application is not just
software, it is software and
infrastructure combined

How we provision
infrastructure

● We define stateless and stateful infrastructure in separate templates

● We use CloudFormation abstraction libraries to programmatically
generate templates - (e.g. https://github.com/cloudtools/troposphere)

Cloud architecture

Architectural considerations

● Resilience and security through levels of isolation

● High availability through multiple zones and regions

● Scalability

Levels of isolation

● Network and instance access - be isolated by default

● Resource isolation - find all API limits and resource
limits of your cloud vendor and avoid sharing those
among your critical services. The cloud is finite!

A A

A A

B A

B A

C C C C

A B

A B

C C

A A

A A

B A

B A

C C C C

A B

A B

C C

security groups to
isolate instances

A A

A A

B A

B A

C C C C

A B

A B

C C

security groups to
isolate instances

subnets and ACLs to isolate
groups of instances

A A

A A

B A

B A

C C C C

A B

A B

C C

security groups to
isolate instances

subnets and ACLs to isolate
groups of instances

VPCs to isolate
subnets

A A

A A

B A

B A

C C C C

A B

A B

C C

security groups to
isolate instances

subnets and ACLs to isolate
groups of instances

VPCs to isolate
subnets

different accounts to
isolate environments

Account 1 Account 2

Scalability and resilience

If you are not using AutoScaling
Groups, you are doing it wrong!

● ASGs ensure your instances are always running

● ASGs handle multi AZ for you

● ASGs make you a better engineer

● ASGs can deploy services

Forget about your instances, they are
just a unit of computational capability

jon frida

pete yav
A A

do not give your
instances names...

...think of them as
threads running your
service...

...that you can
increase if needed

Service A

Chaos Monkey can help you kill the
machine from your mind

A
Don’t say: Chaos
Monkey kills my
instances

Instead say: Chaos
Monkey impacts my
capacity

AutoScaling Groups help us deploy
services

● Define your update policy

● Bake an AMI

● Update the ASG image id

● Watch your service rolling forward

Putting all this together

● Use VPCs, subnets and ACLs to isolate network access to your services

● Always spread your infrastructure to at least multiple AZs

● Use multiple AWS accounts for different services and/or environments

● Run your service in ASGs

High level overview of our
infrastructure

Service specific infrastructure

service =

AutoScalingGroup
Security Groups
IAM Roles and Policies
Elastic Load Balancer
Route 53 Record

RDS databases
SQS Queues
S3 Buckets
etc...

+

Teams can create any infrastructure, we help with defaults

eu
-w

es
t-

1a
eu

-w
es

t-
1b

eu
-w

es
t-

1c

private

private

private

public

public

public

Core
infrastructure

VPC with private and public
subnets in the eu zones

Provides the frame upon which
services’ infrastructure is built

Provides security and resilience
through levels of isolation

Account X Account Y

We use many AWS accounts

…

VPC peering and
SSH access

We peer all our VPCs with the VPC
of our central bastion service in
order to provide SSH access to
developers to their services

Bastions

Let’s look at our
deployment pipeline again

jenkins

SVN

GIT
repo bakery

cosmos

Service A
test

Service A
live

commit

pull

build

push

register

bake

deploy

promote

What does this all mean?

Follow us: https://github.
com/bbc

Questions?

Moltes gràcies!

