@ pentaho

Embed and Extend DI

pentaho

This document supports Pentaho Business Analytics Suite 5.0 GA and Pentaho Data Integration 5.0 GA,
documentation revision August 28, 2013, copyright © 2013 Pentaho Corporation. No part may be reprinted without
written permission from Pentaho Corporation. All trademarks are the property of their respective owners.

Help and Support Resources

If you do not find answers to your quesions here, please contact your Pentaho technical support representative.

Support-related questions should be submitted through the Pentaho Customer Support Portal at
http://support.pentaho.com.

For information about how to purchase support or enable an additional named support contact, please contact your
sales representative, or send an email to sales@pentaho.com.

For information about instructor-led training, visit
http://www.pentaho.com/training.

Liability Limits and Warranty Disclaimer

The author(s) of this document have used their best efforts in preparing the content and the programs contained
in it. These efforts include the development, research, and testing of the theories and programs to determine their
effectiveness. The author and publisher make no warranty of any kind, express or implied, with regard to these
programs or the documentation contained in this book.

The author(s) and Pentaho shall not be liable in the event of incidental or consequential damages in connection
with, or arising out of, the furnishing, performance, or use of the programs, associated instructions, and/or claims.

Trademarks

Pentaho (TM) and the Pentaho logo are registered trademarks of Pentaho Corporation. All other trademarks are the
property of their respective owners. Trademarked names may appear throughout this document. Rather than list
the names and entities that own the trademarks or insert a trademark symbol with each mention of the trademarked
name, Pentaho states that it is using the names for editorial purposes only and to the benefit of the trademark
owner, with no intention of infringing upon that trademark.

Third-Party Open Source Software

For a listing of open source software used by each Pentaho component, navigate to the folder that contains the
Pentaho component. Within that folder, locate a folder named licenses. The licenses folder contains HTML files that
list the names of open source software, their licenses, and required attributions.

Contact Us

Global Headquarters Pentaho Corporation
Citadel International, Suite 340

5950 Hazeltine National Drive

Orlando, FL 32822

Phone: +1 407 812-OPEN (6736)

Fax: +1 407 517-4575
http://www.pentaho.com

Sales Inquiries: sales@pentaho.com

http://support.pentaho.com
mailto:sales@pentaho.com
http://www.pentaho.com/training
http://www.pentaho.com
mailto:sales@pentaho.com

| TOC | 3

Contents

(1T 1] o IS = U (T o USRS 4
Extending Pentaho Data INtegratioN..........ccuuuiiiiiiiiiiiis e e e e e e e e e ara e 6
(1= oo] (T o T d (0T 11 USSP 6

Y= U= T gL g o IS (=] IR Y= 1] o 1 UEEURRRS 7
Implementing the Step Settings Dialog BOX.......uuuueiiiiieeiiieiiiiiiiiieeeeeeee e e e s s sciiinrrrereeeee e e e e s s e ssnnrsrnnneeees 9

PrOCESSING ROWS......uiiiiiiiiiiiieiee e e e e s ce ettt e e e e e e e e e s s s st et e e eeeeaaaeeessaaaa st babeeeeeeeaaaeeessaassnstarannrraeaaaeens 10

D=7 o] [0) YT To IS (=Y o0 o 18 o 1 SRR 16

SF= a1 (SIS (=T o I d 10T 11 SRR 16

[q o] (o T o 1Y (o] (ST (=T oL PEERUPRS 18

Creating JOD ENTIY PIUGINS.......coi ittt e e e e e e e s s st e e e e e e e e e e e e s e e annbaraeeeeeeaeeesessnnnsnnrennnnes 18

TeaT o] (= aa =T)T a o JE= W Lo o L = o1 /USRS 19
Implementing the Job Entry Settings Dialog BOX..........occcuviiiiiiiiiiie et eer e e e e e s ssinnvvaneeee e 21

(oo o LaTe BT TN o] o N =t 1 =TT PSR 21

[D7=T0][0) YT To BN To o I =1) 1 VA = 11 o 1 £ U 22

SF=Taa] o1 (ST L] o T a1 YA = 0 T 11 o PSSR 23

EXPIOriNg MOre JOD ENTIES...cciiiiii ittt e e e e s e e s r e e e e e e e e e s e s s ennan b e raeeeeaaaeeas 24

Creating Database PIUGINS.uuuiiiiiiie it e e e e s e s s e e e e e e e e e e s s e st b e taeeeeaaaeessessasentrasereeeaaaeessannnns 24
Exploring Existing Database Implementations.............ueiiieeeiiiiiiiiiiiiiieieee e e e sserrrrre e e e e e e e e e snenes 26

Deploying Database PIUGINS.........coiiiiiiiiiiiieeiee e e et e s e e e e e e e s s st re e e e e e e e e e s e s s e s sanntnrrareeeeaaaeeeas 26

Sample Database PlIUGIN........cooiiiiiiiiiiicr e e e e e e e e e e e e s e e st rrreraaaeaaaaaan 27

Creating PartiONer PIUGINS. i e e e et e e e e e e s e e sttt e e e e e eaeeaeesassanrantaaaeeeeaaesessansnnrenes 28
Implementing the Partitioner INTEIMACE.uuuiiiii e e e e e 29
Implementing the Partitioner Settings Dialog BOX........c..uuuirriiiieeeiiiiiiiiiirineeeeeee e e e s e ssssnnnrnnneseeeeeeeeees 30

Deploying Partitioner PIUGINS.........oic it ee e sesir e e e e e e e e s s st e e e e e eaeeesessssnnnnranaereeasaeeeeens 31

Sample PartitioNer PIUGIN.......c.oi it e e e e s s s e e e e e e e e s s s s ananrreereeeaeaeeeeaeaanns 31

EXPIOring EXIStING PartitiONEIS.......uuuiiiiiiiiieie e e ittt e e e e e e e s s s st e s e e s e e e e e e s ssssanntasaeeeeeeaeeeesssnnnnns 32

D=1 00T o 1o T d 0T 11 1P SEERRRP 32

[oTox= 171 (o] o FO PO PPRPPPPRP 33
Embedding Pentaho Data INtegration.............ccuuuuiiiiiiiiiiiiii et e et e e e e eens 35
U] Tl o T I = U 1) {0 1 T 0] o S 35
U]] T o TR Lo o 1= SRS 35
Building Transformations DYNaMICAIIY.............cccuuiiiiiiiie e e e e e e e e s s s nrar e e e e e aaaeeas 36
BUilding JODS DYNAMUCAIIY.......cccii it e e e e e e s e e e e e e e e e e s e e e b b e e e e e e e e eaeeeessannnnrenneees 36
(©]o)=TlalTaTo I IeTe o] TaTo I T a1{o] 42 T 11 o] o FOR U 37

Exposing a Transformation or JOb as @ WED SEIVICE.........cccccciiiiiiiiiiee et e e e e 38

| Getting Started | 4

Getting Started

Pentaho software engineers have anticipated that you may want to develop custom plugins to extend Pentaho Data
Integration (PDI) functionality or to embed the PDI engine into you own Java applications. To aid experienced Java
developers, we provide Java classes and methods, as well as sample Eclipse-based projects with detailed code-level
documentation. The instructions in this publication show you how to approach your plugin project. When reading the
instructions, we recommended that you open the related sample project and follow along.

Unless specifically stated otherwise, developing custom plugins and extending or embedding PDI is not covered under
the standard Pentaho customer support agreement.

Getting Sample Projects

Here is where you can download the zip file that contains the sample projects: htt ps:// pent aho. box. com
ext endi ng- and- enbeddi ng- pdi

Note: The sample projects are provided "as is" and are subject to the warranty disclaimer contained in
| the applicable project license. Sample projects are informational only and are not recommended for use in
production. Use in production is at your own risk.

Setting Up a Development Environment

When beginning a new PDI-related project we recommend you start from one of the sample projects and adapt it to
your development environment.

The sample projects come preconfigured as Eclipse projects, complete with dependencies to a stable release of PDI
5.0. If you are developing for a specific version of PDI, you must replace the dependency j ar files to match your
version of PDI. The PDI classes and methods are stable for any major version of PDI, so you can safely replace the
j ar files and develop for any PDI 5.x release.

Getting PDI Sources

When developing with PDI, also known as the Kettle project to the open source community, it is helpful to have the
Kettle sources close by. Including them in development projects makes it possible to trace and step through core PDI
code, which helps when debugging your solution.

Note: Itis not necessary or supported to modify or compile any of the PDI sources when embedding or
| extending PDI. Including the PDI sources in your projects is optional.

PDI source code is publicly available from the Pentaho SVN repository at http://source.pentaho.org/svnkettleroot/Kettle.

PDI follows the standard project layout for SVN repositories. The version currently in development is hosted in the trunk
folder, patch branches are hosted in the branch folders, and released versions are tagged in the tags folder.

If you are developing for a specific version of PDI, for instance 5.0.0, it is important to check-out or export the
corresponding tag. To check which version you need to match your installation, select Help > About from the Spoon
menu.

S

Kelthe - Spoon GCerneral Avallability
Release - 4.3.0

() (0] Pestabs Corpdsation
e et oo

'HM w0 '41.ﬁ-fn\|}
L ~04-18 21.39.30

o)

https://pentaho.box.com/extending-and-embedding-pdi
https://pentaho.box.com/extending-and-embedding-pdi
http://source.pentaho.org/svnkettleroot/Kettle/

| Getting Started | 5
The Build version shows you which tag to use to match your installation.

¥ = Kettle 16910

F ¥ trunk 16910

P 5o branches 16909

¥ ¥ tags L6786
B4, 2.0-08 15713
F(=4.2.0-RC1 15366
F=4.2.0-stable 15748
P42, 1-04 15948
k| =-4.2.1-stable 15952
F=4.2.1.1 16483

b (=4.3.0-RC1 16411

Attach Source to PDI JAR Files

If you checked out PDI sources, you may want to associate the source to the matching PDI j ar files against which you
are compiling your plugin. This optional step may improve the debugging experience, as it allows you to trace into PDI
core code.

Additional Developer Documentation
Javadoc

The javadoc documentation reflects the most recent stable release of PDI and is available at ht t p: //
j avadoc. pent aho. conf kettl e/.

Pentaho PDI Community Wiki

Additional developer documentation is available in the PDI community wiki: ht t p: // wi ki . pent aho. cont di spl ay/
EAl / Lat est +Pent aho+Dat a+l nt egr at i on+%28aka+Ket t | e%29+Docunent at i on.

The “Documentation for (Java) Developers" section has additional information for extending PDI with plugins or
embedding the PDI engine.

http://javadoc.pentaho.com/kettle/
http://javadoc.pentaho.com/kettle/
http://wiki.pentaho.com/display/EAI/Latest+Pentaho+Data+Integration+%28aka+Kettle%29+Documentation
http://wiki.pentaho.com/display/EAI/Latest+Pentaho+Data+Integration+%28aka+Kettle%29+Documentation

| Extending Pentaho Data Integration | 6

Extending Pentaho Data Integration

To extend the standard PDI functionality, you may want to develop custom plugins. The instructions in this section
address common extending scenarios, with each scenario having its own sample project. These folders of the sample
code package contain sample projects.

* kettle-sdk-step-plugin

» kettle-sdk-jobentry-plugin

» kettle-sdk-database-plugin
» kettle-sdk-partitioner-plugin

Creating Step Plugins

A transformation step implements a data processing task in an ETL data flow. It operates on a stream of data rows.
Transformation steps are designed for input, processing, or output. Input steps fetch data rows from external data
sources, such as files or databases. Processing steps work with data rows, perform field calculations, and stream
operations, such as joining or filtering. Output steps write the processed data back to storage, files, or databases.

- —

—
a4

i 11 -
e

C5V file input Calculator Table output

This section explains the architecture and programming concepts for creating your own PDI transformation step plugin.
We recommended that you open and refer to the sample step plugin sources while following these instructions.

A step plugin integrates with PDI by implementing four distinct Java interfaces. Each interface represents a set of
responsibilities performed by a PDI step. Each of the interfaces has a base class that implements the bulk of the
interface in order to simplify plugin development.

Unless noted otherwise, all step interfaces and corresponding base classes are part of the
or g. pent aho. di . trans. st ep package.

Java Interface Base Class Main Responsibilities

StepMet al nterface BaseSt epMet a « Maintain step
settings

« Validate step
settings

» Serialize step
settings

* Provide access to
step classes

e Perform row layout
changes

St epDi al ogl nterface org. pentaho. di.ui.trans. step. BaseStepDial og |. step settings dialog

| Extending Pentaho Data Integration | 7

Java Interface Base Class Main Responsibilities
Steplnterface BaseSt ep « Process rows
St epDat al nter f ace BaseSt epDat a « Provide storage for
row processing

Maintaining Step Settings

Java Interface org. pentaho. di.trans. step. StepMet al nterface

Base class org. pent aho. di . trans. st ep. BaseSt epMet a

The St epMet al nt er f ace is the main Java interface that a plugin implements.
Keep Track Of the Step Settings

The implementing class keeps track of step settings using private fields with corresponding get and set methods. The
dialog class implementing St epDi al ogl nt er f ace uses these methods to copy the user supplied configuration in and
out of the dialog.

These interface methods are also used to maintain settings.
voi d setDefaul t ()

This method is called every time a new step is created and allocates or sets the step configuration to sensible defaults.
The values set here are used by Spoon when a new step is created. This is a good place to ensure that the step
settings are initialized to non-null values. Values that are nul | can be cumbersome to deal with in serialization and
dialog population, so most PDI step implementations stick to non-null values for all step settings.

public Object clone()

This method is called when a step is duplicated in Spoon. It returns a deep copy of the step meta object. It is essential
that the implementing class creates proper deep copies if the step configuration is stored in modifiable objects, such as
lists or custom helper objects.

See org. pent aho. di . trans. st eps. rowgener at or . RowCGener at or Met a. cl one() in the PDI source for an
example of creating a deep copy.

Serialize Step Settings
The plugin serializes its settings to both XML and a PDI repository. These interface methods provide this functionality.
public String get XM.()

This method is called by PDI whenever a step serializes its settings to XML. It is called when saving a transformation in
Spoon. The method returns an XML string containing the serialized step settings. The string contains a series of XML
tags, one tag per setting. The helper class, or g. pent aho. di . cor e. xm . XM_Handl er, constructs the XML string.

public void | oadXM.()

This method is called by PDI whenever a step reads its settings from XML. The XML node containing the step settings
is passed in as an argument. Again, the helper class, or g. pent aho. di . cor e. xm . XM_Handl er , reads the step
settings from the XML node.

public void saveRep()

This method is called by PDI whenever a step saves its settings to a PDI repository. The repository object passed in as
the first argument provides a set of methods for serializing step settings. The passed in transformation id and step id are
used by the step as identifiers when calling the repository serialization methods.

public void readRep()

This method is called by PDI whenever a step reads its configuration from a PDI repository. The step id given in the
arguments is used as the identifier when using the repositories serialization methods.

When developing plugins, make sure the serialization code is in synch with the settings available from the step dialog.
When testing a step in Spoon, PDI internally saves and loads a copy of the transformation before executing it.

Provide Instances of Other Plugin Classes

http://javadoc.pentaho.com/kettle/org/pentaho/di/trans/step/StepMetaInterface.html
http://javadoc.pentaho.com/kettle/org/pentaho/di/trans/step/BaseStepMeta.html

| Extending Pentaho Data Integration | 8

The St epMet al nt er f ace plugin class is the main class, tying in with the rest of PDI architecture. It is responsible
for supplying instances of the other plugin classes implementing St epDi al ogl nt erf ace, St epl nt er f ace, and

St epDat al nt er f ace. The following methods cover these responsibilities. Each method implementation constructs a
new instance of the corresponding class, forwarding the passed in arguments to the constructor.

e public StepDial ogl nterface getDi al og()
e public Steplnterface getStep()
e public StepDatalnterface getStepbData()

Each of these methods returns a new instance of the plugin class implementing St epDi al ogl nt er f ace,
Stepl nterface, and St epDat al nt er f ace.

Report Step Changes to the Row Stream

PDI needs to know how a step affects the row structure. A step may be adding or removing fields, as well as modifying
the metadata of a field. The method implementing this aspect of a step plugin is get Fi el ds() .

public void getFields()

Given a description of the input rows, the plugin modifies it to match the structure for its output fields. The
implementation modifies the passed in Rowivet al nt er f ace object to reflect changes to the row stream. A step adds
fields to the row structure. This is done by creating Val uelMet a objects, such as the PDI default implementation of
Val ueMet al nt er f ace, and appending them to the Rowivet al nt er f ace object. The Working with Fields section
goes into deeper detail about Val ueMet al nt er f ace.

This sample transformation uses two steps. The Demo step adds the field, deno_f i el d, to empty rows produced by
the Generate Rows step.

F—))

Generate Rows Demo Step

Step name: Demo Step

Fhelds:
& » Fleldname Type Length Preciseon Step origin
1 de mu_ﬁl,-ld El:ring - - Demo 51 Ep
Edit origin step Cancel

Validate Step Settings

Spoon supports a Validate Transformation feature, which triggers a self-check of all steps. PDI invokes the check()
method of each step on the canvas, allowing each step to validate its settings.

public void check()

Each step has the opportunity to validate its settings and verify that the configuration given by the user is reasonable.

In addition, a step checks if it is connected to preceding or following steps, if the nature of the step requires that kind of
connection. An input step may expect to not have a preceding step for example. The check method passes in a list of
check remarks, to which the method appends its validation results. Spoon displays the list of remarks collected from the
steps, allowing you to take corrective action in case there are validation warnings or errors.

http://javadoc.pentaho.com/kettle/org/pentaho/di/core/row/RowMetaInterface.html
http://javadoc.pentaho.com/kettle/org/pentaho/di/core/row/ValueMeta.html
http://javadoc.pentaho.com/kettle/org/pentaho/di/core/row/ValueMetaInterface.html

| Extending Pentaho Data Integration | 9

%< Transformation 1 =
PUUR®P S E | E | 0x v

Results of transformation checks

Remarks:
& Stopname Result Remark

[+ Hide successful results

Close View message Edit origin stéep |
Generate Rows Generate random value

Interface with the PDI plugin system

The class implementing St epMet al nt er f ace must be annotated with the St ep Java annotation. Supply the following
annotation attributes:

Attribute Description
id A globally unique ID for the step
i mge The resource location for the png icon image of the step
nanme A short label for the step
description A longer description for the step

cat egoryDescription The category the step should appear under in the PDI step tree. For example Input,
Output, Transform, etc.

i 18nPackageNane If the i 18nPackageNane attribute is supplied in the annotation attributes, the values
of name, description, and categoryDescription are interpreted as i 18n keys relative
to the message bundle contained in given package. The keys may be supplied in the
extended form i 18n: <packagenane> key to specify a package that is different from
the package given in the i 18nPackageNane attribute.

Please refer to the Sample Step Plugin on page 16 for a complete implementation example.

Implementing the Step Settings Dialog Box

Java Interface org. pentaho. di .trans. step. StepDi al ogl nterface

Base class org. pentaho. di . ui.trans. st ep. BaseSt epDi al og

St epDi al ogl nt er f ace is the Java interface that implements the plugin settings dialog.
Maintain the Dialog for Step Settings

http://javadoc.pentaho.com/kettle/org/pentaho/di/core/annotations/Step.html
http://javadoc.pentaho.com/kettle/org/pentaho/di/trans/step/StepDialogInterface.html
http://javadoc.pentaho.com/kettle/org/pentaho/di/ui/trans/step/BaseStepDialog.html

| Extending Pentaho Data Integration | 10

The di al og class is responsible for constructing and opening the settings dialog for the step. Whenever you open
the step settings in Spoon, the system instantiates the di al og class passing in the St epMet al nt er f ace object
and calling open() on the dialog. SWT is the native windowing environment of Spoon and is the framework used for
implementing step dialogs.

public String open()
This method returns only after the dialog has been confirmed or cancelled. The method must conform to these rules.
« |If the dialog is confirmed

e The St epMet al nt er f ace object must be updated to reflect the new step settings
« If you changed any step settings, the Changed flag of the St epMet al nt er f ace object flag must be settot r ue
e open() returns the name of the step

« |If the dialog is cancelled

e The St epMet al nt er f ace object must not be changed

« The Changed flag of the St epMet al nt er f ace object must be set to the value it had at the time the dialog
opened

e open() mustreturn nul |

The St epMet al nt er f ace object has an internal Changed flag that is accessible using hasChanged() and
set Changed() . Spoon decides whether the transformation has unsaved changes based on the Changed flag, so it is
important for the dialog to set the flag appropriately.

The sample step plugin project has an implementation of the dialog class that is consistent with these rules and is a
good basis for creating your own dialog.

Processing Rows

Java Interface org. pentaho. di.trans. step. Steplnterface

Base class org. pent aho. di . trans. st ep. BaseSt ep

The class implementing St epl nt er f ace is responsible for the actual row processing when the transformation runs.

The implementing class can rely on the base class and has only three important methods it implements itself. The three
methods implement the step life cycle during transformation execution: initialization, row processing, and clean-up.

Initialization Row Processing Clean-Up

Yyvyy Y

[processRow(..) J ‘ dispose(..) I

During initialization PDI calls the i ni t () method of the step once. After all steps have initialized, PDI calls
pr ocessRow() repeatedly until the step signals that it is done processing all rows. After the step is finished processing
rows, PDI calls di spose() .

The method signatures have a St epMet al nt er f ace object and a St epDat al nt er f ace object. Both objects can be
safely cast down to the specific implementation classes of the step.

Aside from the methods it needs to implement, there is one additional and very important rule: the class must not
declare any fields. All variables must be kept as part of the class implementing St epDat al nt er f ace. In practice this
is not a problem, since the object implementing St epDat al nt er f ace is passed in to all relevant methods, and its

http://www.eclipse.org/swt/
http://javadoc.pentaho.com/kettle/org/pentaho/di/trans/step/StepInterface.html
http://javadoc.pentaho.com/kettle/org/pentaho/di/trans/step/BaseStep.html

| Extending Pentaho Data Integration | 11

fields are used instead of local ones. The reason for this rule is the need to decouple step variables from instances of
St epl nt er f ace. This enables PDI to implement different threading models to execute a transformation.

Step Initialization
The i ni t () method is called when a transformation is preparing to start execution.
public boolean init()

Every step is given the opportunity to do one-time initialization tasks, such as opening files or establishing database
connections. For any steps derived from BaseSt ep, it is mandatory that super . i ni t () is called to ensure correct
behavior. The method returns t r ue in case the step initialized correctly, it returns f al se if there is an initialization
error. PDI will abort the execution of a transformation in case any step returns f al se upon initialization.

Row Processing

Once the transformation starts, it enters a tight loop, calling pr ocessRow() on each step until the method returns

f al se. In most cases, each step reads a single row from the input stream, alters the row structure and fields, and
passes the row on to the next step. Some steps, such as input, grouping, and sorting steps, read rows in batches, or
can hold on to the read rows to perform other processing before passing them on to the next step.

publ i c bool ean processRow)

A PDI step queries for incoming input rows by calling get Row() , which is a blocking call that returns a row object or
nul | in case there is no more input. If there is an input row, the step does the necessary row processing and calls
put Row() to pass the row on to the next step. If there are no more rows, the step calls set Qut put Done() and
returns f al se.

The method must conform to these rules.

« |If the step is done processing all rows, the method calls set Qut put Done() and returns f al se.
« If the step is not done processing all rows, the method returns t r ue. PDI calls pr ocessRow() again in this case.

The sample step plugin project shows an implementation of pr ocessRow() that is commly used in data processing
steps.

In contrast to that, input steps do not usually expect any incoming rows from previous steps. They are designed to
execute pr ocessRow() exactly once, fetching data from the outside world, and putting them into the row stream
by calling put Row() repeatedly until done. Examining existing PDI steps is a good guide for designing your

pr ocessRow() method.

The row structure object is used during the first invocation of pr ocessRow() to determine the indexes of fields on
which the step operates. The BaseSt ep class already provides a convenient First flag to help implement special
processing on the first invocation of pr ocessRow() . Since the row structure is equal for all input rows, steps cache
field index information in variables on their St epDat al nt er f ace object.

Step Clean-Up
Once the transformation is complete, PDI calls di spose() on all steps.
Public void di spose()

Steps are required to deallocate resources allocated during i ni t () or subsequent row processing. Your
implementation should clear all fields of the St epDat al nt er f ace object, and ensure that all open files or connections
are properly closed. For any steps derived from BaseSt ep, it is mandatory that super . di spose() is called to ensure
correct deallocation.

Storing the Processing State

Java Interface org. pentaho. di.trans. step. StepDat al nterface

Base class org. pentaho. di . trans. st ep. BaseSt epDat a

The class implementing St epl nt er f ace does not store processing state in any of its fields. Instead an additional
class implementing St epDat al nt er f ace is used to store processing state, including status flags, indexes, cache
tables, database connections, file handles, and alike. Implementations of St epDat al nt er f ace declare the fields used
during row processing and add accessor functions. In essence the class implementing St epDat al nt er f ace is used
as a place for field variables during row processing.

http://javadoc.pentaho.com/kettle/org/pentaho/di/trans/step/StepDataInterface.html
http://javadoc.pentaho.com/kettle/org/pentaho/di/trans/step/BaseStepData.html

| Extending Pentaho Data Integration | 12

PDI creates instances of the class implementing St epDat al nt er f ace at the appropriate time and passes it on to the
St epl nt er f ace object in the appropriate method calls. The base class already implements all necessary interactions
with PDI and there is no need to override any base class methods.

Working with Rows

A row in PDI is represented by a Java object array, Obj ect [] . Each field value is stored at an index in the row. While
the array representation is efficient to pass data around, it is not immediately clear how to determine the field names
and types that go with the array. The row array itself does not carry this meta data. Also an object array representing
a row usually has empty slots towards its end, so a row can accommodate additional fields efficiently. Consequently,
the length of the row array does not equal the amount of fields in the row. The following sections explain how to safely
access fields in a row array.

PDI uses internal objects that implement RowiVet al nt er f ace to describe and manipulate row structure. Inside
processRow() a step can retrieve the structure of incoming rows by calling get | nput Rowivet a(), which is provided
by the BaseSt ep class. The step clones the Rowivet al nt er f ace object and passes itto get Fi el ds() of its meta
class to reflect any changes in row structure caused by the step itself. Now, the step has RowiVet al nt er f ace objects
describing both the input and output rows. This illustrates how to use RowiVet al nt er f ace objects to inspect row
structure.

There is a similar object that holds information about individual row fields. PDI uses internal objects that implement
Val ueMet al nt er f ace to describe and manipulate field information, such as field name, data type, format mask, and
alike.

A step looks for the indexes and types of relevant fields upon first execution of pr ocessRow() . These methods of
Rowivet al nt er f ace are useful to achieve this.

Method Purpose
i ndexOf Val ue(String val ueNane) Given a field name, determine the index of the field in the row.
get Fi el dNames() Returns an array of field names. The index of a field name matches

the field index in the row array.

searchVal ueMet a(String val ueNane) |Given a field name, determine the meta data for the field.

get Val ueMet a(i nt i ndex) Given a field index, determine the meta data for the field.

get Val ueMet aLi st () Returns a list of all field descriptions. The index of the field description
matches the field index in the row array.

If a step needs to create copies of rows, use the cl oneRow() methods of RowiMet al nt er f ace to create proper
copies. If a step needs to add or remove fields in the row array, use the static helper methods of RowDat aUt i | . For
example, if a step is adding a field to the row, call r esi zeArray() , to add the field. If the array has enough slots, the
orignial array is retruned as is. If the array does not have enough slots, a resized copy of the array is returned. If a step
needs to create new rows from scratch, use al | ocat eRowDat a(), which returns a somewhat over-allocated object
array to fit the desired number of fields.

Summary Table of Classes and Interfaces for Row Processing

Class/Interface Purpose
Rowivet al nt er f ace Describes and manipulates row structure
Val ueMet al nt er f ace Describes and manipulates field types and formats
RowDat aUt i | Allocates space in row array

Working With Fields
Data Type

Val ueMet al nt er f ace objects are used to determine the characteristics of the row fields. They are typically obtained
from a Rowivet al nt er f ace object, which is acquired by a call to get | nput Rowiet a() . The get Type() method
returns one of the static constants declared by Val ueMet al nt er f ace to indicate the PDI field type. Each field type
maps to a corresponding native Java type for the actual value. The following table illustrates the mapping of the most
frequently used field types.

http://javadoc.pentaho.com/kettle/org/pentaho/di/core/row/RowMetaInterface.html
http://javadoc.pentaho.com/kettle/org/pentaho/di/trans/step/BaseStep.html#getInputRowMeta%28%29
http://javadoc.pentaho.com/kettle/org/pentaho/di/core/row/ValueMetaInterface.html
http://javadoc.pentaho.com/kettle/org/pentaho/di/core/row/RowMetaInterface.html#indexOfValue%28java.lang.String%29
http://javadoc.pentaho.com/kettle/org/pentaho/di/core/row/RowMetaInterface.html#getFieldNames%28%29
http://javadoc.pentaho.com/kettle/org/pentaho/di/core/row/RowMetaInterface.html#searchValueMeta%28java.lang.String%29
http://javadoc.pentaho.com/kettle/org/pentaho/di/core/row/RowMetaInterface.html#getValueMeta%28int%29
http://javadoc.pentaho.com/kettle/org/pentaho/di/core/row/RowMetaInterface.html#getValueMetaList%28%29
http://javadoc.pentaho.com/kettle/org/pentaho/di/core/row/RowMetaInterface.html#cloneRow%28java.lang.Object%5B%5D%29
http://javadoc.pentaho.com/kettle/org/pentaho/di/core/row/RowDataUtil.html
http://javadoc.pentaho.com/kettle/org/pentaho/di/core/row/RowDataUtil.html#resizeArray%28java.lang.Object%5B%5D,%20int%29
http://javadoc.pentaho.com/kettle/org/pentaho/di/core/row/RowDataUtil.html#allocateRowData%28int%29
http://javadoc.pentaho.com/kettle/org/pentaho/di/core/row/RowMetaInterface.html
http://javadoc.pentaho.com/kettle/org/pentaho/di/core/row/ValueMetaInterface.html
http://javadoc.pentaho.com/kettle/org/pentaho/di/core/row/RowDataUtil.html
http://javadoc.pentaho.com/kettle/org/pentaho/di/core/row/ValueMetaInterface.html
http://javadoc.pentaho.com/kettle/org/pentaho/di/core/row/ValueMetaInterface.html#getType%28%29
http://javadoc.pentaho.com/kettle/org/pentaho/di/core/row/ValueMetaInterface.html

| Extending Pentaho Data Integration | 13

PDI data type Type constant Java data type Description

String TYPE_STRING java.lang. String A variable unlimited length
text encoded in UTF-8
(Unicode)

Integer TYPE_INTEGER j ava. | ang. Long A signed long 64-bit integer

Number TYPE_NUMBER j ava. | ang. Doubl e A double precision floating
point value

BigNumber TYPE_BIGNUMBER j ava. mat h. Bi gDeci mal | An arbitrary unlimited
precision number

Date TYPE_DATE java.util.Date A date-time value with
millisecond precision

Boolean TYPE_BOOLEAN j ava. | ang. Bool ean A boolean value t r ue or
fal se

Binary TYPE_BINARY j ava. | ang. byte[] An array of bytes that
contain any type of binary
data.

Do not assume that the Java value of a row field matches these data types directly. This may or may not be true, based
on the storage type used for the field.

Storage Types

In addition to the data type of a field, the storage type, get St or ageType() /set St or ageType(), is used to interpret
the actual field value in a row array. These storage types are available.

Type constant

STORAGE_TYPE_NORMAL

Actual field data type Interpretation

As listed in previous table The value in the row array is of the
type listed in the data type table
above and represents the field value

directly.

STORAGE_TYPE_BINARY_STRING |j ava. |l ang. byt e[] The field has been created using the
Lazy Conversion feature. This means
it is a non-altered sequence of bytes
as read from an external medium,

usually a file.

STORAGE_TYPE_INDEXED j ava.l ang. | nt eger The row value is an integer index

into a fixed array of possible values.
The Val ueMet al nt er f ace object
maintains the set of possible values in

get I ndex() /set | ndex()

Accessing Row Values

In a typical data processing scenario, a step is not interested in dealing with the complexities of the storage type.

It just needs the actual data value on which to do processing. In order to safely read the value of a field, the

Val ueMet al nt er f ace object provides a set of accessor methods to get at the actual Java value. The argument is a
value from a row array that corresponds to the Val ueMet al nt er f ace object. The accessor methods always return a
proper data value, regardless of the field storage type.

e getString()

* getlnteger()

e get Nunber ()

e get Bi gNunber ()
« getDate()

e get Bool ean()

* getBinary()

http://javadoc.pentaho.com/kettle/org/pentaho/di/core/row/ValueMetaInterface.html#getStorageType%28%29
http://javadoc.pentaho.com/kettle/org/pentaho/di/core/row/ValueMetaInterface.html#setStorageType%28int%29
http://javadoc.pentaho.com/kettle/org/pentaho/di/core/row/ValueMetaInterface.html#getIndex%28%29
http://javadoc.pentaho.com/kettle/org/pentaho/di/core/row/ValueMetaInterface.html#setIndex%28java.lang.Object%5B%5D%29
http://javadoc.pentaho.com/kettle/org/pentaho/di/core/row/ValueMetaInterface.html#getString%28java.lang.Object%29
http://javadoc.pentaho.com/kettle/org/pentaho/di/core/row/ValueMetaInterface.html#getInteger%28java.lang.Object%29
http://javadoc.pentaho.com/kettle/org/pentaho/di/core/row/ValueMetaInterface.html#getNumber%28java.lang.Object%29
http://javadoc.pentaho.com/kettle/org/pentaho/di/core/row/ValueMetaInterface.html#getBigNumber%28java.lang.Object%29
http://javadoc.pentaho.com/kettle/org/pentaho/di/core/row/ValueMetaInterface.html#getDate%28java.lang.Object%29
http://javadoc.pentaho.com/kettle/org/pentaho/di/core/row/ValueMetaInterface.html#getBoolean%28java.lang.Object%29
http://javadoc.pentaho.com/kettle/org/pentaho/di/core/row/ValueMetaInterface.html#getBinary%28java.lang.Object%29

| Extending Pentaho Data Integration | 14

For each of these methods, RowiVet al nt er f ace has corresponding methods that require the row array and the index
of the field as arguments.

Additional Field Characteristics

Val ueMet al nt er f ace represents all aspects of a PDI field, including conversion masks, trim type, and alike. All of
these are available using corresponding accessor methods, such as get Conver si onMask() and get Tri nType() .
Refer to the Javadoc for a complete overview.

Handling Errors

Transformation steps may encounter errors at many levels. They may encounter unexpected data, or problems with
the execution environment. Depending on the nature of the error, the step may decide to stop the transformation by
throwing an exception, or support the PDI Error Handling feature, which allows you to divert bad rows to an error
handling step.

Throwing a KettleException: Calling a Hard Stop

If a step encounters an error during row processing, it may log an error and stop the transformation. This is done by
callingset Errors(1),stopAll (), set Qut put Done(), and returning f al se from pr ocessRow() . Alternatively,
the step can throw a Ket t | eExcept i on, which also causes the transformation to stop.

It is sensible to stop the transformation when there is a problem with the environment or configuration of a step. For
example, when a database connection cannot be made, a required file is not present, or an expected field is not in the
row stream. These are errors that affect the execution of the transformation as a whole. If on the other hand the error is
related to row data, the step should implement support for the PDI Error Handling feature.

Implementing Per-Row Error Handling

You may want to divert bad rows to a specific error handling step. This capability is referred to as the Error Handling
feature. A step supporting this feature overrides the BaseSt ep implementation of suppor t sEr r or Handl i ng() to
return t r ue. This enables you to specify a target step for bad rows in the Spoon Ul. During runtime, the step checks if
you configured a target step for error rows by calling get St epMet a() . i sDoi ngEr r or Handl i ng() . If error rows are
diverted, the step passes the offending input row to put Er r or () and provides additional information about the errors
encountered. It does not throw a Ket t | eExcept i on. If you do not configure a step to generate error rows and send
them to another step for processing, the step falls back to calling a hard stop.

Most core PDI steps support row-level error handling. The Number Range step is a good example. If error handling is
enabled, it diverts the row into the error stream. If it is not, the step stops the transformation.

Understanding Row Counters

During transformation execution, each PDI step keeps track of a set of step metrics. These are displayed in Spoon in
the Step Metrics tab.

666 Spoon - CSV Input - Reading customer data with error logging
@a Perspective: [Data Integration [@model (™ Visualize [Schedule
1} View [.” Design = Welcome! 3% CSV Input - Reading customer data with error logging &2
Steps tabl| BIC) B B W @B &S00 (-
Big Data
0w i
* 53 Output
-
* & Transform F—="" Dummy (do nothing)
Utility <.
FIOTN . C3V file |nwl:.‘)"*~..,h
Scripting ‘1 [
» 3 Lookup -g
Joins Errors
Data Warehouse
Validation
Statistics Execution Results Ol i
* £ Palo
Job % Execution History | & Logging | ## Step Metrics | =) Performance Graph
Mapping E
¥ 3 Bulk loading # 4| Stepname Copynr Read Written It Output Updated Rejected Errors Active
Inline 1 CSV file input 0 o 97 101 o 4] 3 0 Finished
Experimental 2 Dummy (do nothing) 0 a7 a7 0 o o o 0 Finished
Deprecated 3 Errors 0 3 3 0 0 0 o 0 Finished
L4 History

Each step metric is essentially a row counter. The counters are manipulated by calling the corresponding increment,
decrement, get, and set methods on BaseSt ep. This table provides a list of the counters and the correct way to use
them.

http://javadoc.pentaho.com/kettle/org/pentaho/di/core/row/ValueMetaInterface.html
http://javadoc.pentaho.com/kettle/org/pentaho/di/core/row/ValueMetaInterface.html#getConversionMask%28%29
http://javadoc.pentaho.com/kettle/org/pentaho/di/core/row/ValueMetaInterface.html#getTrimType%28%29
http://javadoc.pentaho.com/kettle/org/pentaho/di/core/row/ValueMetaInterface.html
http://javadoc.pentaho.com/kettle/org/pentaho/di/core/exception/KettleException.html
http://javadoc.pentaho.com/kettle/org/pentaho/di/trans/step/StepMetaInterface.html#supportsErrorHandling%28%29
http://javadoc.pentaho.com/kettle/org/pentaho/di/trans/step/BaseStep.html#putError%28org.pentaho.di.core.row.RowMetaInterface,%20java.lang.Object%5B%5D,%20long,%20java.lang.String,%20java.lang.String,%20java.lang.String%29
http://javadoc.pentaho.com/kettle/org/pentaho/di/core/exception/KettleException.html
http://source.pentaho.org/svnkettleroot/Kettle/tags/4.3.0-stable/src/org/pentaho/di/trans/steps/numberrange/

| Extending Pentaho Data Integration | 15

Counter Name

Meaning

When to Increment

| i nesRead

Rows received from previous steps

Never increment manually. This is handled by get Row() .

linesWitten

Rows passed to next steps

Never increment manually. This is handled by put Row() .

such as files, database, and alike

[i nesl nput Rows read from external sources, Calli ncrenment Li nesl nput () when a new row is
such as files, database, and alike received from an external source.
[i nesQut put Rows written to external sources, Calli ncrement Li nesQut put () when a row is written

to an external system or file.

I i nesUpdat ed

Rows updated in external sources,
such as database, and alike

Calli ncrement Li nesUpdat ed() when arow is
updated in an external system or file.

I i nesSki pped

Rows for which part of the processing
has been skipped

Calli ncrenent Li nesSki pped() when a row was
skipped. This is relevant when the step implements
conditional processing, and the condition for processing
a row is not satisfied. For example, an updating step may
skip rows that are already up to date.

I i nesRej ect ed

Rows diverted to an error step as part
of error handling

Never increment manually. This is handled by
put Error ().

Logging in Transformation Steps

A step interacts with the PDI logging system by using the logging methods inherited from BaseSt ep.

These methods are used to issue log lines to the PDI logging system on different severity levels. Multi-
argument versions of the methods are available to do some basic formatting, which is equivalent to a call to

MessageFor mat . f or mat (nessage,

e public void I
e public void I
e public void I
e public void I
e public void I
e public void I

argunents).

ogM ni mal ()
ogBasi c()
ogDet ai | ed()
ogDebug()
ogRowl evel ()
ogError ()

These methods query the logging level. They are often used to guard sections of code, that should only be executed
with elevated logging settings.

 public bool ean

public bool ean
public bool ean
publ i c bool ean

i sBasi c()
i sDetail ed()
i sDebug()
i sRowLevel ()

Steps should log this information at specified levels.

Log Level Log Information Content

Minimal Only information that is interesting at very high-levels, for example Transformation
Started or Ended; individual steps do not log anything at this level

Basic Information that may be interesting to you during regular ETL operation

Detailed Prepared SQL or other query statements, resource allocation and initialization like
opening files or connections

Debug Anything that may be useful in debugging step operations

RowLevel Anything that may be helpful in debugging problems at the level of individual rows and
values

Error Fatal errors that abort the transformation

Feedback Logging

http://docs.oracle.com/javase/6/docs/api/java/text/MessageFormat.html#format%28java.lang.String,%20java.lang.Object...%29

| Extending Pentaho Data Integration | 16

A transformation defines a feedback size in its settings. The feedback size defines the number of rows after which
each step logs a line reporting its progress. This is implemented by calling checkFeedback() with an appropriate
row counter as argument to determine if feedback should be logged. Feedback logging happens on the basic log-level.
There are many ways you can implement this. Here is an example implementation snippet.

i f (checkFeedback(getLinesWitten())) {
if(isBasic()) logBasic("linenr "+getLinesWitten());

It may make sense to use different row counters for checking the feedback size depending on the implementation logic
of your step. For example, a step that accumulates incoming rows into one single summary row, should probably use
the | i nesRead counter to determine the feedback interval.

The Excel Output step has a good example implementation of feedback logging.

Deploying Step Plugins
To deploy your plugin, follow the following steps.

1. Create a jar file containing your plugin classes and resources
2. Create a new folder, give it a meaningful name, and place your jar file inside the folder

3. Place the plugin folder you just created in a specific location for PDI to find. Depending on how you use PDI, you
need to copy the plugin folder to one or more locations as per the following list.

» Deploying to Spoon or Carte
Copy the plugin folder into this location:
desi gn-t ool s/ dat a-i ntegration/ pl ugi ns/ st eps

After restarting Spoon, the new job entry is available for use.
» Deploying to Data Integration Server

Copy the plugin folder to this location:
server/data-integration-server/pentaho-sol uti ons/systeni kettl e/ plugi ns/steps

After restarting the data integration server, the plugin is available to the server.
« Deploying to BA Server

Copy the plugin folder to this location:
server/ bi server-ee/ pent aho-sol uti ons/system kettl e/ pl ugi ns/ st eps

After restarting the BA Server, the plugin is available to the server.

Sample Step Plugin

The sample Step plugin is designed to show a minimal functional implementation of a step plugin that you can use as a
basis to develop your own custom transformation steps.

The sample Step plugin functionality adds a string field to a row stream and fills it with Hello World!. This screen shot
shows the step configuration dialog and preview window.

http://source.pentaho.org/svnkettleroot/Kettle/tags/4.3.0-stable/src/org/pentaho/di/trans/steps/exceloutput/

| Extending Pentaho Data Integration | 17

0 O O Examine previe...

Rows of step: Demo S5tep (10 ra
4| demo_field
1 Hello World!

= Z Hello World!
ra :+H 3 Hello World!
4 Hello World!

Generale Rows Demo Step 5| Hallo Woeld]
B Hallo World!
7 Hello Warld!
& Hello World!

Step name Demo Step 13 :-Ell:tr::ﬁr:ji
210 WwWorid!

LErmio step

Output field name gema field

QK Cancel Close

1. Obtain the Sample Plugin Source

The plugin source is available in the download package. Download the package and unzip it. The job entry plugin
resides in the ket t | e- sdk- st ep- pl ugi n folder.

2. Configure the Build

Open ket t | e- sdk- st ep-pl ugi n/ bui |l d/ bui | d. properti es and setthe kett| e-di r property to the base
directory of your PDI installation.

3. Build and Deploy

You may choose to build and deploy the plugin from the command line, or work with the Eclipse IDE instead. Both
options are described below.

* Build and Deploy From the Command Line
The plugin is built using Apache Ant. Build and deploy the plugin from the command line by invoking the install
target from the build directory.

kettl e-sdk-step-plugin $ cd build
build $ ant install

The install target compiles the source, creates a j ar file, creates a plugin folder, and copies the plugin folder into
the pl ugi ns/ st eps directory of your PDI installation.

¢ Build and Deploy From Eclipse
Import the plugin sources into Eclipse:

1. From the menu, select File > Import > Existing Projects Into Worksapace.
2. Browse to the ket t | e- sdk- st ep- pl ugi n folder and choose the project to be imported.

To build and install the plugin, follow these steps:
1. Open the Ant view in Eclipse by selecting Window > Show View from the main menu and select Ant.

You may have to select Other > Ant if you have not used the Ant view before.
2. Drag the file bui | d/ bui | d. xm from your project into the Ant view, and execute the install target by double-
clicking it.
3. After the plugin has been deployed, restart Spoon.
4. Open Spoon, and verify that the new step is available as "Demo Step" in the Transform section.

http://ant.apache.org/

| Extending Pentaho Data Integration | 18

ann Spoon - Transformation 1 (changed)

= | B =3 a Perspective; [3 Data Integration Mud-:: ™ Visualize [T Schedule
ity View [,” Design 3{ Transformation 1 2 - ™
Steps IR By % G 6 BB B 100%
[3 Big Data

* 0 Input

> (2 Output @1

i Transform d

I Add a checksum Demo Step

_. Add constants
{E'Add SEQUEnce
M Add value fields changing sequence
= Add XML
o Caleulator
@l Closure Cenerator
£) Demo Step
& Example plugin
P Get ID from slave server
ﬂl.nrem Ipsum
= Number range
..t Replace in string
* Row denormaliser
1t Row flattener

Exploring More Steps
PDI sources provide example implementations of transformation steps. Each PDI core step is located in a sub-package
of org. pent aho. di . t rans. st eps found in the engi ne/ sr c folder. The corresponding dialog class in located in
or g. pent aho. di . ui . trans. st eps found in the ui / sr c folder.

For example, these are the classes that make up the Row Generator step.

e org.pentaho. di.trans. steps.rowgenerat or. RowCGener at or Met a

e org.pentaho.di.trans. steps. rowgenerat or. RowGener at or

e org.pentaho.di.trans. steps. rowgener at or. RowGener at or Dat a

e org.pentaho.di.ui.trans. steps. rowjenerator. RowCener at or Di al og

The di al og classes of the core PDI steps are located in a different package and source folder. They are also
assembled into a separate j ar file. This allows PDI to load the Ul-related j ar file when launching Spoon and avoid
loading the Ul-related j ar when it is not needed.

Creating Job Entry Plugins

A job entry implements a logical task in ETL control flow. Job entries are executed in sequence, each job entry
generating a boolean result that can be used for conditional branching in the job sequence.

Impl

s

L
’." Create table «

&
. 51~ w7
>~ T
Start Table exists 1 wt Populate

&

Truncate table

| Extending Pentaho Data Integration | 19

v
2R

Update

This section explains the architecture and programming concepts for creating your own PDI job entry plugin. We
recommended that you open and refer to the sample job entry plugin sources while following these instructions.

A job entry plugin integrates with PDI by implementing two distinct Java interfaces. Each interface represents a set
of responsibilities performed by a PDI job. Each of the interfaces has a base class that implements the bulk of the
interface in order to simplify plugin development.

All job entry interfaces and corresponding base classes are part of the or g. pent aho. di . j ob. ent ry package.

Java Interface

Base Class

Main Responsibilities

JobEntrylnterface

JobEnt ryBase

Maintain job entry settings
Serialize job entry settings
Provide access to dialog class
Execute job entry task

JobEntryDi al ogl nterface JobEnt ryDi al og

Job entry settings dialog

ementing a Job Entry

Java Interface

org. pentaho. di.job.entry.JobEntrylnterface

Base class

org. pentaho. di . job. entry. JobEntryBase

JobEnt ryl nt er f ace is the main Java interface that a plugin implements.

Keep Track of Job Entry Settings

The implementing class keeps track of job entry settings using private fields with corresponding get and set
methods. The dialog class implementing JobEnt r yDi al ogl nt er f ace uses these methods to copy the user supplied
configuration in and out of the dialog box.

public Object clone()

This method is called when a job entry is duplicated in Spoon. It returns a deep copy of the job entry object. It is
essential that the implementing class creates proper deep copies if the job entry configuration is stored in modifiable
objects, such as lists or custom helper objects.

Serialize Job Entry Settings

The plugin serializes its settings to both XML and a PDI repository.

public String get XM.()

This method is called by PDI whenever a job entry serializes its settings to XML. It is called when saving a job in Spoon.
The method returns an XML string containing the serialized settings. The string contains a series of XML tags, one tag
per setting. The helper class, or g. pent aho. di . core. xm . XM_Hand| er, constructs the XML string.

public void | oadXM.()

http://javadoc.pentaho.com/kettle/org/pentaho/di/job/entry/JobEntryInterface.html
http://javadoc.pentaho.com/kettle/org/pentaho/di/job/entry/JobEntryBase.html
http://javadoc.pentaho.com/kettle/org/pentaho/di/core/xml/XMLHandler.html

| Extending Pentaho Data Integration | 20

This method is called by PDI whenever a job entry reads its settings from XML. The XML node containing the job entry
settings is passed in as an argument. Again, the helper class, or g. pent aho. di . core. xm . XM_Handl er , is used to
read the settings from the XML node.

public void saveRep()

This method is called by PDI whenever a job entry saves its settings to a PDI repository. The repository object passed
in as the first argument provides a convenient set of methods for serializing job entry settings. When calling repository
serialization methods, job id and job entry id are required. The job id is passed in to saveRep() as an argument, and
the job entry id can be obtained by a call to get Gbj ect | d() inherited from the base class.

public void | oadRep()

This method is called by PDI whenever a job entry reads its configuration from a PDI repository. The job entry id given
in the arguments is used as the identifier when using the repositories serialization methods. When developing plugins,
make sure the serialization code is in synch with the settings available from the job entry dialog. When testing a plugin
in Spoon, PDI internally saves and loads a copy of the job before it is executed.

Provide the Name of the Dialog Class

PDI needs to know which class takes care of the settings dialog box for the job entry. The interface method
get Di al ogd assNane() returns the name of the class implementing the JobEnt ryDi al ogl nt erf ace.

Provide Information About Possible Outcomes

A job entry may support up to three types of outgoing hops: True, False, and Unconditional. Sometimes it does not
make sense to support all three. For instance, if the job entry performs a task that does not produce a boolean outcome,
like the dummy job entry, it may make sense to suppress the True and False outgoing hops. There are other job
entries, which carry an inherent boolean outcome, such as the File Exists job entry. It may make sense in such cases to
suppress the unconditional outgoing hop.

The job entry plugin class must implement two methods to indicate to PDI which outgoing hops it supports.
publ i c bool ean eval uat es()

This method returns t r ue if the job entry supports the True and False outgoing hops. If the job entry does not support
distinct outcomes, it returns f al se.

public bool ean isUnconditional ()

This method returns t r ue if the job entry supports the unconditional outgoing hop. If the job entry does not support the
unconditional hop, it returns f al se.

Execute the Job Entry Task
The class implementing JobEnt r yl nt er f ace executes the actual job entry task.
public Result execute()

The execut e() method is called by PDI when it is time for the job entry to execute its logic. The arguments are a
result object, which is passed in from the previously executed job entry, and an integer number indicating the distance
of the job entry from the start entry of the job.

The job entry should execute its configured task and report back on the outcome. A job entry does that by calling
specified methods on the passed in result object.

prev_result.setNrErrors()

The job entry indicates whether it has encountered any errors during execution. If there are errors, set Nr Err or s
calls with the number of errors encountered. Typically, this is 1. If there are no errors, set Nr Er r or s is called with an
argument of zero (0).

prev_result.setResult()

The job entry must indicate the outcome of the task. This value determines which output hops follow next. If a job entry
does not support evaluation, it need not call prev_resul t. set Resul t ().

Finally, the passed in prev_r esul t object is returned.
Interface with the PDI plugin system

The class implementing JobEnt r yl nt er f ace must be annotated with the JobEnt r y Java annotation. Supply the
following annotation attributes:

http://javadoc.pentaho.com/kettle/org/pentaho/di/core/xml/XMLHandler.html
http://javadoc.pentaho.com/kettle/org/pentaho/di/core/annotations/JobEntry.html

| Extending Pentaho Data Integration | 21

Attribute Description
id A globally unique ID for the job entry
i mage The resource location for the png icon image of the job entry
name A short label for the job entry
description A longer description for the job entry

cat egoryDescri ption The category the entry should appear under in the PDI job entry tree. For example
General, Utility, File Management, etc.

i 18nPackageNane If the i 18nPackageNane attribute is supplied in the annotation attributes, the values
of name, description, and categoryDescription are interpreted as i 18n keys relative
to the message bundle contained in given package. The keys may be supplied in the
extended form i 18n: <packagenane> key to specify a package that is different from
the package given in the i 18nPackageNane attribute.

Please refer to the Sample Job Entry Plugin on page 23 for a complete implementation example.

Implementing the Job Entry Settings Dialog Box

Java Interface org. pent aho. di.job.entry. JobEntryDi al ogl nterface

Base class org. pentaho.di.ui.job.entry.JobEntryDi al og

JobEnt ryDi al ogl nt er f ace is the Java interface that implements the settings dialog of a job entry plugin.
Maintain the Dialog for Job Entry Settings

The di al og class is responsible for constructing and opening the settings dialog for the job entry. When you open the
job entry settings in Spoon, the system instantiates the di al og class passing in the JobEnt r yl nt er f ace object and
calling the open() method on the dialog. SWT is the native windowing environment of Spoon and the framework used
for implementing job entry dialogs.

public JobEntrylnterface open()
This method returns only after the dialog has been confirmed or cancelled. The method must conform to these rules.
» If the dialog is confirmed

« The JobEntryl nt er f ace object must be updated to reflect the new settings
« If you changed any settings, the Changed flag of the JobEnt r yI nt er f ace object must be settot r ue
e open() returns the JobEnt ryl nt er f ace object

« If the dialog is cancelled

e The JobEntryl nt er f ace object must not be changed

e The Changed flag of theJobEnt r yl nt er f ace object must be set to the value it had at the time the dialog
opened

e open() mustreturn nul |

The JobEnt ryl nt er f ace object has an internal Changed flag that is accessible using hasChanged() and
set Changed() . Spoon decides whether the job has unsaved changes based on the Changed flag, so it is important
for the dialog to set the flag appropriately.

Additionally, the job entry dialog must make sure that the job entry name is not set to be empty. The dialog may be
confirmed only after a non-empty name is set.

The sample Job Entry plugin project has an implementation of the di al og class that is consistent with these rules and
is a good basis for creating your own dialogs.

Logging in Job Entries
A job entry interacts with the PDI logging system by using the logging methods inherited from JobEnt r yBase.

http://javadoc.pentaho.com/kettle/org/pentaho/di/job/entry/JobEntryDialogInterface.html
http://javadoc.pentaho.com/kettle/org/pentaho/di/ui/job/entry/JobEntryDialog.html
http://www.eclipse.org/swt/

| Extending Pentaho Data Integration | 22

These methods are used to issue log lines to the PDI logging system on different severity levels. Multi-
argument versions of the methods are available to do some basic formatting, which is equivalent to a call to
MessageFor mat . f or mat (nessage, argunents).

e public void I ogM nimal ()
e public void I ogBasic()

e public void | ogDetailed()
e public void I ogDebug()

e public void | ogRow evel ()
e public void logError()

These methods query the logging level. They are often used to guard sections of code, that should only be executed
with elevated logging settings.

* public bool ean isBasic()
e public boolean isDetail ed()
e public bool ean i sDebug()
e public bool ean i sRowLevel ()

Job entries should log the this information at specified levels:

Log Level Log Information Content

Minimal Only information that is interesting at a very high-level, for example Job Started or Ended jobs.
Individual job entries do not log anything at this level.

Basic Information that may be interesting to you during regular ETL operation

Detailed Prepared SQL or other query statements, resource allocation and initialization like opening
files or connections

Debug Anything that may be useful in debugging job entries

Row Level Anything that may be helpful in debugging problems at the level of individual rows and values

Error Fatal errors that abort the job

Deploying Job Entry Plugins
To deploy your plugin, follow the following steps.

1. Create a jar file containing your plugin classes and resources

2. Create a new folder, give it a meaningful name, and place your jar file inside the folder

3. Place the plugin folder you just created in a specific location for PDI to find. Depending on how you use PDI, you
need to copy the plugin folder to one or more locations as per the following list.

» Deploying to Spoon or Carte
Copy the plugin folder into this location:
desi gn-t ool s/ data-i ntegration/plugins/jobentries

After restarting Spoon, the new job entry is available for use.
« Deploying to Data Integration Server

Copy the plugin folder to this location:
server/data-integration-server/pentaho-sol utions/systenf kettl e/ plugins/jobentries

After restarting the data integration server, the plugin is available to the server.
» Deploying to BA Server

Copy the plugin folder to this location:
server/ bi server-ee/ pent aho-sol uti ons/system kettl e/ pl ugi ns/jobentries

After restarting the BA Server, the plugin is available to the server.

http://docs.oracle.com/javase/6/docs/api/java/text/MessageFormat.html#format%28java.lang.String,%20java.lang.Object...%29

| Extending Pentaho Data Integration | 23

Sample Job Entry Plugin

The sample Job Entry plugin project is designed to show a minimal functional implementation of a job entry plugin that
you can use as a basis to develop your own custom job entries.

The sample Job Entry plugin functionality lets you manually configure which outcome to generate. This screen shot
shows the job entry configuration dialog and outgoing hops.

]

LY

_f'fl & . Spoon - Job 1 (changed)

a = "=
o L

3 View [Deslgn ookl 2

SwiE Bl IZ

i ¥ ¥ ¥ ¥ ¥

File &ndryplicn
Big Data
General

Pedall . E|
File managemsent 4

Conditions - e LI

hCh eck Db conmpections _ .ﬂ

i Check files locked p_-._ﬂ | E|
Check if a folder is ematy Rl

& Check webservice availability Ll K AR

& Checks if files exist
& Columns exist in a table

. Hame of demao job entry
& Evaluate Fles metrics ! Dema

: Evaluate rowd numbser in a tak Desired outcome Patitive L

% File Exists
£ Simple evaluation L Eo
& Table exists
‘Wait for
Seripling

Obtain the Sample Plugin Source

The plugin source is available in the download package. Download the package and unzip it. The job entry plugin
resides in the ket t | e- sdk-j obent ry- pl ugi n folder.

Configure the Build

Open kett | e- sdk-j obentry-plugi n/buil d/ buil d. properties and setthe kett| e-dir property to the
base directory of your PDI installation.
Build and Deploy

You may choose to build and deploy the plugin from the command line, or work with the Eclipse IDE instead. Both
options are described below.

e Build and Deploy From the Command Line
The plugin is built using Apache Ant. Build and deploy the plugin from the command line by invoking the install
target from the build directory.

kettl e-sdk-jobentry-plugin $ cd build
build $ ant install

The install target compiles the source, creates a j ar file, creates a plugin folder, and copies the plugin folder into
the pl ugi ns/j obentri es directory of your PDI installation.
e Build and Deploy From Eclipse

Import the plugin sources into Eclipse:

1. From the menu, select File > Import > Existing Projects Into Worksapace.
2. Browse to the ket t | e- sdk-j obent ry- pl ugi n folder and choose the project to be imported.

To build and install the plugin, follow these steps:

http://ant.apache.org/

| Extending Pentaho Data Integration | 24
1. Open the Ant view in Eclipse by selecting Window > Show View from the main menu and select Ant.

You may have to select Other > Ant if you have not used the Ant view before.
2. Drag the file bui | d/ bui | d. xml from your project into the Ant view, and execute the install target by double-
clicking it.
3. After the plugin has been deployed, restart Spoon.
4. Open Spoon, and verify that the new job entry is available as "Demo" in the Conditions section.

Exploring More Job Entries

PDI sources provide example implementations of job entries. Each PDI core job entry is located in a sub-package of
or g. pent aho. di . j ob. entri es found in the engi ne/ sr c folder. The corresponding di al og class is located in
org. pentaho. di . ui.job. entri es found in the ui / sr c folder.

For example, these are the classes that make up the File Exists job entry:

e org.pentaho.di.job.entries.fileexists.JobEntryFil eExists
e org.pentaho.di.ui.job.entries.fileexists.JobEntryFil eExistsDi al og

The di al og classes of the core PDI job entries are located in a different package and source folder. They are also
assembled into a separate j ar file. This allows PDI to load the Ul-related j ar file when launching Spoon and avoid
loading the Ul-related j ar when it is not needed.

Creating Database Plugins

PDI uses database plugins to support specific database systems beyond generic JDBC functionality. A database plugin
helps in the following areas:

e constructing connection strings

e passing connection settings to JDBC

» dialect-aware SQL generation

» detecting special abilities and limitations of JDBC drivers

A database plugin introduces a new entry in the PDI database dialog.

| Extending Pentaho Data Integration | 25

000 Database Connection

General Connection Name:
Advanced r

Options
Pooling Connection Type:

Clustering AS/400
Apache Derby &
Borland Interbase Database Name:

Calpont InfiniDB ' 1$
Csv)dbc
Exasol 4 Port Number:

ExtenDB @
Firebird SQL R —

Generic database : ™
GCreenplum
Gupta SQL Base Password:

H2 S

Access:

Native (JDBC)
JNDI

Settings

Host Name:

| Test Featur Explor

OK Cancel

This section explains the architecture and programming concepts for creating your own database plugin. We
recommended that you open and refer to the sample database plugin sources while following these instructions.

Java Interface org. pent aho. di . core. dat abase. Dat abasel nt erf ace

Base class or g. pent aho. di . cor e. dat abase. BaseDat abaseMet a

PDI database plugins consist of a single Java class that implements the interface
or g. pent aho. di . cor e. dat abase. Dat abasel nterf ace.

In order for PDI to recognize the database plugin, the class implementing Dat abasel nt er f ace must also be
annotated with the Java annotation or g. pent aho. di . cor e. pl ugi ns. Dat abaseMet aPl ugi n.

Supply these annotation attributes.

Attribute Description

type A globally unique ID for database plugin

typeDescri ption The label to use in the database dialog

It is recommended to extend or g. pent aho. di . cor e. dat abase. BaseDat abaseMet a, which provides default
implementations for most of the methods in Dat abasel nt er f ace. Existing PDI database interfaces are a great source
of information when developing a new database plugin.

The following section classifies some of the most commonly overridden methods. They can be roughly classified into
three subject areas: information about connections, SQL dialect, and general capability flags.

1. Connection Details

These methods are called when PDI establishes a connection to the database, or the database dialog is populated with
database-specific defaults.

http://javadoc.pentaho.com/kettle/org/pentaho/di/core/database/DatabaseInterface.html
http://javadoc.pentaho.com/kettle/org/pentaho/di/core/database/BaseDatabaseMeta.html
http://javadoc.pentaho.com/kettle/org/pentaho/di/core/database/DatabaseInterface.html
http://javadoc.pentaho.com/kettle/org/pentaho/di/core/plugins/DatabaseMetaPlugin.html
http://javadoc.pentaho.com/kettle/org/pentaho/di/core/database/BaseDatabaseMeta.html

| Extending Pentaho Data Integration | 26

e public String getDriverd ass()
* public int getDefaultDatabasePort ()
e public int[] getAccessTypelist()

e public bool ean

supportsQptionsl nURL()

e public String get URL()

2. SQL Generation

These methods are called when PDI constructs SQL.

e public String getFieldDefinition()

3. Capability Flags

public String get AddCol utmSt at enent ()
public String get SQLCol ummEXi st s()
public String get SQLQueryFi el ds()

These methods are called when PDI determines the run-time characteristics of the database system. For instance, the
database systems may support different notions of metadata retrieval.

e public bool ean
e public bool ean
 public bool ean
 public bool ean

supportsTransactions()

rel easeSavepoi nt ()

support sPrepar edSt at enment Met adat aRet ri eval ()
suppor t sResul t Set Met adat aRet ri eval Onl y()

Exploring Existing Database Implementations

PDI sources are invaluable when seeking example implementations of databases. Each of the PDI core database
support classes is located in the or g. pent aho. di . cor e. dat abase package found in the cor e/ sr c folder.

For example, here are the classes that define behavior for some major database systems.

Database Databaselnterface Class
MySQL or g. pent aho. di . cor e. dat abase. MySQLDat abaseMet a
Oracle or g. pent aho. di . cor e. dat abase. Or acl eDat abaseMet a
PostgreSQL or g. pent aho. di . cor e. dat abase. Post gr eSQLDat abaseMet a

When implementing a database plugin for a new database system, we recommended starting from an existing database
class that already shares characteristics with the new database system.

Deploying Database Plugins

To deploy your plugin, follow the following steps.

1. Create a jar file containing your plugin class(es)

2. Create a new folder, give it a meaningful name, and place your jar file inside the folder

3. Place the plugin folder you just created in a specific location for PDI to find. Depending on how you use PDI, you
need to copy the plugin folder to one or more locations as per the following list.

» Deploying to Spoon or Carte

Copy the plugin folder into this location:

desi gn-t ool s/ dat a-i nt egrati on/ pl ugi ns/ dat abases

After restarting Spoon, the new database type is available from the PDI database dialog.
« Deploying to Data Integration Server

Copy the plugin folder to this location:

server/data-integration-server/pentaho-sol utions/systenf kettl e/ pl ugi ns/ dat abases

After restarting the data integration server, the plugin is available to the server.
« Deploying to BA Server

Copy the plugin folder to this location:

http://javadoc.pentaho.com/kettle/org/pentaho/di/core/database/DatabaseInterface.html#getDriverClass()
http://javadoc.pentaho.com/kettle/org/pentaho/di/core/database/DatabaseInterface.html#getDefaultDatabasePort()
http://javadoc.pentaho.com/kettle/org/pentaho/di/core/database/DatabaseInterface.html#getAccessTypeList()
http://javadoc.pentaho.com/kettle/org/pentaho/di/core/database/DatabaseInterface.html#supportsOptionsInURL()
http://javadoc.pentaho.com/kettle/org/pentaho/di/core/database/DatabaseInterface.html#getURL(java.lang.String,%20java.lang.String,%20java.lang.String)
http://javadoc.pentaho.com/kettle/org/pentaho/di/core/database/DatabaseInterface.html#getFieldDefinition(org.pentaho.di.core.row.ValueMetaInterface,%20java.lang.String,%20java.lang.String,%20boolean,%20boolean,%20boolean)
http://javadoc.pentaho.com/kettle/org/pentaho/di/core/database/DatabaseInterface.html#getAddColumnStatement(java.lang.String,%20org.pentaho.di.core.row.ValueMetaInterface,%20java.lang.String,%20boolean,%20java.lang.String,%20boolean)
http://javadoc.pentaho.com/kettle/org/pentaho/di/core/database/DatabaseInterface.html#getSQLColumnExists(java.lang.String,%20java.lang.String)
http://javadoc.pentaho.com/kettle/org/pentaho/di/core/database/DatabaseInterface.html#getSQLQueryFields(java.lang.String)
http://javadoc.pentaho.com/kettle/org/pentaho/di/core/database/DatabaseInterface.html#supportsTransactions()
http://javadoc.pentaho.com/kettle/org/pentaho/di/core/database/DatabaseInterface.html#releaseSavepoint()
http://javadoc.pentaho.com/kettle/org/pentaho/di/core/database/DatabaseInterface.html#supportsPreparedStatementMetadataRetrieval()
http://javadoc.pentaho.com/kettle/org/pentaho/di/core/database/DatabaseInterface.html#supportsResultSetMetadataRetrievalOnly()
http://source.pentaho.org/svnkettleroot/Kettle/trunk/core/src/org/pentaho/di/core/database/MySQLDatabaseMeta.java
http://source.pentaho.org/svnkettleroot/Kettle/trunk/core/src/org/pentaho/di/core/database/OracleDatabaseMeta.java
http://source.pentaho.org/svnkettleroot/Kettle/trunk/core/src/org/pentaho/di/core/database/PostgreSQLDatabaseMeta.java

| Extending Pentaho Data Integration | 27
server/ bi server-ee/ pent aho-sol uti ons/ system kettl e/ pl ugi ns/ dat abases

After restarting the BA Server, the plugin is available to the server.

4. When deploying database plugins, make sure to also deploy the corresponding JDBC drivers. See Specify Data

Connections for the DI Server for instructions about adding JDBC drivers.

Sample Database Plugin

The sample database plugin project is designed to show an implementation of a database plugin that you can use as a
basis to develop your own database plugins.

The sample database plugin registers the CSV JDBC driver from http://csvjdbc.sourceforge.net/ as a database in PDI.
This enables reading from CSV files in a directory using basic SQL.

The included sample transformation in deno_t r ansf or nf deno_dat abase. kt r uses the database plugin to read a
basic CSV file through JDBC.

Follow these steps in order to build and deploy the sample plugin.

1.

Obtain the Sample Plugin Source

The database plugin source is available in the download package. Download the package and unzip it. The
database plugin resides in the ket t | e- sdk- dat abase- pl ugi n folder.

. Configure the Build

Open ket t | e- sdk- dat abase- pl ugi n/ bui | d/ bui | d. properti es and setthe ket t| e-di r property to the
base directory of your PDI installation.

Build and Deploy

You may choose to build and deploy the plugin from the command line, or work with the Eclipse IDE instead. Both
options are described below.

Build and Deploy From the Command Line

The plugin is built using Apache Ant. Build and deploy the plugin from the command line by invoking the install
target from the build directory.

ket t| e- sdk- dat abase-plugin $ cd build
build $ ant install

The install target compiles the source, creates a j ar file, creates a plugin folder, and copies the plugin folder
into the pl ugi ns/ dat abases directory of your PDI installation. It also copies csvj dbc. j ar to PDI's i b/
directory, which provides the JDBC driver the plugin depends on.

Build and Deploy From Eclipse

Import the plugin sources into Eclipse:

1. From the menu, select File > Import > Existing Projects Into Worksapace.
2. Browse to the ket t | e- sdk- dat abase- pl ugi n folder and choose the project to be imported.

To build and install the plugin, follow these steps:
1. Open the Ant view in Eclipse by selecting Window > Show View from the main menu and select Ant.

You may have to select Other > Ant if you have not used the Ant view before.

2. Drag the file bui | d/ bui | d. xml from your project into the Ant view, and execute the install target by double-
clicking it.

3. After the plugin has been deployed, restart Spoon.

4. You can test the new plugin using the transformation from the database plugin deno_t r ansf or mfolder.

http://csvjdbc.sourceforge.net/
http://ant.apache.org/

| Extending Pentaho Data Integration | 28

.r - 0 O 0 Examine préview data

B Rows of Step: preview data (3 rows)
read csv over jabe prEview data M il marme
1 1 Steve
£ 2 Clara

3 3 Megan

Close

Creating Partioner Plugins

PDI uses partitioner plugins for its partitioning feature. Each partitioner plugin implements a specific partitioning
method.

© © O Partioning method

Filter & P

Select the partitioning method
Mone

Mirror to all partitions
Remainder of division

| OK | Cancel

For most applications, the Remainder of Division partitioner works well. On the rare occasion that an application would
benefit from an additional partitioning method, this section explains how to implement them.

This section explains the architecture and programming concepts for creating your own partitioner plugin. We
recommended you open and refer to the sample partitioner plugin sources while following these instructions.

A partitioner plugin integrates with PDI by implementing two distinct Java interfaces. Each interface represents a set of
responsibilities performed by a PDI partitioner. Each of the interfaces has a base class that implements the bulk of the
interface in order to simplify plugin development.

Package Interface Base Class Main
Responsibilities

org. pent aho. di . trans Partitioner BasePartitioner |. Maintain

partitioner settings

» Serialize
partitioner
enumerations

e Provide access to
dialog class

e Assign rows to
partitions during
runtime

| Extending Pentaho Data Integration | 29

Package Interface Base Class Main
Responsibilities
org. pentaho.di.ui.trans.step [StepDi aloglnterface |BaseStepDialog « Partitioner settings
dialog

Additional Reading

A complete explanation of partitioning in Kettle, including sample transformations, is available here http://type-exit.org/
adventures-with-open-source-bi/2011/09/partitioning-in-kettle/.

Implementing the Partitioner Interface

Java Interface org. pentaho.di.trans. Partitioner

Base class org. pentaho. di .trans. BasePartiti oner

Partiti oner isthe main Java interface that a plugin implements.
Keep Track of Partitioner Settings

The implementing class keeps track of partitioner settings using private fields with corresponding get and set
methods. The di al og class implementing Par t i oner Di al ogl nt er f ace is using these methods to copy the user
supplied configuration in and out of the dialog.

public Object clone()

This method is called when a step containing partitioning configuration is duplicated in Spoon. It needs to return a deep
copy of this partitioner object. It is essential that the implementing class creates proper deep copies if the configuration
is stored in modifiable objects, such as lists or custom helper objects. The copy is created by calling super . cl one()
and deep-copying any fields the partitioner may have declared.

public Partitioner getlnstance()

This method is required to return a new instance of the partitioner class, with the plugin id and plugin description
inherited from the instance upon which this method is called.

Serialize Partitioner Settings
The plugin serializes its settings to both XML and a PDI repository.
public String get XM.()

This method is called by PDI whenever the plugin needs to serialize its settings to XML. It is called when saving a
transformation in Spoon. The method returns an XML string containing the serialized settings. The string contains a
series of XML tags, one tag per setting. The helper class or g. pent aho. di . cor e. xm . XM_Hand| er constructs the
XML string.

public void | oadXM.()

This method is called by PDI whenever a plugin reads its settings from XML. The XML node containing the plugin
settings is passed in as an argument. Again, the helper class or g. pent aho. di . core. xm . XM_Handl er is used to
read the settings from the XML node.

public void saveRep()

This method is called by PDI whenever a plugin saves its settings to a PDI repository. The repository object passed in
as the first argument provides a convenient set of methods for serializing settings. The transformation id and step id
passed in are used as identifiers when calling the repository serialization methods.

public void readRep()

This method is called by PDI whenever a plugin needs to read its configuration from a PDI repository. The step id given
in the arguments should be used as the identifier when using the repositories serialization methods.

When developing plugins, make sure the serialization code is in synch with the settings available from the partitioner
plugin dialog. When testing a partitioned step in Spoon, PDI internally saves and loads a copy of the transformation
before it is executed.

Provide the Name of the Dialog Class

http://type-exit.org/adventures-with-open-source-bi/2011/09/partitioning-in-kettle/
http://type-exit.org/adventures-with-open-source-bi/2011/09/partitioning-in-kettle/
http://javadoc.pentaho.com/kettle/org/pentaho/di/trans/Partitioner.html
http://javadoc.pentaho.com/kettle/org/pentaho/di/trans/BasePartitioner.html

| Extending Pentaho Data Integration | 30

PDI needs to know which class will take care of the settings dialog for the plugin. The interface method
get Di al ogd assNane() must return the name of the class implementing the St epDi al ogl nt er f ace for the
partitioner.

Partition Incoming Rows During Runtime
The class implementing Parti ti oner executes the actual logic that distributes the rows to available partitions.
public int getPartition()

This method is called with the row structure and the actual row as arguments. It returns the partition to which this row
is sent. The total number of partitions is available in the inherited field nr Par ti t i ons and the return value is between
zero (0, inclusive) and nr Parti ti ons (exclusive).

Interface with the PDI plugin system

In order for PDI to recognize the plugin, the class implementing the Parti ti oner interface must also be annotated
with the Java annotation or g. pent aho. di . cor e. annot ati ons. Parti ti oner Pl ugi n.

Supply these annotation attributes:

Attribute Description

id A globally unique ID for the plugin

nanme A short label for the plugin

description A longer description for the plugin

i 18nPackageNane If the i 18nPackageNane attribute is supplied in the annotation attributes, the values of
name and description are interpreted as i 18n keys. The keys may be supplied in the
extended form i 18n: <packagenane> key to specify a package that is different from
the default package given in the i 18nPackageNane attribute.

Implementing the Partitioner Settings Dialog Box

Java Interface org. pent aho. di.trans. step. StepDi al ogl nterface

Base class org. pentaho. di . ui.trans. step. BaseSt epDi al og

St epDi al ogl nt er f ace is the Java interface that implements the settings dialog of a partitioner plugin.
Maintain the Dialog for Partitioner Settings

The di al og class is responsible for constructing and opening the settings dialog for the partitioner. When you open the
partitioning settings in Spoon, the system instantiates the di al og class passing in a St epParti ti oni nghet a object.
Retrieve the Parti ti oner object by calling get Partiti oner () and call the open() method on the dialog. SWT is
the native windowing environment of Spoon and the framework used for implementing dialogs.

public String open()
This method returns only after the dialog has been confirmed or cancelled. The method must conform to these rules.
» If the dialog is confirmed

e« The Partiti on object must be updated to reflect the new settings
« If you changed any settings, the St epParti ti oni nghet a object Changed flag must be setto t r ue
« open() returns the name of the step to which the partitioning is applied—use the st epnane field inherited from
BaseSt epDi al og
« If the dialog is cancelled

e The Partiti on object must not be changed
e The StepPartitioni ngMet a object Changed flag must be set to the value it had at the time the dialog opened
e open() mustreturn nul |

The St epParti ti oni nghMet a object has an internal Changed flag that is accessible using hasChanged() and

set Changed() . Spoon decides whether the transformation has unsaved changes based on the Changed flag, so it is
important for the dialog to set the flag appropriately.

http://javadoc.pentaho.com/kettle/org/pentaho/di/core/annotations/PartitionerPlugin.html
http://javadoc.pentaho.com/kettle/org/pentaho/di/trans/step/StepDialogInterface.html
http://javadoc.pentaho.com/kettle/org/pentaho/di/ui/trans/step/BaseStepDialog.html
http://www.eclipse.org/swt/

| Extending Pentaho Data Integration | 31

The sample Partitioner plugin project has an implementation of the dialog class that is consistent with the these rules
and is a good basis for creating your own dialogs.

Deploying Partitioner Plugins

To deploy your plugin, follow the following steps.

1.
2.
3.

Create a jar file containing your plugin class(es)
Create a new folder, give it a meaningful name, and place your jar file inside the folder

Place the plugin folder you just created in a specific location for PDI to find. Depending on how you use PDI, you
need to copy the plugin folder to one or more locations as per the following list.

» Deploying to Spoon or Carte
Copy the plugin folder into this location:
desi gn-t ool s/ dat a-i ntegration/ pl ugi ns/ st eps

After restarting Spoon, the new database type is available from the PDI database dialog.
« Deploying to Data Integration Server

Copy the plugin folder to this location:
server/data-integration-server/pentaho-sol uti ons/systeni kettl e/ plugi ns/steps

After restarting the data integration server, the plugin is available to the server.
« Deploying to BA Server

Copy the plugin folder to this location:
server/ bi server-ee/ pent aho-sol uti ons/system kettl e/ pl ugi ns/ st eps

After restarting the BA Server, the plugin is available to the server.

Sample Partitioner Plugin

The sample Partitioner plugin project is designed to show a minimal functional implementation of a partitioner plugin
that you can use as a basis to develop your own custom plugins.

The sample Partitioner plugin distributes rows to partitions based on the value of a string field, or more precisely the
string length. The sample shows a partitioner executing on five partitions, assigning longer strings to higher partition
numbers.

Follow these steps in order to build and deploy the sample plugin.

1.

Obtain the Sample Plugin Source

The plugin source is available in the download package. Download the package and unzip it. The partitioner plugin
resides in the ket t | e- sdk- partiti oner-pl ugi n folder.
Configure the Build

Openkettl e-sdk-partitioner-plugin/build/build.properties andsetthe kettl e-dir property to
the base directory of your PDI installation.
Build and Deploy

You may choose to build and deploy the plugin from the command line, or work with the Eclipse IDE instead. Both
options are described below.

e Build and Deploy From the Command Line
The plugin is built using Apache Ant. Build and deploy the plugin from the command line by invoking the install
target from the build directory.

kettl e-sdk-partitioner-plugin $ cd build
build $ ant install

The install target compiles the source, creates a j ar file, creates a plugin folder, and copies the plugin folder into
the pl ugi ns/ st eps directory of your PDI installation.
e Build and Deploy From Eclipse

Import the plugin sources into Eclipse:

http://ant.apache.org/

| Extending Pentaho Data Integration | 32

1. From the menu, select File > Import > Existing Projects Into Worksapace.
2. Browse to the ket t| e- sdk- partiti oner-pl ugi n folder and choose the project to be imported.

To build and install the plugin, follow these steps:

1. Open the Ant view in Eclipse by selecting Window > Show View from the main menu and select Ant.

You may have to select Other > Ant if you have not used the Ant view before.
2. Drag the file bui | d/ bui | d. xm from your project into the Ant view, and execute the install target by double-

clicking it.

3. After the plugin has been deployed, restart Spoon.

4. You can test the new plugin using the transformation from the deno_t r ansf or mfolder.

S

Data Grid Get Variables preview here
000 Examine preview data
Rows of step: preview here (12 rows)
& |my_field partition_number partition_name
1a 0 minimal
2 hello world 2 medium
3 medium size 2 medium
4 some text 2 medium
5 This is a longer string 4 large
6 this is another longer string 4 large
7 yet another longer string here 4 large
8 two 1 short
9 short 1 short
10 abc 1 short
11 | am a string 3 long
12 this is mid-large 3 long

| Close |

Exploring Existing Partitioners

PDI sources are useful if you want to investigate the implementation of the standard modulo partitioner. The main
class is available as or g. pent aho. di . t rans. ModParti ti oner. The corresponding di al og class in located in
org. pentaho. di.ui.trans. di al og. ModPartitionerD al og.

Debugging Plugins

A good way to debug PDI plugins is to deploy the plugin, launch Spoon, and connect the debugger to the Spoon JVM.

This section explains how to debug a plugin in Eclipse.

1. Prepare Spoon for debugging.

http://source.pentaho.org/svnkettleroot/Kettle/tags/4.3.0-stable/src/org/pentaho/di/trans/ModPartitioner.java
http://source.pentaho.org/svnkettleroot/Kettle/tags/4.3.0-stable/src-ui/org/pentaho/di/ui/trans/dialog/ModPartitionerDialog.java

| Extending Pentaho Data Integration | 33

a) Start the Spoon JVM, allowing debug sessions and passing these arguments to the Spoon JVM.

- Xdebug - Xnoagent -Djava. conpil er=NONE -

Xrunj dwp: t ransport =dt _socket, server =y, suspend=n, addr ess=1044

The address argument can be any free port on your machine. This example uses port 1044.

If you are using Spoon. bat or spoon. sh to launch Spoon, create a copy of the file and edit it to include the
debugging parameters to the Java options near the bottom of the file. If you are using a Mac app, add the JVM

parameters to

VMptions key of “Data Integration 64-bit.app/Contents/Info.plist” or“Data

Integration 32-bit.app/ Contents/Info.plist” respectively.

When you start Spoon, debuggers connect on port 1044.

2. Launch a debug session.

a) Ensure that Spoon is set up for debugging and running with the plugin deployed.

b) Connect the Eclipse debugger by creating a debug configuration for your plugin project. From the Run/Debug

Configurations menu, create a new configuration for Remote Java Application.
¢) Select your project, making sure the port matches the port configured in step 1.

d) Decide whether you want to be able to kill the Spoon JVM from the debugger, then click Apply and Debug.
The debugger opens, stops at the breakpoints you set, and in-line editing of the plugin source is enabled.

608

Create, manage, and run cnrlllgu rations

AFtach to A Java virtual mackine doepting debug donnecticng

A= Name: Spoon Debug Plugin

B9 Jawa Applet
7 Jawa Application
» Ju Junit
md Maven Build
v [Remnote Java Application
7, Spoon Debug Plugin
Juy Tazk Context Test

Fileer matched 10 of 33 itemi

.'?'

Localization

i Conmnect . B Source | [

Prijet
Eartle=50k=jobentry-plugin

Coanneftian Type
Standard [(Socker Artach)
Connection Propenies

Hast: | |localbost

DD GO QLIS e

Browwse...

Port: | 1044

I,ﬁ Allowy termilnation of remate W

Rogvere

Message Bundles

PDI uses property files for internationalization. Property files reside in the nessages sub-package in the plugin j ar
file. Each property file is specific to a locale. Property files contain translations for message keys that are used in the
source code. A messages sub-package containing locale-specific translations is called a message bundle.

| Extending Pentaho Data Integration | 34

Consider the package layout of the sample job entry plugin project. It contains its main Java class in the
or g. pent aho. di . sdk. sanpl es. j obentri es. denpbpackage, and there is a message bundle containing the
localized strings for the en_US locale.

¥ = kentle-sdk - jobentry-plugin-demo
¥ (B sre
¥ £ org.pentaho.di.sdk.samples. jobentries.demo
F || JabEntryDemo, java
F 1] jobEntryDemoDialog. java
¥ (2 org.pentaho.di.sdk. samples. jobentries. demo. messages
| 5] messages_en_US.properties

Additional property files can be added using the naming pattern nessages_<I| ocal e>. properti es. PDI core steps
and job entries usually come with several localizations. See the shell job entry messages package for an example of
more complete i 18n: http://source.pentaho.org/svnkettleroot/Kettle/tags/4.3.0-stable/src/org/pentaho/di/job/entries/
shell/messages/.

Resolving Localized Strings

The key to resolving localized strings is to use the get St ri ng() methods of
or g. pent aho. di . i 18n. BaseMessages. PDI follows conventions when using this class, which enables easy
integration with the PDI translator tool.

All PDI plugin classes that use localization declare a private static Cl ass<?> PKGfield, and assign a class that lives
one package-level above the message bundle package. This is often the main class of the plugin.

With the PKGfield defined, the plugin then resolves its localized strings with a call to

BaseMessages. get String(PKG “localization key”, ... optional _paraneters). The first argument
helps PDI finding the correct message bundle, the second argument is the key to localize, and the optional parameters
are injected into the localized string following the Java Message Format conventions.

Common Localization Strings

Some strings are commonly used,and have been pulled together into a common message bundle in
or g. pent aho. di . i 18n. nessages. Whenever BaseMessages cannot find the key in the specified message bundle,
PDI looks for the key in the common message bundle.

Example

For an example, check the sampe Job Entry plugin project, which uses this technique for localized string resolution in its
dialog class.

http://source.pentaho.org/svnkettleroot/Kettle/tags/4.3.0-stable/src/org/pentaho/di/job/entries/shell/messages/
http://source.pentaho.org/svnkettleroot/Kettle/tags/4.3.0-stable/src/org/pentaho/di/job/entries/shell/messages/
http://javadoc.pentaho.com/kettle/org/pentaho/di/i18n/BaseMessages.html
http://wiki.pentaho.com/display/EAI/Kettle+4+and+the+art+of+internationalization
http://docs.oracle.com/javase/6/docs/api/java/text/MessageFormat.html
http://source.pentaho.org/svnkettleroot/Kettle/tags/4.3.0-stable/src-core/org/pentaho/di/i18n/messages/

| Embedding Pentaho Data Integration | 35
Embedding Pentaho Data Integration

To integrate PDI transformations and jobs into your applications, embed PDI objects directly into your application code.
The instructions in this section address common embedding scenarios.

You can get the accompanying sample project from the ket t | e- sdk- enbeddi ng- sanpl es folder of the sample
code package. The sample project is bundled with a minimal set of dependencies. In a real-world implementation,
projects require the complete set of PDI dependencies that include all .j ar files from dat a-i ntegrati on/lib.

For each embedding scenario, there is a sample class that can be executed as a stand-alone java application. You can
execute the classes manually or run the Ant targets provided in bui | d/ bui | d. xm to run the sample classes.

Running Transformations

If you want to run a PDI transformation from Java code in a stand-alone application, take a look at this sample
class, or g. pent aho. di . sdk. sanpl es. enbeddi ng. Runni ngTr ansf or mat i ons. It sets the parameters
and executes the transformation in et | / parametri zed_t ransf or mat i on. kt r . The transform can be

run from the . kt r file using r unTr ansf or mat i onFr onFi | eSyst en() or from a PDI repository using
runTransfonrati onFr onRepository().

1. Always make the first call to Ket t | eEnvi ronnent . i ni t () whenever you are working with the PDI APIs.

2. Prepare the transformation.

The definition of a PDI transformation is represented by a Tr ansMet a object. You can load this object from a .kt r
file, a PDI repository, or you can generate it dynamically. To query the declared parameters of the transformation
definition use | i st Par anmet er s(), or to query the assigned values use set Par anet er Val ue() .

3. Execute the transformation.

An executable Tr ans object is derived from the Tr ansMet a object that is passed to the constructor. The Tr ans
object starts and then executes asynchronously. To ensure that all steps of the Tr ans object have completed, call
wai t Unti | Fi ni shed().

4. Evaluate the transformation outcome.

After the Tr ans object completes, you can access the result using get Resul t () . The Resul t object can be
queried for success by evaluating get Nr Er r or s() . This method returns zero (0) on success and a non-zero value
when there are errors. To get more information, retrieve the transformation log lines.

Running Jobs

If you want to run a PDI job from Java code in a stand-alone application, take a look at this sample class,

or g. pent aho. di . sdk. sanpl es. enbeddi ng. Runni ngJobs. It sets the parameters and executes the job in
etl/paranetrized_j ob. kj b. The job can be run from the .kj b file using r unJobFr onfi | eSyst em() or from a
repository using r unJobFr onReposi tory() .

1. Always make the first call to Ket t | eEnvi ronment . i ni t () whenever you are working with the PDI APIs..

2. Prepare the job.

The definition of a PDI job is represented by a JobMet a object. You can load this object from a .kt b file, a
PDI repository, or you can generate it dynamically. To query the declared parameters of the job definition use
| i st Paramet er s() . To set the assigned values use set Par anet er Val ue() .

3. Execute the job.

An executable Job object is derived from the JobMet a object that is passed in to the constructor. The Job object
starts, and then executes in a separate thread. To wait for the job to complete, call wai t Unt i | Fi ni shed().

4. Evaluate the job outcome.

After the Job completes, you can access the result using get Resul t (). The Resul t object can be queried
for success using get Resul t () . This method returns t r ue on success and f al se on failure. To get more
information, retrieve the job log lines.

http://javadoc.pentaho.com/kettle/org/pentaho/di/trans/TransMeta.html
http://javadoc.pentaho.com/kettle/org/pentaho/di/trans/TransMeta.html#listParameters()
http://javadoc.pentaho.com/kettle/org/pentaho/di/trans/TransMeta.html#setParameterValue(java.lang.String,%20java.lang.String)
http://javadoc.pentaho.com/kettle/org/pentaho/di/trans/Trans.html
http://javadoc.pentaho.com/kettle/org/pentaho/di/trans/TransMeta.html
http://javadoc.pentaho.com/kettle/org/pentaho/di/trans/Trans.html
http://javadoc.pentaho.com/kettle/org/pentaho/di/trans/Trans.html
http://javadoc.pentaho.com/kettle/org/pentaho/di/trans/Trans.html#waitUntilFinished%28%29
http://javadoc.pentaho.com/kettle/org/pentaho/di/trans/Trans.html
http://javadoc.pentaho.com/kettle/org/pentaho/di/trans/Trans.html#getResult%28%29
http://javadoc.pentaho.com/kettle/org/pentaho/di/core/Result.html
http://javadoc.pentaho.com/kettle/org/pentaho/di/core/Result.html#getNrErrors%28%29
http://javadoc.pentaho.com/kettle/org/pentaho/di/job/JobMeta.html
http://javadoc.pentaho.com/kettle/org/pentaho/di/job/JobMeta.html#listParameters%28%29
http://javadoc.pentaho.com/kettle/org/pentaho/di/job/JobMeta.html#setParameterValue%28java.lang.String,%20java.lang.String%29
http://javadoc.pentaho.com/kettle/org/pentaho/di/job/Job.html
http://javadoc.pentaho.com/kettle/org/pentaho/di/job/JobMeta.html
http://javadoc.pentaho.com/kettle/org/pentaho/di/job/Job.html
http://javadoc.pentaho.com/kettle/org/pentaho/di/job/Job.html#waitUntilFinished%28%29
http://javadoc.pentaho.com/kettle/org/pentaho/di/job/Job.html
http://javadoc.pentaho.com/kettle/org/pentaho/di/job/Job.html#getResult%28%29
http://javadoc.pentaho.com/kettle/org/pentaho/di/core/Result.html
http://javadoc.pentaho.com/kettle/org/pentaho/di/core/Result.html#getResult%28%29

| Embedding Pentaho Data Integration | 36

Building Transformations Dynamically

To enable your application to respond quickly to changing conditions, you can build transformations dynamically. The
example class, or g. pent aho. di . sdk. sanpl es. enbeddi ng. Gener at i ngTr ansf or mat i ons, shows you how. It
generates a transformation definition and saves it to a .kt r file.

1. Always make the first call to Ket t | eEnvi ronnment . i ni t () whenever you are working with the PDI APIs.
2. Create and configure a transformation definition object.

A transformation definition is represented by a Tr ansMet a object. Create this object using the default constructor.
The transformation definition includes the name, the declared parameters, and the required database connections.

3. Populate the Tr ansMet a object with steps.
The data flow of a transformation is defined by steps that are connected by hops.

a) Create the step by instantiating its class directly and configure it using its get and set methods. Transformation
steps reside in sub-packages of or g. pent aho. di . trans. st eps. For example, to use the Get File Names
step, create an instance of or g. pent aho. di . trans. st eps. getfil enanes. Get Fi | eNanesMet a and use
its get and set methods to configure it.

b) Obtain the step id string. Each PDI step has an id that can be retrieved
from the PDI plugin registry. A simple way to retrieve the step id is to call
Pl ugi nRegi stry. getl nstance(). get Pl ugi nl d(St epPl ugi nType. cl ass, theStepMetalbject).

c) Create an instance of or g. pent aho. di . trans. st ep. St epMet a, passing the step id string, the name, and
the configured step object to the constructor. An instance of St epMet a encapsulates the step properties, as well
as controls the placement of the step on the Spoon canvas and connections to hops. Once the St epMet a object
has been created, call set Drawn(true) and set Locat i on(x, y) to make sure the step appears correctly
on the Spoon canvas. Finally, add the step to the transformation, by calling addSt ep() on the transformation
definition object.

d) Once steps have been added to the transformation definition, they need to be connected by hops. To create a
hop, create an instance of or g. pent aho. di . t rans. TransHopMet a, passing in the From and To steps as
arguments to the constructor. Add the hop to the transformation definition by calling addTr ansHop() .

After all steps have been added and connected by hops, the transformation definition object can be
serialized to a .kt r file by calling get XML() and opening it in Spoon for inspection. The sample class
or g. pent aho. di . sdk. sanpl es. enbeddi ng. Gener at i ngTr ansf or mat i ons generates this transformation.

Generate Some Rows Add Counter Field Dummy

Building Jobs Dynamically

To enable your application to respond quickly to changing conditions, you can build jobs dynamically. The example
class, or g. pent aho. di . sdk. sanpl es. enbeddi ng. Gener at i ngJobs, shows you how. It generates a job
definition and saves it to a .kj b file.
1. Always make the first call to Ket t | eEnvi ronment . i ni t () whenever you are working with the PDI APIs.
2. Create and configure a job definition object.
A job definition is represented by a JobMet a object. Create this object using the default constructor. The job
definition includes the name, the declared parameters, and the required database connections.
3. Populate the JobMet a object with job entries.

http://javadoc.pentaho.com/kettle/org/pentaho/di/trans/TransMeta.html
http://javadoc.pentaho.com/kettle/org/pentaho/di/trans/TransMeta.html#setName%28java.lang.String%29
http://javadoc.pentaho.com/kettle/org/pentaho/di/trans/TransMeta.html#addParameterDefinition%28java.lang.String,%20java.lang.String,%20java.lang.String%29
http://javadoc.pentaho.com/kettle/org/pentaho/di/trans/TransMeta.html#addDatabase%28org.pentaho.di.core.database.DatabaseMeta%29
http://javadoc.pentaho.com/kettle/org/pentaho/di/trans/TransMeta.html
http://javadoc.pentaho.com/kettle/org/pentaho/di/trans/steps/getfilenames/GetFileNamesMeta.html
http://javadoc.pentaho.com/kettle/org/pentaho/di/core/plugins/PluginRegistry.html
http://javadoc.pentaho.com/kettle/org/pentaho/di/core/plugins/PluginRegistry.html#getPluginId%28java.lang.Class,%20java.lang.Object%29
http://javadoc.pentaho.com/kettle/org/pentaho/di/trans/step/StepMeta.html#setDraw(boolean)
http://javadoc.pentaho.com/kettle/org/pentaho/di/trans/step/StepMeta.html#setLocation(int,%20int)
http://javadoc.pentaho.com/kettle/org/pentaho/di/trans/TransMeta.html#addStep%28org.pentaho.di.trans.step.StepMeta%29
http://javadoc.pentaho.com/kettle/org/pentaho/di/trans/TransHopMeta.html
http://javadoc.pentaho.com/kettle/org/pentaho/di/trans/TransMeta.html#addTransHop%28org.pentaho.di.trans.TransHopMeta%29
http://javadoc.pentaho.com/kettle/org/pentaho/di/job/JobMeta.html
http://javadoc.pentaho.com/kettle/org/pentaho/di/job/JobMeta.html#setName%28java.lang.String%29
http://javadoc.pentaho.com/kettle/org/pentaho/di/job/JobMeta.html#addParameterDefinition%28java.lang.String,%20java.lang.String,%20java.lang.String%29
http://javadoc.pentaho.com/kettle/org/pentaho/di/job/JobMeta.html#addDatabase%28org.pentaho.di.core.database.DatabaseMeta%29

| Embedding Pentaho Data Integration | 37

The control flow of a job is defined by job entries that are connected by hops.

a) Create the job entry by instantiating its class directly and configure it using its get and set methods. The job
entries reside in sub-packages of or g. pent aho. di . j ob. entri es. For example, use the File Exists job
entry, create an instance of or g. pent aho. di . j ob. entries.fil eexi sts. JobEntryFil eExi sts, and use
set Fi | enane() to configure it.

The Start job entry is implemented by or g. pent aho. di . j ob. entri es. speci al . JobEnt rySpeci al .

b) Create an instance of or g. pent aho. di . j ob. entry. JobEnt r yCopy by passing the job entry created in the
previous step to the constructor. An instance of JobEnt r yCopy encapsulates the properties of a job entry, as
well as controls the placement of the job entry on the Spoon canvas and connections to hops. Once created, call
set Drawn(true) and set Locat i on(x, y) to make sure the job entry appears correctly on the Spoon canvas.
Finally, add the job entry to the job by calling addJobEnt r y() on the job definition object.

It is possible to place the same job entry in several places on the canvas by creating multiple instances of
JobEnt r yCopy and passing in the same job entry instance.

c) Once job entries have been added to the job definition, they need to be connected by hops. To create a
hop, create an instance of or g. pent aho. di . j ob. JobHopMet a, passing in the From and To job entries
as arguments to the constructor. Configure the hop consistently. Configure it as a green or red hop by
calling set Condi ti onal () and set Eval uati on(true/fal se). Ifitis an unconditional hop, call
set Uncondi ti onal (). Add the hop to the job definition by calling addJobHop() .

After all job entries have been added and connected by hops, the job definition object can be
serialized to a .kj b file by calling get XM_()) , and opened in Spoon for inspection. The sample class
or g. pent aho. di . sdk. sanpl es. enbeddi ng. Gener at i ngJobs generates this job.

o+~ [¢

aTART Output PDI SUCCess

Abort Job

Obtaining Logging Information

When you need more information about how transformations and jobs execute, you can view PDI log lines and text.

PDI collects log lines in a central place. The class or g. pent aho. di . core. | oggi ng. Kettl eLogSt ore
manages all log lines and provides methods for retrieving the log text for specific entities. To retrieve log text or
log lines, supply the log channel id generated by PDI during runtime. You can obtain the log channel id by calling

http://javadoc.pentaho.com/kettle/org/pentaho/di/job/entries/fileexists/JobEntryFileExists.html
http://javadoc.pentaho.com/kettle/org/pentaho/di/job/entries/fileexists/JobEntryFileExists.html#setFilename%28java.lang.String%29
http://javadoc.pentaho.com/kettle/org/pentaho/di/job/entries/special/JobEntrySpecial.html
http://javadoc.pentaho.com/kettle/org/pentaho/di/job/entry/JobEntryCopy.html
http://javadoc.pentaho.com/kettle/org/pentaho/di/job/entry/JobEntryCopy.html#setDrawn%28boolean%29
http://javadoc.pentaho.com/kettle/org/pentaho/di/job/entry/JobEntryCopy.html#setLocation%28int,%20int%29
http://javadoc.pentaho.com/kettle/org/pentaho/di/job/JobMeta.html#addJobEntry%28org.pentaho.di.job.entry.JobEntryCopy%29
http://javadoc.pentaho.com/kettle/org/pentaho/di/job/JobHopMeta.html
http://javadoc.pentaho.com/kettle/org/pentaho/di/job/JobHopMeta.html#setConditional%28%29
http://javadoc.pentaho.com/kettle/org/pentaho/di/job/JobHopMeta.html#setEvaluation%28boolean%29
http://javadoc.pentaho.com/kettle/org/pentaho/di/job/JobHopMeta.html#setUnconditional%28%29
http://javadoc.pentaho.com/kettle/org/pentaho/di/job/JobMeta.html#addJobHop%28org.pentaho.di.job.JobHopMeta%29
http://javadoc.pentaho.com/kettle/org/pentaho/di/job/JobMeta.html#getXML%28%29
http://javadoc.pentaho.com/kettle/org/pentaho/di/core/logging/KettleLogStore.html

| Embedding Pentaho Data Integration | 38

get LogChannel | d(), which is part of Loggi ngQbj ect | nt er f ace. Jobs, transformations, job entries, and
transformation steps all implement this interface.

For example, assuming the job variable is an instance of a running or completed job. This is how you retrieve its log
lines:

Loggi ngBuf f er appender = Kettl eLogSt ore. get Appender () ;
String | ogText = appender. get Buffer(job. get LogChannel Id(), false).toString();

The main methods in the sample classes or g. pent aho. di . sdk. sanpl es. embeddi ng. Runni ngJobs and

or g. pent aho. di . sdk. sanpl es. enbeddi ng. Runni ngTr ansf or mat i ons retrieve log information from the
executed job or transformation in this manner.

Exposing a Transformation or Job as a Web Service

Running a PDI job or transformation as part of a web-service is implemented by writing a servlet that maps incoming
parameters for a transformation or job entry and executes them as part of the request cycle.

Alternatively, you can use Carte or the Data Integration server directly by building a transformation that writes its
output to the HTTP response of the Carte server. This is achieved by using the Pass Output to Servlet feature of the
Text output, XML output, JSON output, or scripting steps. For an example, run the sample transformation, / dat a-

i ntegration/sanpl es/transfornmations/ Servl et Data Exanpl e. ktr, on Carte.

http://javadoc.pentaho.com/kettle/org/pentaho/di/core/logging/LoggingObjectInterface.html#getLogChannelId%28%29
http://javadoc.pentaho.com/kettle/org/pentaho/di/core/logging/LoggingObjectInterface.html

	Contents
	Getting Started
	Extending Pentaho Data Integration
	Creating Step Plugins
	Maintaining Step Settings
	Implementing the Step Settings Dialog Box
	Processing Rows
	Storing the Processing State
	Working with Rows
	Working With Fields
	Handling Errors
	Understanding Row Counters
	Logging in Transformation Steps

	Deploying Step Plugins
	Sample Step Plugin
	Exploring More Steps

	Creating Job Entry Plugins
	Implementing a Job Entry
	Implementing the Job Entry Settings Dialog Box
	Logging in Job Entries
	Deploying Job Entry Plugins
	Sample Job Entry Plugin
	Exploring More Job Entries

	Creating Database Plugins
	Exploring Existing Database Implementations
	Deploying Database Plugins
	Sample Database Plugin

	Creating Partioner Plugins
	Implementing the Partitioner Interface
	Implementing the Partitioner Settings Dialog Box
	Deploying Partitioner Plugins
	Sample Partitioner Plugin
	Exploring Existing Partitioners

	Debugging Plugins
	Localization

	Embedding Pentaho Data Integration
	Running Transformations
	Running Jobs
	Building Transformations Dynamically
	Building Jobs Dynamically
	Obtaining Logging Information
	Exposing a Transformation or Job as a Web Service

