
Embed and Extend DI

This document supports Pentaho Business Analytics Suite 5.0 GA and Pentaho Data Integration 5.0 GA,
documentation revision August 28, 2013, copyright © 2013 Pentaho Corporation. No part may be reprinted without
written permission from Pentaho Corporation. All trademarks are the property of their respective owners.

Help and Support Resources
If you do not find answers to your quesions here, please contact your Pentaho technical support representative.

Support-related questions should be submitted through the Pentaho Customer Support Portal at
http://support.pentaho.com.

For information about how to purchase support or enable an additional named support contact, please contact your
sales representative, or send an email to sales@pentaho.com.

For information about instructor-led training, visit
http://www.pentaho.com/training.

Liability Limits and Warranty Disclaimer
The author(s) of this document have used their best efforts in preparing the content and the programs contained
in it. These efforts include the development, research, and testing of the theories and programs to determine their
effectiveness. The author and publisher make no warranty of any kind, express or implied, with regard to these
programs or the documentation contained in this book.

The author(s) and Pentaho shall not be liable in the event of incidental or consequential damages in connection
with, or arising out of, the furnishing, performance, or use of the programs, associated instructions, and/or claims.

Trademarks
Pentaho (TM) and the Pentaho logo are registered trademarks of Pentaho Corporation. All other trademarks are the
property of their respective owners. Trademarked names may appear throughout this document. Rather than list
the names and entities that own the trademarks or insert a trademark symbol with each mention of the trademarked
name, Pentaho states that it is using the names for editorial purposes only and to the benefit of the trademark
owner, with no intention of infringing upon that trademark.

Third-Party Open Source Software
For a listing of open source software used by each Pentaho component, navigate to the folder that contains the
Pentaho component. Within that folder, locate a folder named licenses. The licenses folder contains HTML.files that
list the names of open source software, their licenses, and required attributions.

Contact Us
Global Headquarters Pentaho Corporation
Citadel International, Suite 340
5950 Hazeltine National Drive
Orlando, FL 32822
Phone: +1 407 812-OPEN (6736)
Fax: +1 407 517-4575
http://www.pentaho.com

Sales Inquiries: sales@pentaho.com

http://support.pentaho.com
mailto:sales@pentaho.com
http://www.pentaho.com/training
http://www.pentaho.com
mailto:sales@pentaho.com

 | TOC | 3

Contents

Getting Started.. 4
Extending Pentaho Data Integration..6

Creating Step Plugins... 6
Maintaining Step Settings.. 7
Implementing the Step Settings Dialog Box...9
Processing Rows... 10
Deploying Step Plugins..16
Sample Step Plugin... 16
Exploring More Steps...18

Creating Job Entry Plugins... 18
Implementing a Job Entry.. 19
Implementing the Job Entry Settings Dialog Box...21
Logging in Job Entries... 21
Deploying Job Entry Plugins.. 22
Sample Job Entry Plugin..23
Exploring More Job Entries..24

Creating Database Plugins... 24
Exploring Existing Database Implementations...26
Deploying Database Plugins..26
Sample Database Plugin... 27

Creating Partioner Plugins..28
Implementing the Partitioner Interface... 29
Implementing the Partitioner Settings Dialog Box..30
Deploying Partitioner Plugins...31
Sample Partitioner Plugin.. 31
Exploring Existing Partitioners... 32

Debugging Plugins..32
Localization...33

Embedding Pentaho Data Integration..35
Running Transformations... 35
Running Jobs..35
Building Transformations Dynamically..36
Building Jobs Dynamically.. 36
Obtaining Logging Information..37
Exposing a Transformation or Job as a Web Service...38

 | Getting Started | 4

Getting Started

Pentaho software engineers have anticipated that you may want to develop custom plugins to extend Pentaho Data
Integration (PDI) functionality or to embed the PDI engine into you own Java applications. To aid experienced Java
developers, we provide Java classes and methods, as well as sample Eclipse-based projects with detailed code-level
documentation. The instructions in this publication show you how to approach your plugin project. When reading the
instructions, we recommended that you open the related sample project and follow along.

Unless specifically stated otherwise, developing custom plugins and extending or embedding PDI is not covered under
the standard Pentaho customer support agreement.

Getting Sample Projects

Here is where you can download the zip file that contains the sample projects: https://pentaho.box.com/
extending-and-embedding-pdi

Note: The sample projects are provided "as is" and are subject to the warranty disclaimer contained in
the applicable project license. Sample projects are informational only and are not recommended for use in
production. Use in production is at your own risk.

Setting Up a Development Environment

When beginning a new PDI-related project we recommend you start from one of the sample projects and adapt it to
your development environment.

The sample projects come preconfigured as Eclipse projects, complete with dependencies to a stable release of PDI
5.0. If you are developing for a specific version of PDI, you must replace the dependency jar files to match your
version of PDI. The PDI classes and methods are stable for any major version of PDI, so you can safely replace the
jar files and develop for any PDI 5.x release.

Getting PDI Sources

When developing with PDI, also known as the Kettle project to the open source community, it is helpful to have the
Kettle sources close by. Including them in development projects makes it possible to trace and step through core PDI
code, which helps when debugging your solution.

Note: It is not necessary or supported to modify or compile any of the PDI sources when embedding or
extending PDI. Including the PDI sources in your projects is optional.

PDI source code is publicly available from the Pentaho SVN repository at http://source.pentaho.org/svnkettleroot/Kettle.

PDI follows the standard project layout for SVN repositories. The version currently in development is hosted in the trunk
folder, patch branches are hosted in the branch folders, and released versions are tagged in the tags folder.

If you are developing for a specific version of PDI, for instance 5.0.0, it is important to check-out or export the
corresponding tag. To check which version you need to match your installation, select Help > About from the Spoon
menu.

https://pentaho.box.com/extending-and-embedding-pdi
https://pentaho.box.com/extending-and-embedding-pdi
http://source.pentaho.org/svnkettleroot/Kettle/

 | Getting Started | 5

The Build version shows you which tag to use to match your installation.

Attach Source to PDI JAR Files

If you checked out PDI sources, you may want to associate the source to the matching PDI jar files against which you
are compiling your plugin. This optional step may improve the debugging experience, as it allows you to trace into PDI
core code.

Additional Developer Documentation

Javadoc

The javadoc documentation reflects the most recent stable release of PDI and is available at http://
javadoc.pentaho.com/kettle/.

Pentaho PDI Community Wiki

Additional developer documentation is available in the PDI community wiki: http://wiki.pentaho.com/display/
EAI/Latest+Pentaho+Data+Integration+%28aka+Kettle%29+Documentation.

The “Documentation for (Java) Developers" section has additional information for extending PDI with plugins or
embedding the PDI engine.

http://javadoc.pentaho.com/kettle/
http://javadoc.pentaho.com/kettle/
http://wiki.pentaho.com/display/EAI/Latest+Pentaho+Data+Integration+%28aka+Kettle%29+Documentation
http://wiki.pentaho.com/display/EAI/Latest+Pentaho+Data+Integration+%28aka+Kettle%29+Documentation

 | Extending Pentaho Data Integration | 6

Extending Pentaho Data Integration

To extend the standard PDI functionality, you may want to develop custom plugins. The instructions in this section
address common extending scenarios, with each scenario having its own sample project. These folders of the sample
code package contain sample projects.

• kettle-sdk-step-plugin
• kettle-sdk-jobentry-plugin
• kettle-sdk-database-plugin
• kettle-sdk-partitioner-plugin

Creating Step Plugins
A transformation step implements a data processing task in an ETL data flow. It operates on a stream of data rows.
Transformation steps are designed for input, processing, or output. Input steps fetch data rows from external data
sources, such as files or databases. Processing steps work with data rows, perform field calculations, and stream
operations, such as joining or filtering. Output steps write the processed data back to storage, files, or databases.

This section explains the architecture and programming concepts for creating your own PDI transformation step plugin.
We recommended that you open and refer to the sample step plugin sources while following these instructions.

A step plugin integrates with PDI by implementing four distinct Java interfaces. Each interface represents a set of
responsibilities performed by a PDI step. Each of the interfaces has a base class that implements the bulk of the
interface in order to simplify plugin development.

Unless noted otherwise, all step interfaces and corresponding base classes are part of the
org.pentaho.di.trans.step package.

Java Interface Base Class Main Responsibilities

StepMetaInterface BaseStepMeta • Maintain step
settings

• Validate step
settings

• Serialize step
settings

• Provide access to
step classes

• Perform row layout
changes

StepDialogInterface org.pentaho.di.ui.trans.step.BaseStepDialog • Step settings dialog

 | Extending Pentaho Data Integration | 7

Java Interface Base Class Main Responsibilities

StepInterface BaseStep • Process rows

StepDataInterface BaseStepData • Provide storage for
row processing

Maintaining Step Settings

Java Interface org.pentaho.di.trans.step.StepMetaInterface

Base class org.pentaho.di.trans.step.BaseStepMeta

The StepMetaInterface is the main Java interface that a plugin implements.

Keep Track Of the Step Settings

The implementing class keeps track of step settings using private fields with corresponding get and set methods. The
dialog class implementing StepDialogInterface uses these methods to copy the user supplied configuration in and
out of the dialog.

These interface methods are also used to maintain settings.

void setDefault()

This method is called every time a new step is created and allocates or sets the step configuration to sensible defaults.
The values set here are used by Spoon when a new step is created. This is a good place to ensure that the step
settings are initialized to non-null values. Values that are null can be cumbersome to deal with in serialization and
dialog population, so most PDI step implementations stick to non-null values for all step settings.

public Object clone()

This method is called when a step is duplicated in Spoon. It returns a deep copy of the step meta object. It is essential
that the implementing class creates proper deep copies if the step configuration is stored in modifiable objects, such as
lists or custom helper objects.

See org.pentaho.di.trans.steps.rowgenerator.RowGeneratorMeta.clone() in the PDI source for an
example of creating a deep copy.

Serialize Step Settings

The plugin serializes its settings to both XML and a PDI repository. These interface methods provide this functionality.

public String getXML()

This method is called by PDI whenever a step serializes its settings to XML. It is called when saving a transformation in
Spoon. The method returns an XML string containing the serialized step settings. The string contains a series of XML
tags, one tag per setting. The helper class, org.pentaho.di.core.xml.XMLHandler, constructs the XML string.

public void loadXML()

This method is called by PDI whenever a step reads its settings from XML. The XML node containing the step settings
is passed in as an argument. Again, the helper class, org.pentaho.di.core.xml.XMLHandler, reads the step
settings from the XML node.

public void saveRep()

This method is called by PDI whenever a step saves its settings to a PDI repository. The repository object passed in as
the first argument provides a set of methods for serializing step settings. The passed in transformation id and step id are
used by the step as identifiers when calling the repository serialization methods.

public void readRep()

This method is called by PDI whenever a step reads its configuration from a PDI repository. The step id given in the
arguments is used as the identifier when using the repositories serialization methods.

When developing plugins, make sure the serialization code is in synch with the settings available from the step dialog.
When testing a step in Spoon, PDI internally saves and loads a copy of the transformation before executing it.

Provide Instances of Other Plugin Classes

http://javadoc.pentaho.com/kettle/org/pentaho/di/trans/step/StepMetaInterface.html
http://javadoc.pentaho.com/kettle/org/pentaho/di/trans/step/BaseStepMeta.html

 | Extending Pentaho Data Integration | 8

The StepMetaInterface plugin class is the main class, tying in with the rest of PDI architecture. It is responsible
for supplying instances of the other plugin classes implementing StepDialogInterface, StepInterface, and
StepDataInterface. The following methods cover these responsibilities. Each method implementation constructs a
new instance of the corresponding class, forwarding the passed in arguments to the constructor.

• public StepDialogInterface getDialog()

• public StepInterface getStep()

• public StepDataInterface getStepData()

Each of these methods returns a new instance of the plugin class implementing StepDialogInterface,
StepInterface, and StepDataInterface.

Report Step Changes to the Row Stream

PDI needs to know how a step affects the row structure. A step may be adding or removing fields, as well as modifying
the metadata of a field. The method implementing this aspect of a step plugin is getFields().

public void getFields()

Given a description of the input rows, the plugin modifies it to match the structure for its output fields. The
implementation modifies the passed in RowMetaInterface object to reflect changes to the row stream. A step adds
fields to the row structure. This is done by creating ValueMeta objects, such as the PDI default implementation of
ValueMetaInterface, and appending them to the RowMetaInterface object. The Working with Fields section
goes into deeper detail about ValueMetaInterface.

This sample transformation uses two steps. The Demo step adds the field, demo_field, to empty rows produced by
the Generate Rows step.

Validate Step Settings

Spoon supports a Validate Transformation feature, which triggers a self-check of all steps. PDI invokes the check()
method of each step on the canvas, allowing each step to validate its settings.

public void check()

Each step has the opportunity to validate its settings and verify that the configuration given by the user is reasonable.
In addition, a step checks if it is connected to preceding or following steps, if the nature of the step requires that kind of
connection. An input step may expect to not have a preceding step for example. The check method passes in a list of
check remarks, to which the method appends its validation results. Spoon displays the list of remarks collected from the
steps, allowing you to take corrective action in case there are validation warnings or errors.

http://javadoc.pentaho.com/kettle/org/pentaho/di/core/row/RowMetaInterface.html
http://javadoc.pentaho.com/kettle/org/pentaho/di/core/row/ValueMeta.html
http://javadoc.pentaho.com/kettle/org/pentaho/di/core/row/ValueMetaInterface.html

 | Extending Pentaho Data Integration | 9

Interface with the PDI plugin system

The class implementing StepMetaInterface must be annotated with the Step Java annotation. Supply the following
annotation attributes:

Attribute Description

id A globally unique ID for the step

image The resource location for the png icon image of the step

name A short label for the step

description A longer description for the step

categoryDescription The category the step should appear under in the PDI step tree. For example Input,
Output, Transform, etc.

i18nPackageName If the i18nPackageName attribute is supplied in the annotation attributes, the values
of name, description, and categoryDescription are interpreted as i18n keys relative
to the message bundle contained in given package. The keys may be supplied in the
extended form i18n:<packagename> key to specify a package that is different from
the package given in the i18nPackageName attribute.

Please refer to the Sample Step Plugin on page 16 for a complete implementation example.

Implementing the Step Settings Dialog Box

Java Interface org.pentaho.di.trans.step.StepDialogInterface

Base class org.pentaho.di.ui.trans.step.BaseStepDialog

StepDialogInterface is the Java interface that implements the plugin settings dialog.

Maintain the Dialog for Step Settings

http://javadoc.pentaho.com/kettle/org/pentaho/di/core/annotations/Step.html
http://javadoc.pentaho.com/kettle/org/pentaho/di/trans/step/StepDialogInterface.html
http://javadoc.pentaho.com/kettle/org/pentaho/di/ui/trans/step/BaseStepDialog.html

 | Extending Pentaho Data Integration | 10

The dialog class is responsible for constructing and opening the settings dialog for the step. Whenever you open
the step settings in Spoon, the system instantiates the dialog class passing in the StepMetaInterface object
and calling open() on the dialog. SWT is the native windowing environment of Spoon and is the framework used for
implementing step dialogs.

public String open()

This method returns only after the dialog has been confirmed or cancelled. The method must conform to these rules.

• If the dialog is confirmed

• The StepMetaInterface object must be updated to reflect the new step settings
• If you changed any step settings, the Changed flag of the StepMetaInterface object flag must be set to true
• open() returns the name of the step

• If the dialog is cancelled

• The StepMetaInterface object must not be changed
• The Changed flag of the StepMetaInterface object must be set to the value it had at the time the dialog

opened
• open() must return null

The StepMetaInterface object has an internal Changed flag that is accessible using hasChanged() and
setChanged(). Spoon decides whether the transformation has unsaved changes based on the Changed flag, so it is
important for the dialog to set the flag appropriately.

The sample step plugin project has an implementation of the dialog class that is consistent with these rules and is a
good basis for creating your own dialog.

Processing Rows

Java Interface org.pentaho.di.trans.step.StepInterface

Base class org.pentaho.di.trans.step.BaseStep

The class implementing StepInterface is responsible for the actual row processing when the transformation runs.

The implementing class can rely on the base class and has only three important methods it implements itself. The three
methods implement the step life cycle during transformation execution: initialization, row processing, and clean-up.

During initialization PDI calls the init() method of the step once. After all steps have initialized, PDI calls
processRow() repeatedly until the step signals that it is done processing all rows. After the step is finished processing
rows, PDI calls dispose().

The method signatures have a StepMetaInterface object and a StepDataInterface object. Both objects can be
safely cast down to the specific implementation classes of the step.

Aside from the methods it needs to implement, there is one additional and very important rule: the class must not
declare any fields. All variables must be kept as part of the class implementing StepDataInterface. In practice this
is not a problem, since the object implementing StepDataInterface is passed in to all relevant methods, and its

http://www.eclipse.org/swt/
http://javadoc.pentaho.com/kettle/org/pentaho/di/trans/step/StepInterface.html
http://javadoc.pentaho.com/kettle/org/pentaho/di/trans/step/BaseStep.html

 | Extending Pentaho Data Integration | 11

fields are used instead of local ones. The reason for this rule is the need to decouple step variables from instances of
StepInterface. This enables PDI to implement different threading models to execute a transformation.

Step Initialization

The init() method is called when a transformation is preparing to start execution.

public boolean init()

Every step is given the opportunity to do one-time initialization tasks, such as opening files or establishing database
connections. For any steps derived from BaseStep, it is mandatory that super.init() is called to ensure correct
behavior. The method returns true in case the step initialized correctly, it returns false if there is an initialization
error. PDI will abort the execution of a transformation in case any step returns false upon initialization.

Row Processing

Once the transformation starts, it enters a tight loop, calling processRow() on each step until the method returns
false. In most cases, each step reads a single row from the input stream, alters the row structure and fields, and
passes the row on to the next step. Some steps, such as input, grouping, and sorting steps, read rows in batches, or
can hold on to the read rows to perform other processing before passing them on to the next step.

public boolean processRow()

A PDI step queries for incoming input rows by calling getRow(), which is a blocking call that returns a row object or
null in case there is no more input. If there is an input row, the step does the necessary row processing and calls
putRow() to pass the row on to the next step. If there are no more rows, the step calls setOutputDone() and
returns false.

The method must conform to these rules.

• If the step is done processing all rows, the method calls setOutputDone() and returns false.
• If the step is not done processing all rows, the method returns true. PDI calls processRow() again in this case.

The sample step plugin project shows an implementation of processRow() that is commly used in data processing
steps.

In contrast to that, input steps do not usually expect any incoming rows from previous steps. They are designed to
execute processRow() exactly once, fetching data from the outside world, and putting them into the row stream
by calling putRow() repeatedly until done. Examining existing PDI steps is a good guide for designing your
processRow() method.

The row structure object is used during the first invocation of processRow() to determine the indexes of fields on
which the step operates. The BaseStep class already provides a convenient First flag to help implement special
processing on the first invocation of processRow(). Since the row structure is equal for all input rows, steps cache
field index information in variables on their StepDataInterface object.

Step Clean-Up

Once the transformation is complete, PDI calls dispose() on all steps.

Public void dispose()

Steps are required to deallocate resources allocated during init() or subsequent row processing. Your
implementation should clear all fields of the StepDataInterface object, and ensure that all open files or connections
are properly closed. For any steps derived from BaseStep, it is mandatory that super.dispose() is called to ensure
correct deallocation.

Storing the Processing State

Java Interface org.pentaho.di.trans.step.StepDataInterface

Base class org.pentaho.di.trans.step.BaseStepData

The class implementing StepInterface does not store processing state in any of its fields. Instead an additional
class implementing StepDataInterface is used to store processing state, including status flags, indexes, cache
tables, database connections, file handles, and alike. Implementations of StepDataInterface declare the fields used
during row processing and add accessor functions. In essence the class implementing StepDataInterface is used
as a place for field variables during row processing.

http://javadoc.pentaho.com/kettle/org/pentaho/di/trans/step/StepDataInterface.html
http://javadoc.pentaho.com/kettle/org/pentaho/di/trans/step/BaseStepData.html

 | Extending Pentaho Data Integration | 12

PDI creates instances of the class implementing StepDataInterface at the appropriate time and passes it on to the
StepInterface object in the appropriate method calls. The base class already implements all necessary interactions
with PDI and there is no need to override any base class methods.

Working with Rows

A row in PDI is represented by a Java object array, Object[]. Each field value is stored at an index in the row. While
the array representation is efficient to pass data around, it is not immediately clear how to determine the field names
and types that go with the array. The row array itself does not carry this meta data. Also an object array representing
a row usually has empty slots towards its end, so a row can accommodate additional fields efficiently. Consequently,
the length of the row array does not equal the amount of fields in the row. The following sections explain how to safely
access fields in a row array.

PDI uses internal objects that implement RowMetaInterface to describe and manipulate row structure. Inside
processRow() a step can retrieve the structure of incoming rows by calling getInputRowMeta(), which is provided
by the BaseStep class. The step clones the RowMetaInterface object and passes it to getFields() of its meta
class to reflect any changes in row structure caused by the step itself. Now, the step has RowMetaInterface objects
describing both the input and output rows. This illustrates how to use RowMetaInterface objects to inspect row
structure.

There is a similar object that holds information about individual row fields. PDI uses internal objects that implement
ValueMetaInterface to describe and manipulate field information, such as field name, data type, format mask, and
alike.

A step looks for the indexes and types of relevant fields upon first execution of processRow(). These methods of
RowMetaInterface are useful to achieve this.

Method Purpose

indexOfValue(String valueName) Given a field name, determine the index of the field in the row.

getFieldNames() Returns an array of field names. The index of a field name matches
the field index in the row array.

searchValueMeta(String valueName) Given a field name, determine the meta data for the field.

getValueMeta(int index) Given a field index, determine the meta data for the field.

getValueMetaList() Returns a list of all field descriptions. The index of the field description
matches the field index in the row array.

If a step needs to create copies of rows, use the cloneRow() methods of RowMetaInterface to create proper
copies. If a step needs to add or remove fields in the row array, use the static helper methods of RowDataUtil. For
example, if a step is adding a field to the row, call resizeArray(), to add the field. If the array has enough slots, the
orignial array is retruned as is. If the array does not have enough slots, a resized copy of the array is returned. If a step
needs to create new rows from scratch, use allocateRowData(), which returns a somewhat over-allocated object
array to fit the desired number of fields.

Summary Table of Classes and Interfaces for Row Processing

Class/Interface Purpose

RowMetaInterface Describes and manipulates row structure

ValueMetaInterface Describes and manipulates field types and formats

RowDataUtil Allocates space in row array

Working With Fields

Data Type

ValueMetaInterface objects are used to determine the characteristics of the row fields. They are typically obtained
from a RowMetaInterface object, which is acquired by a call to getInputRowMeta(). The getType() method
returns one of the static constants declared by ValueMetaInterface to indicate the PDI field type. Each field type
maps to a corresponding native Java type for the actual value. The following table illustrates the mapping of the most
frequently used field types.

http://javadoc.pentaho.com/kettle/org/pentaho/di/core/row/RowMetaInterface.html
http://javadoc.pentaho.com/kettle/org/pentaho/di/trans/step/BaseStep.html#getInputRowMeta%28%29
http://javadoc.pentaho.com/kettle/org/pentaho/di/core/row/ValueMetaInterface.html
http://javadoc.pentaho.com/kettle/org/pentaho/di/core/row/RowMetaInterface.html#indexOfValue%28java.lang.String%29
http://javadoc.pentaho.com/kettle/org/pentaho/di/core/row/RowMetaInterface.html#getFieldNames%28%29
http://javadoc.pentaho.com/kettle/org/pentaho/di/core/row/RowMetaInterface.html#searchValueMeta%28java.lang.String%29
http://javadoc.pentaho.com/kettle/org/pentaho/di/core/row/RowMetaInterface.html#getValueMeta%28int%29
http://javadoc.pentaho.com/kettle/org/pentaho/di/core/row/RowMetaInterface.html#getValueMetaList%28%29
http://javadoc.pentaho.com/kettle/org/pentaho/di/core/row/RowMetaInterface.html#cloneRow%28java.lang.Object%5B%5D%29
http://javadoc.pentaho.com/kettle/org/pentaho/di/core/row/RowDataUtil.html
http://javadoc.pentaho.com/kettle/org/pentaho/di/core/row/RowDataUtil.html#resizeArray%28java.lang.Object%5B%5D,%20int%29
http://javadoc.pentaho.com/kettle/org/pentaho/di/core/row/RowDataUtil.html#allocateRowData%28int%29
http://javadoc.pentaho.com/kettle/org/pentaho/di/core/row/RowMetaInterface.html
http://javadoc.pentaho.com/kettle/org/pentaho/di/core/row/ValueMetaInterface.html
http://javadoc.pentaho.com/kettle/org/pentaho/di/core/row/RowDataUtil.html
http://javadoc.pentaho.com/kettle/org/pentaho/di/core/row/ValueMetaInterface.html
http://javadoc.pentaho.com/kettle/org/pentaho/di/core/row/ValueMetaInterface.html#getType%28%29
http://javadoc.pentaho.com/kettle/org/pentaho/di/core/row/ValueMetaInterface.html

 | Extending Pentaho Data Integration | 13

PDI data type Type constant Java data type Description

String TYPE_STRING java.lang.String A variable unlimited length
text encoded in UTF-8
(Unicode)

Integer TYPE_INTEGER java.lang.Long A signed long 64-bit integer

Number TYPE_NUMBER java.lang.Double A double precision floating
point value

BigNumber TYPE_BIGNUMBER java.math.BigDecimal An arbitrary unlimited
precision number

Date TYPE_DATE java.util.Date A date-time value with
millisecond precision

Boolean TYPE_BOOLEAN java.lang.Boolean A boolean value true or
false

Binary TYPE_BINARY java.lang.byte[] An array of bytes that
contain any type of binary
data.

Do not assume that the Java value of a row field matches these data types directly. This may or may not be true, based
on the storage type used for the field.

Storage Types

In addition to the data type of a field, the storage type, getStorageType()/setStorageType(), is used to interpret
the actual field value in a row array. These storage types are available.

Type constant Actual field data type Interpretation

STORAGE_TYPE_NORMAL As listed in previous table The value in the row array is of the
type listed in the data type table
above and represents the field value
directly.

STORAGE_TYPE_BINARY_STRING java.lang.byte[] The field has been created using the
Lazy Conversion feature. This means
it is a non-altered sequence of bytes
as read from an external medium,
usually a file.

STORAGE_TYPE_INDEXED java.lang.Integer The row value is an integer index
into a fixed array of possible values.
The ValueMetaInterface object
maintains the set of possible values in
getIndex()/setIndex()

Accessing Row Values

In a typical data processing scenario, a step is not interested in dealing with the complexities of the storage type.
It just needs the actual data value on which to do processing. In order to safely read the value of a field, the
ValueMetaInterface object provides a set of accessor methods to get at the actual Java value. The argument is a
value from a row array that corresponds to the ValueMetaInterface object. The accessor methods always return a
proper data value, regardless of the field storage type.

• getString()

• getInteger()

• getNumber()

• getBigNumber()

• getDate()

• getBoolean()

• getBinary()

http://javadoc.pentaho.com/kettle/org/pentaho/di/core/row/ValueMetaInterface.html#getStorageType%28%29
http://javadoc.pentaho.com/kettle/org/pentaho/di/core/row/ValueMetaInterface.html#setStorageType%28int%29
http://javadoc.pentaho.com/kettle/org/pentaho/di/core/row/ValueMetaInterface.html#getIndex%28%29
http://javadoc.pentaho.com/kettle/org/pentaho/di/core/row/ValueMetaInterface.html#setIndex%28java.lang.Object%5B%5D%29
http://javadoc.pentaho.com/kettle/org/pentaho/di/core/row/ValueMetaInterface.html#getString%28java.lang.Object%29
http://javadoc.pentaho.com/kettle/org/pentaho/di/core/row/ValueMetaInterface.html#getInteger%28java.lang.Object%29
http://javadoc.pentaho.com/kettle/org/pentaho/di/core/row/ValueMetaInterface.html#getNumber%28java.lang.Object%29
http://javadoc.pentaho.com/kettle/org/pentaho/di/core/row/ValueMetaInterface.html#getBigNumber%28java.lang.Object%29
http://javadoc.pentaho.com/kettle/org/pentaho/di/core/row/ValueMetaInterface.html#getDate%28java.lang.Object%29
http://javadoc.pentaho.com/kettle/org/pentaho/di/core/row/ValueMetaInterface.html#getBoolean%28java.lang.Object%29
http://javadoc.pentaho.com/kettle/org/pentaho/di/core/row/ValueMetaInterface.html#getBinary%28java.lang.Object%29

 | Extending Pentaho Data Integration | 14

For each of these methods, RowMetaInterface has corresponding methods that require the row array and the index
of the field as arguments.

Additional Field Characteristics

ValueMetaInterface represents all aspects of a PDI field, including conversion masks, trim type, and alike. All of
these are available using corresponding accessor methods, such as getConversionMask() and getTrimType().
Refer to the Javadoc for a complete overview.

Handling Errors

Transformation steps may encounter errors at many levels. They may encounter unexpected data, or problems with
the execution environment. Depending on the nature of the error, the step may decide to stop the transformation by
throwing an exception, or support the PDI Error Handling feature, which allows you to divert bad rows to an error
handling step.

Throwing a KettleException: Calling a Hard Stop

If a step encounters an error during row processing, it may log an error and stop the transformation. This is done by
calling setErrors(1), stopAll(), setOutputDone(), and returning false from processRow(). Alternatively,
the step can throw a KettleException, which also causes the transformation to stop.

It is sensible to stop the transformation when there is a problem with the environment or configuration of a step. For
example, when a database connection cannot be made, a required file is not present, or an expected field is not in the
row stream. These are errors that affect the execution of the transformation as a whole. If on the other hand the error is
related to row data, the step should implement support for the PDI Error Handling feature.

Implementing Per-Row Error Handling

You may want to divert bad rows to a specific error handling step. This capability is referred to as the Error Handling
feature. A step supporting this feature overrides the BaseStep implementation of supportsErrorHandling() to
return true. This enables you to specify a target step for bad rows in the Spoon UI. During runtime, the step checks if
you configured a target step for error rows by calling getStepMeta().isDoingErrorHandling(). If error rows are
diverted, the step passes the offending input row to putError() and provides additional information about the errors
encountered. It does not throw a KettleException. If you do not configure a step to generate error rows and send
them to another step for processing, the step falls back to calling a hard stop.

Most core PDI steps support row-level error handling. The Number Range step is a good example. If error handling is
enabled, it diverts the row into the error stream. If it is not, the step stops the transformation.

Understanding Row Counters

During transformation execution, each PDI step keeps track of a set of step metrics. These are displayed in Spoon in
the Step Metrics tab.

Each step metric is essentially a row counter. The counters are manipulated by calling the corresponding increment,
decrement, get, and set methods on BaseStep. This table provides a list of the counters and the correct way to use
them.

http://javadoc.pentaho.com/kettle/org/pentaho/di/core/row/ValueMetaInterface.html
http://javadoc.pentaho.com/kettle/org/pentaho/di/core/row/ValueMetaInterface.html#getConversionMask%28%29
http://javadoc.pentaho.com/kettle/org/pentaho/di/core/row/ValueMetaInterface.html#getTrimType%28%29
http://javadoc.pentaho.com/kettle/org/pentaho/di/core/row/ValueMetaInterface.html
http://javadoc.pentaho.com/kettle/org/pentaho/di/core/exception/KettleException.html
http://javadoc.pentaho.com/kettle/org/pentaho/di/trans/step/StepMetaInterface.html#supportsErrorHandling%28%29
http://javadoc.pentaho.com/kettle/org/pentaho/di/trans/step/BaseStep.html#putError%28org.pentaho.di.core.row.RowMetaInterface,%20java.lang.Object%5B%5D,%20long,%20java.lang.String,%20java.lang.String,%20java.lang.String%29
http://javadoc.pentaho.com/kettle/org/pentaho/di/core/exception/KettleException.html
http://source.pentaho.org/svnkettleroot/Kettle/tags/4.3.0-stable/src/org/pentaho/di/trans/steps/numberrange/

 | Extending Pentaho Data Integration | 15

Counter Name Meaning When to Increment

linesRead Rows received from previous steps Never increment manually. This is handled by getRow().

linesWritten Rows passed to next steps Never increment manually. This is handled by putRow().

linesInput Rows read from external sources,
such as files, database, and alike

Call incrementLinesInput() when a new row is
received from an external source.

linesOutput Rows written to external sources,
such as files, database, and alike

Call incrementLinesOutput() when a row is written
to an external system or file.

linesUpdated Rows updated in external sources,
such as database, and alike

Call incrementLinesUpdated() when a row is
updated in an external system or file.

linesSkipped Rows for which part of the processing
has been skipped

Call incrementLinesSkipped() when a row was
skipped. This is relevant when the step implements
conditional processing, and the condition for processing
a row is not satisfied. For example, an updating step may
skip rows that are already up to date.

linesRejected Rows diverted to an error step as part
of error handling

Never increment manually. This is handled by
putError().

Logging in Transformation Steps

A step interacts with the PDI logging system by using the logging methods inherited from BaseStep.

These methods are used to issue log lines to the PDI logging system on different severity levels. Multi-
argument versions of the methods are available to do some basic formatting, which is equivalent to a call to
MessageFormat.format(message, arguments).

• public void logMinimal()

• public void logBasic()

• public void logDetailed()

• public void logDebug()

• public void logRowlevel()

• public void logError()

These methods query the logging level. They are often used to guard sections of code, that should only be executed
with elevated logging settings.

• public boolean isBasic()

• public boolean isDetailed()

• public boolean isDebug()

• public boolean isRowLevel()

Steps should log this information at specified levels.

Log Level Log Information Content

Minimal Only information that is interesting at very high-levels, for example Transformation
Started or Ended; individual steps do not log anything at this level

Basic Information that may be interesting to you during regular ETL operation

Detailed Prepared SQL or other query statements, resource allocation and initialization like
opening files or connections

Debug Anything that may be useful in debugging step operations

RowLevel Anything that may be helpful in debugging problems at the level of individual rows and
values

Error Fatal errors that abort the transformation

Feedback Logging

http://docs.oracle.com/javase/6/docs/api/java/text/MessageFormat.html#format%28java.lang.String,%20java.lang.Object...%29

 | Extending Pentaho Data Integration | 16

A transformation defines a feedback size in its settings. The feedback size defines the number of rows after which
each step logs a line reporting its progress. This is implemented by calling checkFeedback() with an appropriate
row counter as argument to determine if feedback should be logged. Feedback logging happens on the basic log-level.
There are many ways you can implement this. Here is an example implementation snippet.

if (checkFeedback(getLinesWritten())) {
 if(isBasic()) logBasic("linenr "+getLinesWritten());
}

It may make sense to use different row counters for checking the feedback size depending on the implementation logic
of your step. For example, a step that accumulates incoming rows into one single summary row, should probably use
the linesRead counter to determine the feedback interval.

The Excel Output step has a good example implementation of feedback logging.

Deploying Step Plugins

To deploy your plugin, follow the following steps.

1. Create a jar file containing your plugin classes and resources
2. Create a new folder, give it a meaningful name, and place your jar file inside the folder
3. Place the plugin folder you just created in a specific location for PDI to find. Depending on how you use PDI, you

need to copy the plugin folder to one or more locations as per the following list.

• Deploying to Spoon or Carte

Copy the plugin folder into this location:

design-tools/data-integration/plugins/steps

After restarting Spoon, the new job entry is available for use.
• Deploying to Data Integration Server

Copy the plugin folder to this location:

server/data-integration-server/pentaho-solutions/system/kettle/plugins/steps

After restarting the data integration server, the plugin is available to the server.
• Deploying to BA Server

Copy the plugin folder to this location:

server/biserver-ee/pentaho-solutions/system/kettle/plugins/steps

After restarting the BA Server, the plugin is available to the server.

Sample Step Plugin

The sample Step plugin is designed to show a minimal functional implementation of a step plugin that you can use as a
basis to develop your own custom transformation steps.

The sample Step plugin functionality adds a string field to a row stream and fills it with Hello World!. This screen shot
shows the step configuration dialog and preview window.

http://source.pentaho.org/svnkettleroot/Kettle/tags/4.3.0-stable/src/org/pentaho/di/trans/steps/exceloutput/

 | Extending Pentaho Data Integration | 17

1. Obtain the Sample Plugin Source

The plugin source is available in the download package. Download the package and unzip it. The job entry plugin
resides in the kettle-sdk-step-plugin folder.

2. Configure the Build

Open kettle-sdk-step-plugin/build/build.properties and set the kettle-dir property to the base
directory of your PDI installation.

3. Build and Deploy

You may choose to build and deploy the plugin from the command line, or work with the Eclipse IDE instead. Both
options are described below.

• Build and Deploy From the Command Line

The plugin is built using Apache Ant. Build and deploy the plugin from the command line by invoking the install
target from the build directory.

kettle-sdk-step-plugin $ cd build
build $ ant install

The install target compiles the source, creates a jar file, creates a plugin folder, and copies the plugin folder into
the plugins/steps directory of your PDI installation.

• Build and Deploy From Eclipse

Import the plugin sources into Eclipse:

1. From the menu, select File > Import > Existing Projects Into Worksapace.
2. Browse to the kettle-sdk-step-plugin folder and choose the project to be imported.

To build and install the plugin, follow these steps:

1. Open the Ant view in Eclipse by selecting Window > Show View from the main menu and select Ant.

You may have to select Other > Ant if you have not used the Ant view before.
2. Drag the file build/build.xml from your project into the Ant view, and execute the install target by double-

clicking it.
3. After the plugin has been deployed, restart Spoon.

4. Open Spoon, and verify that the new step is available as "Demo Step" in the Transform section.

http://ant.apache.org/

 | Extending Pentaho Data Integration | 18

Exploring More Steps

PDI sources provide example implementations of transformation steps. Each PDI core step is located in a sub-package
of org.pentaho.di.trans.steps found in the engine/src folder. The corresponding dialog class in located in
org.pentaho.di.ui.trans.steps found in the ui/src folder.

For example, these are the classes that make up the Row Generator step.

• org.pentaho.di.trans.steps.rowgenerator.RowGeneratorMeta

• org.pentaho.di.trans.steps.rowgenerator.RowGenerator

• org.pentaho.di.trans.steps.rowgenerator.RowGeneratorData

• org.pentaho.di.ui.trans.steps.rowgenerator.RowGeneratorDialog

The dialog classes of the core PDI steps are located in a different package and source folder. They are also
assembled into a separate jar file. This allows PDI to load the UI-related jar file when launching Spoon and avoid
loading the UI-related jar when it is not needed.

Creating Job Entry Plugins
A job entry implements a logical task in ETL control flow. Job entries are executed in sequence, each job entry
generating a boolean result that can be used for conditional branching in the job sequence.

 | Extending Pentaho Data Integration | 19

This section explains the architecture and programming concepts for creating your own PDI job entry plugin. We
recommended that you open and refer to the sample job entry plugin sources while following these instructions.

A job entry plugin integrates with PDI by implementing two distinct Java interfaces. Each interface represents a set
of responsibilities performed by a PDI job. Each of the interfaces has a base class that implements the bulk of the
interface in order to simplify plugin development.

All job entry interfaces and corresponding base classes are part of the org.pentaho.di.job.entry package.

Java Interface Base Class Main Responsibilities

JobEntryInterface JobEntryBase • Maintain job entry settings
• Serialize job entry settings
• Provide access to dialog class
• Execute job entry task

JobEntryDialogInterface JobEntryDialog • Job entry settings dialog

Implementing a Job Entry

Java Interface org.pentaho.di.job.entry.JobEntryInterface

Base class org.pentaho.di.job.entry.JobEntryBase

JobEntryInterface is the main Java interface that a plugin implements.

Keep Track of Job Entry Settings

The implementing class keeps track of job entry settings using private fields with corresponding get and set
methods. The dialog class implementing JobEntryDialogInterface uses these methods to copy the user supplied
configuration in and out of the dialog box.

public Object clone()

This method is called when a job entry is duplicated in Spoon. It returns a deep copy of the job entry object. It is
essential that the implementing class creates proper deep copies if the job entry configuration is stored in modifiable
objects, such as lists or custom helper objects.

Serialize Job Entry Settings

The plugin serializes its settings to both XML and a PDI repository.

public String getXML()

This method is called by PDI whenever a job entry serializes its settings to XML. It is called when saving a job in Spoon.
The method returns an XML string containing the serialized settings. The string contains a series of XML tags, one tag
per setting. The helper class, org.pentaho.di.core.xml.XMLHandler, constructs the XML string.

public void loadXML()

http://javadoc.pentaho.com/kettle/org/pentaho/di/job/entry/JobEntryInterface.html
http://javadoc.pentaho.com/kettle/org/pentaho/di/job/entry/JobEntryBase.html
http://javadoc.pentaho.com/kettle/org/pentaho/di/core/xml/XMLHandler.html

 | Extending Pentaho Data Integration | 20

This method is called by PDI whenever a job entry reads its settings from XML. The XML node containing the job entry
settings is passed in as an argument. Again, the helper class, org.pentaho.di.core.xml.XMLHandler, is used to
read the settings from the XML node.

public void saveRep()

This method is called by PDI whenever a job entry saves its settings to a PDI repository. The repository object passed
in as the first argument provides a convenient set of methods for serializing job entry settings. When calling repository
serialization methods, job id and job entry id are required. The job id is passed in to saveRep() as an argument, and
the job entry id can be obtained by a call to getObjectId() inherited from the base class.

public void loadRep()

This method is called by PDI whenever a job entry reads its configuration from a PDI repository. The job entry id given
in the arguments is used as the identifier when using the repositories serialization methods. When developing plugins,
make sure the serialization code is in synch with the settings available from the job entry dialog. When testing a plugin
in Spoon, PDI internally saves and loads a copy of the job before it is executed.

Provide the Name of the Dialog Class

PDI needs to know which class takes care of the settings dialog box for the job entry. The interface method
getDialogClassName() returns the name of the class implementing the JobEntryDialogInterface.

Provide Information About Possible Outcomes

A job entry may support up to three types of outgoing hops: True, False, and Unconditional. Sometimes it does not
make sense to support all three. For instance, if the job entry performs a task that does not produce a boolean outcome,
like the dummy job entry, it may make sense to suppress the True and False outgoing hops. There are other job
entries, which carry an inherent boolean outcome, such as the File Exists job entry. It may make sense in such cases to
suppress the unconditional outgoing hop.

The job entry plugin class must implement two methods to indicate to PDI which outgoing hops it supports.

public boolean evaluates()

This method returns true if the job entry supports the True and False outgoing hops. If the job entry does not support
distinct outcomes, it returns false.

public boolean isUnconditional()

This method returns true if the job entry supports the unconditional outgoing hop. If the job entry does not support the
unconditional hop, it returns false.

Execute the Job Entry Task

The class implementing JobEntryInterface executes the actual job entry task.

public Result execute()

The execute() method is called by PDI when it is time for the job entry to execute its logic. The arguments are a
result object, which is passed in from the previously executed job entry, and an integer number indicating the distance
of the job entry from the start entry of the job.

The job entry should execute its configured task and report back on the outcome. A job entry does that by calling
specified methods on the passed in result object.

prev_result.setNrErrors()

The job entry indicates whether it has encountered any errors during execution. If there are errors, setNrErrors
calls with the number of errors encountered. Typically, this is 1. If there are no errors, setNrErrors is called with an
argument of zero (0).

prev_result.setResult()

The job entry must indicate the outcome of the task. This value determines which output hops follow next. If a job entry
does not support evaluation, it need not call prev_result.setResult().

Finally, the passed in prev_result object is returned.

Interface with the PDI plugin system

The class implementing JobEntryInterface must be annotated with the JobEntry Java annotation. Supply the
following annotation attributes:

http://javadoc.pentaho.com/kettle/org/pentaho/di/core/xml/XMLHandler.html
http://javadoc.pentaho.com/kettle/org/pentaho/di/core/annotations/JobEntry.html

 | Extending Pentaho Data Integration | 21

Attribute Description

id A globally unique ID for the job entry

image The resource location for the png icon image of the job entry

name A short label for the job entry

description A longer description for the job entry

categoryDescription The category the entry should appear under in the PDI job entry tree. For example
General, Utility, File Management, etc.

i18nPackageName If the i18nPackageName attribute is supplied in the annotation attributes, the values
of name, description, and categoryDescription are interpreted as i18n keys relative
to the message bundle contained in given package. The keys may be supplied in the
extended form i18n:<packagename> key to specify a package that is different from
the package given in the i18nPackageName attribute.

Please refer to the Sample Job Entry Plugin on page 23 for a complete implementation example.

Implementing the Job Entry Settings Dialog Box

Java Interface org.pentaho.di.job.entry.JobEntryDialogInterface

Base class org.pentaho.di.ui.job.entry.JobEntryDialog

JobEntryDialogInterface is the Java interface that implements the settings dialog of a job entry plugin.

Maintain the Dialog for Job Entry Settings

The dialog class is responsible for constructing and opening the settings dialog for the job entry. When you open the
job entry settings in Spoon, the system instantiates the dialog class passing in the JobEntryInterface object and
calling the open() method on the dialog. SWT is the native windowing environment of Spoon and the framework used
for implementing job entry dialogs.

public JobEntryInterface open()

This method returns only after the dialog has been confirmed or cancelled. The method must conform to these rules.

• If the dialog is confirmed

• The JobEntryInterface object must be updated to reflect the new settings
• If you changed any settings, the Changed flag of the JobEntryInterface object must be set to true
• open() returns the JobEntryInterface object

• If the dialog is cancelled

• The JobEntryInterface object must not be changed
• The Changed flag of theJobEntryInterface object must be set to the value it had at the time the dialog

opened
• open() must return null

The JobEntryInterface object has an internal Changed flag that is accessible using hasChanged() and
setChanged(). Spoon decides whether the job has unsaved changes based on the Changed flag, so it is important
for the dialog to set the flag appropriately.

Additionally, the job entry dialog must make sure that the job entry name is not set to be empty. The dialog may be
confirmed only after a non-empty name is set.

The sample Job Entry plugin project has an implementation of the dialog class that is consistent with these rules and
is a good basis for creating your own dialogs.

Logging in Job Entries

A job entry interacts with the PDI logging system by using the logging methods inherited from JobEntryBase.

http://javadoc.pentaho.com/kettle/org/pentaho/di/job/entry/JobEntryDialogInterface.html
http://javadoc.pentaho.com/kettle/org/pentaho/di/ui/job/entry/JobEntryDialog.html
http://www.eclipse.org/swt/

 | Extending Pentaho Data Integration | 22

These methods are used to issue log lines to the PDI logging system on different severity levels. Multi-
argument versions of the methods are available to do some basic formatting, which is equivalent to a call to
MessageFormat.format(message, arguments).

• public void logMinimal()

• public void logBasic()

• public void logDetailed()

• public void logDebug()

• public void logRowlevel()

• public void logError()

These methods query the logging level. They are often used to guard sections of code, that should only be executed
with elevated logging settings.

• public boolean isBasic()

• public boolean isDetailed()

• public boolean isDebug()

• public boolean isRowLevel()

Job entries should log the this information at specified levels:

Log Level Log Information Content

Minimal Only information that is interesting at a very high-level, for example Job Started or Ended jobs.
Individual job entries do not log anything at this level.

Basic Information that may be interesting to you during regular ETL operation

Detailed Prepared SQL or other query statements, resource allocation and initialization like opening
files or connections

Debug Anything that may be useful in debugging job entries

Row Level Anything that may be helpful in debugging problems at the level of individual rows and values

Error Fatal errors that abort the job

Deploying Job Entry Plugins

To deploy your plugin, follow the following steps.

1. Create a jar file containing your plugin classes and resources
2. Create a new folder, give it a meaningful name, and place your jar file inside the folder
3. Place the plugin folder you just created in a specific location for PDI to find. Depending on how you use PDI, you

need to copy the plugin folder to one or more locations as per the following list.

• Deploying to Spoon or Carte

Copy the plugin folder into this location:

design-tools/data-integration/plugins/jobentries

After restarting Spoon, the new job entry is available for use.
• Deploying to Data Integration Server

Copy the plugin folder to this location:

server/data-integration-server/pentaho-solutions/system/kettle/plugins/jobentries

After restarting the data integration server, the plugin is available to the server.
• Deploying to BA Server

Copy the plugin folder to this location:

server/biserver-ee/pentaho-solutions/system/kettle/plugins/jobentries

After restarting the BA Server, the plugin is available to the server.

http://docs.oracle.com/javase/6/docs/api/java/text/MessageFormat.html#format%28java.lang.String,%20java.lang.Object...%29

 | Extending Pentaho Data Integration | 23

Sample Job Entry Plugin

The sample Job Entry plugin project is designed to show a minimal functional implementation of a job entry plugin that
you can use as a basis to develop your own custom job entries.

The sample Job Entry plugin functionality lets you manually configure which outcome to generate. This screen shot
shows the job entry configuration dialog and outgoing hops.

1. Obtain the Sample Plugin Source

The plugin source is available in the download package. Download the package and unzip it. The job entry plugin
resides in the kettle-sdk-jobentry-plugin folder.

2. Configure the Build

Open kettle-sdk-jobentry-plugin/build/build.properties and set the kettle-dir property to the
base directory of your PDI installation.

3. Build and Deploy

You may choose to build and deploy the plugin from the command line, or work with the Eclipse IDE instead. Both
options are described below.

• Build and Deploy From the Command Line

The plugin is built using Apache Ant. Build and deploy the plugin from the command line by invoking the install
target from the build directory.

kettle-sdk-jobentry-plugin $ cd build
build $ ant install

The install target compiles the source, creates a jar file, creates a plugin folder, and copies the plugin folder into
the plugins/jobentries directory of your PDI installation.

• Build and Deploy From Eclipse

Import the plugin sources into Eclipse:

1. From the menu, select File > Import > Existing Projects Into Worksapace.
2. Browse to the kettle-sdk-jobentry-plugin folder and choose the project to be imported.

To build and install the plugin, follow these steps:

http://ant.apache.org/

 | Extending Pentaho Data Integration | 24

1. Open the Ant view in Eclipse by selecting Window > Show View from the main menu and select Ant.

You may have to select Other > Ant if you have not used the Ant view before.
2. Drag the file build/build.xml from your project into the Ant view, and execute the install target by double-

clicking it.
3. After the plugin has been deployed, restart Spoon.

4. Open Spoon, and verify that the new job entry is available as "Demo" in the Conditions section.

Exploring More Job Entries

PDI sources provide example implementations of job entries. Each PDI core job entry is located in a sub-package of
org.pentaho.di.job.entries found in the engine/src folder. The corresponding dialog class is located in
org.pentaho.di.ui.job.entries found in the ui/src folder.

For example, these are the classes that make up the File Exists job entry:

• org.pentaho.di.job.entries.fileexists.JobEntryFileExists

• org.pentaho.di.ui.job.entries.fileexists.JobEntryFileExistsDialog

The dialog classes of the core PDI job entries are located in a different package and source folder. They are also
assembled into a separate jar file. This allows PDI to load the UI-related jar file when launching Spoon and avoid
loading the UI-related jar when it is not needed.

Creating Database Plugins
PDI uses database plugins to support specific database systems beyond generic JDBC functionality. A database plugin
helps in the following areas:

• constructing connection strings
• passing connection settings to JDBC
• dialect-aware SQL generation
• detecting special abilities and limitations of JDBC drivers

A database plugin introduces a new entry in the PDI database dialog.

 | Extending Pentaho Data Integration | 25

This section explains the architecture and programming concepts for creating your own database plugin. We
recommended that you open and refer to the sample database plugin sources while following these instructions.

Java Interface org.pentaho.di.core.database.DatabaseInterface

Base class org.pentaho.di.core.database.BaseDatabaseMeta

PDI database plugins consist of a single Java class that implements the interface
org.pentaho.di.core.database.DatabaseInterface.

In order for PDI to recognize the database plugin, the class implementing DatabaseInterface must also be
annotated with the Java annotation org.pentaho.di.core.plugins.DatabaseMetaPlugin.

Supply these annotation attributes.

Attribute Description

type A globally unique ID for database plugin

typeDescription The label to use in the database dialog

It is recommended to extend org.pentaho.di.core.database.BaseDatabaseMeta, which provides default
implementations for most of the methods in DatabaseInterface. Existing PDI database interfaces are a great source
of information when developing a new database plugin.

The following section classifies some of the most commonly overridden methods. They can be roughly classified into
three subject areas: information about connections, SQL dialect, and general capability flags.

1. Connection Details

These methods are called when PDI establishes a connection to the database, or the database dialog is populated with
database-specific defaults.

http://javadoc.pentaho.com/kettle/org/pentaho/di/core/database/DatabaseInterface.html
http://javadoc.pentaho.com/kettle/org/pentaho/di/core/database/BaseDatabaseMeta.html
http://javadoc.pentaho.com/kettle/org/pentaho/di/core/database/DatabaseInterface.html
http://javadoc.pentaho.com/kettle/org/pentaho/di/core/plugins/DatabaseMetaPlugin.html
http://javadoc.pentaho.com/kettle/org/pentaho/di/core/database/BaseDatabaseMeta.html

 | Extending Pentaho Data Integration | 26

• public String getDriverClass()

• public int getDefaultDatabasePort()

• public int[] getAccessTypeList()

• public boolean supportsOptionsInURL()

• public String getURL()

2. SQL Generation

These methods are called when PDI constructs SQL.

• public String getFieldDefinition()

• public String getAddColumnStatement()

• public String getSQLColumnExists()

• public String getSQLQueryFields()

3. Capability Flags

These methods are called when PDI determines the run-time characteristics of the database system. For instance, the
database systems may support different notions of metadata retrieval.

• public boolean supportsTransactions()

• public boolean releaseSavepoint()

• public boolean supportsPreparedStatementMetadataRetrieval()

• public boolean supportsResultSetMetadataRetrievalOnly()

Exploring Existing Database Implementations

PDI sources are invaluable when seeking example implementations of databases. Each of the PDI core database
support classes is located in the org.pentaho.di.core.database package found in the core/src folder.

For example, here are the classes that define behavior for some major database systems.

Database DatabaseInterface Class

MySQL org.pentaho.di.core.database.MySQLDatabaseMeta

Oracle org.pentaho.di.core.database.OracleDatabaseMeta

PostgreSQL org.pentaho.di.core.database.PostgreSQLDatabaseMeta

When implementing a database plugin for a new database system, we recommended starting from an existing database
class that already shares characteristics with the new database system.

Deploying Database Plugins

To deploy your plugin, follow the following steps.

1. Create a jar file containing your plugin class(es)
2. Create a new folder, give it a meaningful name, and place your jar file inside the folder
3. Place the plugin folder you just created in a specific location for PDI to find. Depending on how you use PDI, you

need to copy the plugin folder to one or more locations as per the following list.

• Deploying to Spoon or Carte

Copy the plugin folder into this location:

design-tools/data-integration/plugins/databases

After restarting Spoon, the new database type is available from the PDI database dialog.
• Deploying to Data Integration Server

Copy the plugin folder to this location:

server/data-integration-server/pentaho-solutions/system/kettle/plugins/databases

After restarting the data integration server, the plugin is available to the server.
• Deploying to BA Server

Copy the plugin folder to this location:

http://javadoc.pentaho.com/kettle/org/pentaho/di/core/database/DatabaseInterface.html#getDriverClass()
http://javadoc.pentaho.com/kettle/org/pentaho/di/core/database/DatabaseInterface.html#getDefaultDatabasePort()
http://javadoc.pentaho.com/kettle/org/pentaho/di/core/database/DatabaseInterface.html#getAccessTypeList()
http://javadoc.pentaho.com/kettle/org/pentaho/di/core/database/DatabaseInterface.html#supportsOptionsInURL()
http://javadoc.pentaho.com/kettle/org/pentaho/di/core/database/DatabaseInterface.html#getURL(java.lang.String,%20java.lang.String,%20java.lang.String)
http://javadoc.pentaho.com/kettle/org/pentaho/di/core/database/DatabaseInterface.html#getFieldDefinition(org.pentaho.di.core.row.ValueMetaInterface,%20java.lang.String,%20java.lang.String,%20boolean,%20boolean,%20boolean)
http://javadoc.pentaho.com/kettle/org/pentaho/di/core/database/DatabaseInterface.html#getAddColumnStatement(java.lang.String,%20org.pentaho.di.core.row.ValueMetaInterface,%20java.lang.String,%20boolean,%20java.lang.String,%20boolean)
http://javadoc.pentaho.com/kettle/org/pentaho/di/core/database/DatabaseInterface.html#getSQLColumnExists(java.lang.String,%20java.lang.String)
http://javadoc.pentaho.com/kettle/org/pentaho/di/core/database/DatabaseInterface.html#getSQLQueryFields(java.lang.String)
http://javadoc.pentaho.com/kettle/org/pentaho/di/core/database/DatabaseInterface.html#supportsTransactions()
http://javadoc.pentaho.com/kettle/org/pentaho/di/core/database/DatabaseInterface.html#releaseSavepoint()
http://javadoc.pentaho.com/kettle/org/pentaho/di/core/database/DatabaseInterface.html#supportsPreparedStatementMetadataRetrieval()
http://javadoc.pentaho.com/kettle/org/pentaho/di/core/database/DatabaseInterface.html#supportsResultSetMetadataRetrievalOnly()
http://source.pentaho.org/svnkettleroot/Kettle/trunk/core/src/org/pentaho/di/core/database/MySQLDatabaseMeta.java
http://source.pentaho.org/svnkettleroot/Kettle/trunk/core/src/org/pentaho/di/core/database/OracleDatabaseMeta.java
http://source.pentaho.org/svnkettleroot/Kettle/trunk/core/src/org/pentaho/di/core/database/PostgreSQLDatabaseMeta.java

 | Extending Pentaho Data Integration | 27

server/biserver-ee/pentaho-solutions/system/kettle/plugins/databases

After restarting the BA Server, the plugin is available to the server.
4. When deploying database plugins, make sure to also deploy the corresponding JDBC drivers. See Specify Data

Connections for the DI Server for instructions about adding JDBC drivers.

Sample Database Plugin

The sample database plugin project is designed to show an implementation of a database plugin that you can use as a
basis to develop your own database plugins.

The sample database plugin registers the CSV JDBC driver from http://csvjdbc.sourceforge.net/ as a database in PDI.
This enables reading from CSV files in a directory using basic SQL.

The included sample transformation in demo_transform/demo_database.ktr uses the database plugin to read a
basic CSV file through JDBC.

Follow these steps in order to build and deploy the sample plugin.

1. Obtain the Sample Plugin Source

The database plugin source is available in the download package. Download the package and unzip it. The
database plugin resides in the kettle-sdk-database-plugin folder.

2. Configure the Build

Open kettle-sdk-database-plugin/build/build.properties and set the kettle-dir property to the
base directory of your PDI installation.

3. Build and Deploy

You may choose to build and deploy the plugin from the command line, or work with the Eclipse IDE instead. Both
options are described below.

• Build and Deploy From the Command Line

The plugin is built using Apache Ant. Build and deploy the plugin from the command line by invoking the install
target from the build directory.

kettle-sdk-database-plugin $ cd build
build $ ant install

The install target compiles the source, creates a jar file, creates a plugin folder, and copies the plugin folder
into the plugins/databases directory of your PDI installation. It also copies csvjdbc.jar to PDI's lib/
directory, which provides the JDBC driver the plugin depends on.

• Build and Deploy From Eclipse

Import the plugin sources into Eclipse:

1. From the menu, select File > Import > Existing Projects Into Worksapace.
2. Browse to the kettle-sdk-database-plugin folder and choose the project to be imported.

To build and install the plugin, follow these steps:

1. Open the Ant view in Eclipse by selecting Window > Show View from the main menu and select Ant.

You may have to select Other > Ant if you have not used the Ant view before.
2. Drag the file build/build.xml from your project into the Ant view, and execute the install target by double-

clicking it.
3. After the plugin has been deployed, restart Spoon.

4. You can test the new plugin using the transformation from the database plugin demo_transform folder.

http://csvjdbc.sourceforge.net/
http://ant.apache.org/

 | Extending Pentaho Data Integration | 28

Creating Partioner Plugins
PDI uses partitioner plugins for its partitioning feature. Each partitioner plugin implements a specific partitioning
method.

For most applications, the Remainder of Division partitioner works well. On the rare occasion that an application would
benefit from an additional partitioning method, this section explains how to implement them.

This section explains the architecture and programming concepts for creating your own partitioner plugin. We
recommended you open and refer to the sample partitioner plugin sources while following these instructions.

A partitioner plugin integrates with PDI by implementing two distinct Java interfaces. Each interface represents a set of
responsibilities performed by a PDI partitioner. Each of the interfaces has a base class that implements the bulk of the
interface in order to simplify plugin development.

Package Interface Base Class Main
Responsibilities

org.pentaho.di.trans Partitioner BasePartitioner • Maintain
partitioner settings

• Serialize
partitioner
enumerations

• Provide access to
dialog class

• Assign rows to
partitions during
runtime

 | Extending Pentaho Data Integration | 29

Package Interface Base Class Main
Responsibilities

org.pentaho.di.ui.trans.step StepDialogInterface BaseStepDialog • Partitioner settings
dialog

Additional Reading

A complete explanation of partitioning in Kettle, including sample transformations, is available here http://type-exit.org/
adventures-with-open-source-bi/2011/09/partitioning-in-kettle/.

Implementing the Partitioner Interface

Java Interface org.pentaho.di.trans.Partitioner

Base class org.pentaho.di.trans.BasePartitioner

Partitioner is the main Java interface that a plugin implements.

Keep Track of Partitioner Settings

The implementing class keeps track of partitioner settings using private fields with corresponding get and set
methods. The dialog class implementing PartionerDialogInterface is using these methods to copy the user
supplied configuration in and out of the dialog.

public Object clone()

This method is called when a step containing partitioning configuration is duplicated in Spoon. It needs to return a deep
copy of this partitioner object. It is essential that the implementing class creates proper deep copies if the configuration
is stored in modifiable objects, such as lists or custom helper objects. The copy is created by calling super.clone()
and deep-copying any fields the partitioner may have declared.

public Partitioner getInstance()

This method is required to return a new instance of the partitioner class, with the plugin id and plugin description
inherited from the instance upon which this method is called.

Serialize Partitioner Settings

The plugin serializes its settings to both XML and a PDI repository.

public String getXML()

This method is called by PDI whenever the plugin needs to serialize its settings to XML. It is called when saving a
transformation in Spoon. The method returns an XML string containing the serialized settings. The string contains a
series of XML tags, one tag per setting. The helper class org.pentaho.di.core.xml.XMLHandler constructs the
XML string.

public void loadXML()

This method is called by PDI whenever a plugin reads its settings from XML. The XML node containing the plugin
settings is passed in as an argument. Again, the helper class org.pentaho.di.core.xml.XMLHandler is used to
read the settings from the XML node.

public void saveRep()

This method is called by PDI whenever a plugin saves its settings to a PDI repository. The repository object passed in
as the first argument provides a convenient set of methods for serializing settings. The transformation id and step id
passed in are used as identifiers when calling the repository serialization methods.

public void readRep()

This method is called by PDI whenever a plugin needs to read its configuration from a PDI repository. The step id given
in the arguments should be used as the identifier when using the repositories serialization methods.

When developing plugins, make sure the serialization code is in synch with the settings available from the partitioner
plugin dialog. When testing a partitioned step in Spoon, PDI internally saves and loads a copy of the transformation
before it is executed.

Provide the Name of the Dialog Class

http://type-exit.org/adventures-with-open-source-bi/2011/09/partitioning-in-kettle/
http://type-exit.org/adventures-with-open-source-bi/2011/09/partitioning-in-kettle/
http://javadoc.pentaho.com/kettle/org/pentaho/di/trans/Partitioner.html
http://javadoc.pentaho.com/kettle/org/pentaho/di/trans/BasePartitioner.html

 | Extending Pentaho Data Integration | 30

PDI needs to know which class will take care of the settings dialog for the plugin. The interface method
getDialogClassName() must return the name of the class implementing the StepDialogInterface for the
partitioner.

Partition Incoming Rows During Runtime

The class implementing Partitioner executes the actual logic that distributes the rows to available partitions.

public int getPartition()

This method is called with the row structure and the actual row as arguments. It returns the partition to which this row
is sent. The total number of partitions is available in the inherited field nrPartitions and the return value is between
zero (0, inclusive) and nrPartitions (exclusive).

Interface with the PDI plugin system

In order for PDI to recognize the plugin, the class implementing the Partitioner interface must also be annotated
with the Java annotation org.pentaho.di.core.annotations.PartitionerPlugin.

Supply these annotation attributes:

Attribute Description

id A globally unique ID for the plugin

name A short label for the plugin

description A longer description for the plugin

i18nPackageName If the i18nPackageName attribute is supplied in the annotation attributes, the values of
name and description are interpreted as i18n keys. The keys may be supplied in the
extended form i18n:<packagename> key to specify a package that is different from
the default package given in the i18nPackageName attribute.

Implementing the Partitioner Settings Dialog Box

Java Interface org.pentaho.di.trans.step.StepDialogInterface

Base class org.pentaho.di.ui.trans.step.BaseStepDialog

StepDialogInterface is the Java interface that implements the settings dialog of a partitioner plugin.

Maintain the Dialog for Partitioner Settings

The dialog class is responsible for constructing and opening the settings dialog for the partitioner. When you open the
partitioning settings in Spoon, the system instantiates the dialog class passing in a StepPartitioningMeta object.
Retrieve the Partitioner object by calling getPartitioner() and call the open() method on the dialog. SWT is
the native windowing environment of Spoon and the framework used for implementing dialogs.

public String open()

This method returns only after the dialog has been confirmed or cancelled. The method must conform to these rules.

• If the dialog is confirmed

• The Partition object must be updated to reflect the new settings
• If you changed any settings, the StepPartitioningMeta object Changed flag must be set to true
• open() returns the name of the step to which the partitioning is applied—use the stepname field inherited from

BaseStepDialog

• If the dialog is cancelled

• The Partition object must not be changed
• The StepPartitioningMeta object Changed flag must be set to the value it had at the time the dialog opened
• open() must return null

The StepPartitioningMeta object has an internal Changed flag that is accessible using hasChanged() and
setChanged(). Spoon decides whether the transformation has unsaved changes based on the Changed flag, so it is
important for the dialog to set the flag appropriately.

http://javadoc.pentaho.com/kettle/org/pentaho/di/core/annotations/PartitionerPlugin.html
http://javadoc.pentaho.com/kettle/org/pentaho/di/trans/step/StepDialogInterface.html
http://javadoc.pentaho.com/kettle/org/pentaho/di/ui/trans/step/BaseStepDialog.html
http://www.eclipse.org/swt/

 | Extending Pentaho Data Integration | 31

The sample Partitioner plugin project has an implementation of the dialog class that is consistent with the these rules
and is a good basis for creating your own dialogs.

Deploying Partitioner Plugins

To deploy your plugin, follow the following steps.

1. Create a jar file containing your plugin class(es)
2. Create a new folder, give it a meaningful name, and place your jar file inside the folder
3. Place the plugin folder you just created in a specific location for PDI to find. Depending on how you use PDI, you

need to copy the plugin folder to one or more locations as per the following list.

• Deploying to Spoon or Carte

Copy the plugin folder into this location:

design-tools/data-integration/plugins/steps

After restarting Spoon, the new database type is available from the PDI database dialog.
• Deploying to Data Integration Server

Copy the plugin folder to this location:

server/data-integration-server/pentaho-solutions/system/kettle/plugins/steps

After restarting the data integration server, the plugin is available to the server.
• Deploying to BA Server

Copy the plugin folder to this location:

server/biserver-ee/pentaho-solutions/system/kettle/plugins/steps

After restarting the BA Server, the plugin is available to the server.

Sample Partitioner Plugin

The sample Partitioner plugin project is designed to show a minimal functional implementation of a partitioner plugin
that you can use as a basis to develop your own custom plugins.

The sample Partitioner plugin distributes rows to partitions based on the value of a string field, or more precisely the
string length. The sample shows a partitioner executing on five partitions, assigning longer strings to higher partition
numbers.

Follow these steps in order to build and deploy the sample plugin.

1. Obtain the Sample Plugin Source

The plugin source is available in the download package. Download the package and unzip it. The partitioner plugin
resides in the kettle-sdk-partitioner-plugin folder.

2. Configure the Build

Open kettle-sdk-partitioner-plugin/build/build.properties and set the kettle-dir property to
the base directory of your PDI installation.

3. Build and Deploy

You may choose to build and deploy the plugin from the command line, or work with the Eclipse IDE instead. Both
options are described below.

• Build and Deploy From the Command Line

The plugin is built using Apache Ant. Build and deploy the plugin from the command line by invoking the install
target from the build directory.

kettle-sdk-partitioner-plugin $ cd build
build $ ant install

The install target compiles the source, creates a jar file, creates a plugin folder, and copies the plugin folder into
the plugins/steps directory of your PDI installation.

• Build and Deploy From Eclipse

Import the plugin sources into Eclipse:

http://ant.apache.org/

 | Extending Pentaho Data Integration | 32

1. From the menu, select File > Import > Existing Projects Into Worksapace.
2. Browse to the kettle-sdk-partitioner-plugin folder and choose the project to be imported.

To build and install the plugin, follow these steps:

1. Open the Ant view in Eclipse by selecting Window > Show View from the main menu and select Ant.

You may have to select Other > Ant if you have not used the Ant view before.
2. Drag the file build/build.xml from your project into the Ant view, and execute the install target by double-

clicking it.
3. After the plugin has been deployed, restart Spoon.

4. You can test the new plugin using the transformation from the demo_transform folder.

Exploring Existing Partitioners

PDI sources are useful if you want to investigate the implementation of the standard modulo partitioner. The main
class is available as org.pentaho.di.trans.ModPartitioner. The corresponding dialog class in located in
org.pentaho.di.ui.trans.dialog.ModPartitionerDialog.

Debugging Plugins
A good way to debug PDI plugins is to deploy the plugin, launch Spoon, and connect the debugger to the Spoon JVM.
This section explains how to debug a plugin in Eclipse.

1. Prepare Spoon for debugging.

http://source.pentaho.org/svnkettleroot/Kettle/tags/4.3.0-stable/src/org/pentaho/di/trans/ModPartitioner.java
http://source.pentaho.org/svnkettleroot/Kettle/tags/4.3.0-stable/src-ui/org/pentaho/di/ui/trans/dialog/ModPartitionerDialog.java

 | Extending Pentaho Data Integration | 33

a) Start the Spoon JVM, allowing debug sessions and passing these arguments to the Spoon JVM.

-Xdebug -Xnoagent -Djava.compiler=NONE -
Xrunjdwp:transport=dt_socket,server=y,suspend=n,address=1044

The address argument can be any free port on your machine. This example uses port 1044.

If you are using Spoon.bat or spoon.sh to launch Spoon, create a copy of the file and edit it to include the
debugging parameters to the Java options near the bottom of the file. If you are using a Mac app, add the JVM
parameters to

VMOptions key of “Data Integration 64-bit.app/Contents/Info.plist” or “Data
Integration 32-bit.app/Contents/Info.plist” respectively.

When you start Spoon, debuggers connect on port 1044.

2. Launch a debug session.

a) Ensure that Spoon is set up for debugging and running with the plugin deployed.
b) Connect the Eclipse debugger by creating a debug configuration for your plugin project. From the Run/Debug

Configurations menu, create a new configuration for Remote Java Application.
c) Select your project, making sure the port matches the port configured in step 1.
d) Decide whether you want to be able to kill the Spoon JVM from the debugger, then click Apply and Debug.

The debugger opens, stops at the breakpoints you set, and in-line editing of the plugin source is enabled.

Localization
Message Bundles

PDI uses property files for internationalization. Property files reside in the messages sub-package in the plugin jar
file. Each property file is specific to a locale. Property files contain translations for message keys that are used in the
source code. A messages sub-package containing locale-specific translations is called a message bundle.

 | Extending Pentaho Data Integration | 34

Consider the package layout of the sample job entry plugin project. It contains its main Java class in the
org.pentaho.di.sdk.samples.jobentries.demopackage, and there is a message bundle containing the
localized strings for the en_US locale.

Additional property files can be added using the naming pattern messages_<locale>.properties. PDI core steps
and job entries usually come with several localizations. See the shell job entry messages package for an example of
more complete i18n: http://source.pentaho.org/svnkettleroot/Kettle/tags/4.3.0-stable/src/org/pentaho/di/job/entries/
shell/messages/.

Resolving Localized Strings

The key to resolving localized strings is to use the getString() methods of
org.pentaho.di.i18n.BaseMessages. PDI follows conventions when using this class, which enables easy
integration with the PDI translator tool.

All PDI plugin classes that use localization declare a private static Class<?> PKG field, and assign a class that lives
one package-level above the message bundle package. This is often the main class of the plugin.

With the PKG field defined, the plugin then resolves its localized strings with a call to
BaseMessages.getString(PKG, “localization key”, ... optional_parameters). The first argument
helps PDI finding the correct message bundle, the second argument is the key to localize, and the optional parameters
are injected into the localized string following the Java Message Format conventions.

Common Localization Strings

Some strings are commonly used,and have been pulled together into a common message bundle in
org.pentaho.di.i18n.messages. Whenever BaseMessages cannot find the key in the specified message bundle,
PDI looks for the key in the common message bundle.

Example

For an example, check the sampe Job Entry plugin project, which uses this technique for localized string resolution in its
dialog class.

http://source.pentaho.org/svnkettleroot/Kettle/tags/4.3.0-stable/src/org/pentaho/di/job/entries/shell/messages/
http://source.pentaho.org/svnkettleroot/Kettle/tags/4.3.0-stable/src/org/pentaho/di/job/entries/shell/messages/
http://javadoc.pentaho.com/kettle/org/pentaho/di/i18n/BaseMessages.html
http://wiki.pentaho.com/display/EAI/Kettle+4+and+the+art+of+internationalization
http://docs.oracle.com/javase/6/docs/api/java/text/MessageFormat.html
http://source.pentaho.org/svnkettleroot/Kettle/tags/4.3.0-stable/src-core/org/pentaho/di/i18n/messages/

 | Embedding Pentaho Data Integration | 35

Embedding Pentaho Data Integration

To integrate PDI transformations and jobs into your applications, embed PDI objects directly into your application code.
The instructions in this section address common embedding scenarios.

You can get the accompanying sample project from the kettle-sdk-embedding-samples folder of the sample
code package. The sample project is bundled with a minimal set of dependencies. In a real-world implementation,
projects require the complete set of PDI dependencies that include all .jar files from data-integration/lib.

For each embedding scenario, there is a sample class that can be executed as a stand-alone java application. You can
execute the classes manually or run the Ant targets provided in build/build.xml to run the sample classes.

Running Transformations
If you want to run a PDI transformation from Java code in a stand-alone application, take a look at this sample
class, org.pentaho.di.sdk.samples.embedding.RunningTransformations. It sets the parameters
and executes the transformation in etl/parametrized_transformation.ktr. The transform can be
run from the .ktr file using runTransformationFromFileSystem() or from a PDI repository using
runTransfomrationFromRepository().

1. Always make the first call to KettleEnvironment.init() whenever you are working with the PDI APIs.

2. Prepare the transformation.

The definition of a PDI transformation is represented by a TransMeta object. You can load this object from a .ktr
file, a PDI repository, or you can generate it dynamically. To query the declared parameters of the transformation
definition use listParameters(), or to query the assigned values use setParameterValue().

3. Execute the transformation.

An executable Trans object is derived from the TransMeta object that is passed to the constructor. The Trans
object starts and then executes asynchronously. To ensure that all steps of the Trans object have completed, call
waitUntilFinished().

4. Evaluate the transformation outcome.

After the Trans object completes, you can access the result using getResult(). The Result object can be
queried for success by evaluating getNrErrors(). This method returns zero (0) on success and a non-zero value
when there are errors. To get more information, retrieve the transformation log lines.

Running Jobs
If you want to run a PDI job from Java code in a stand-alone application, take a look at this sample class,
org.pentaho.di.sdk.samples.embedding.RunningJobs. It sets the parameters and executes the job in
etl/parametrized_job.kjb. The job can be run from the .kjb file using runJobFromFileSystem() or from a
repository using runJobFromRepository().

1. Always make the first call to KettleEnvironment.init() whenever you are working with the PDI APIs..

2. Prepare the job.

The definition of a PDI job is represented by a JobMeta object. You can load this object from a .ktb file, a
PDI repository, or you can generate it dynamically. To query the declared parameters of the job definition use
listParameters(). To set the assigned values use setParameterValue().

3. Execute the job.

An executable Job object is derived from the JobMeta object that is passed in to the constructor. The Job object
starts, and then executes in a separate thread. To wait for the job to complete, call waitUntilFinished().

4. Evaluate the job outcome.

After the Job completes, you can access the result using getResult(). The Result object can be queried
for success using getResult(). This method returns true on success and false on failure. To get more
information, retrieve the job log lines.

http://javadoc.pentaho.com/kettle/org/pentaho/di/trans/TransMeta.html
http://javadoc.pentaho.com/kettle/org/pentaho/di/trans/TransMeta.html#listParameters()
http://javadoc.pentaho.com/kettle/org/pentaho/di/trans/TransMeta.html#setParameterValue(java.lang.String,%20java.lang.String)
http://javadoc.pentaho.com/kettle/org/pentaho/di/trans/Trans.html
http://javadoc.pentaho.com/kettle/org/pentaho/di/trans/TransMeta.html
http://javadoc.pentaho.com/kettle/org/pentaho/di/trans/Trans.html
http://javadoc.pentaho.com/kettle/org/pentaho/di/trans/Trans.html
http://javadoc.pentaho.com/kettle/org/pentaho/di/trans/Trans.html#waitUntilFinished%28%29
http://javadoc.pentaho.com/kettle/org/pentaho/di/trans/Trans.html
http://javadoc.pentaho.com/kettle/org/pentaho/di/trans/Trans.html#getResult%28%29
http://javadoc.pentaho.com/kettle/org/pentaho/di/core/Result.html
http://javadoc.pentaho.com/kettle/org/pentaho/di/core/Result.html#getNrErrors%28%29
http://javadoc.pentaho.com/kettle/org/pentaho/di/job/JobMeta.html
http://javadoc.pentaho.com/kettle/org/pentaho/di/job/JobMeta.html#listParameters%28%29
http://javadoc.pentaho.com/kettle/org/pentaho/di/job/JobMeta.html#setParameterValue%28java.lang.String,%20java.lang.String%29
http://javadoc.pentaho.com/kettle/org/pentaho/di/job/Job.html
http://javadoc.pentaho.com/kettle/org/pentaho/di/job/JobMeta.html
http://javadoc.pentaho.com/kettle/org/pentaho/di/job/Job.html
http://javadoc.pentaho.com/kettle/org/pentaho/di/job/Job.html#waitUntilFinished%28%29
http://javadoc.pentaho.com/kettle/org/pentaho/di/job/Job.html
http://javadoc.pentaho.com/kettle/org/pentaho/di/job/Job.html#getResult%28%29
http://javadoc.pentaho.com/kettle/org/pentaho/di/core/Result.html
http://javadoc.pentaho.com/kettle/org/pentaho/di/core/Result.html#getResult%28%29

 | Embedding Pentaho Data Integration | 36

Building Transformations Dynamically
To enable your application to respond quickly to changing conditions, you can build transformations dynamically. The
example class, org.pentaho.di.sdk.samples.embedding.GeneratingTransformations, shows you how. It
generates a transformation definition and saves it to a .ktr file.

1. Always make the first call to KettleEnvironment.init() whenever you are working with the PDI APIs.

2. Create and configure a transformation definition object.

A transformation definition is represented by a TransMeta object. Create this object using the default constructor.
The transformation definition includes the name, the declared parameters, and the required database connections.

3. Populate the TransMeta object with steps.

The data flow of a transformation is defined by steps that are connected by hops.

a) Create the step by instantiating its class directly and configure it using its get and set methods. Transformation
steps reside in sub-packages of org.pentaho.di.trans.steps. For example, to use the Get File Names
step , create an instance of org.pentaho.di.trans.steps.getfilenames.GetFileNamesMeta and use
its get and set methods to configure it.

b) Obtain the step id string. Each PDI step has an id that can be retrieved
from the PDI plugin registry. A simple way to retrieve the step id is to call
PluginRegistry.getInstance().getPluginId(StepPluginType.class, theStepMetaObject).

c) Create an instance of org.pentaho.di.trans.step.StepMeta, passing the step id string, the name, and
the configured step object to the constructor. An instance of StepMeta encapsulates the step properties, as well
as controls the placement of the step on the Spoon canvas and connections to hops. Once the StepMeta object
has been created, call setDrawn(true) and setLocation(x,y) to make sure the step appears correctly
on the Spoon canvas. Finally, add the step to the transformation, by calling addStep() on the transformation
definition object.

d) Once steps have been added to the transformation definition, they need to be connected by hops. To create a
hop, create an instance of org.pentaho.di.trans.TransHopMeta, passing in the From and To steps as
arguments to the constructor. Add the hop to the transformation definition by calling addTransHop().

After all steps have been added and connected by hops, the transformation definition object can be
serialized to a .ktr file by calling getXML() and opening it in Spoon for inspection. The sample class
org.pentaho.di.sdk.samples.embedding.GeneratingTransformations generates this transformation.

Building Jobs Dynamically
To enable your application to respond quickly to changing conditions, you can build jobs dynamically. The example
class, org.pentaho.di.sdk.samples.embedding.GeneratingJobs, shows you how. It generates a job
definition and saves it to a .kjb file.

1. Always make the first call to KettleEnvironment.init() whenever you are working with the PDI APIs.

2. Create and configure a job definition object.

A job definition is represented by a JobMeta object. Create this object using the default constructor. The job
definition includes the name, the declared parameters, and the required database connections.

3. Populate the JobMeta object with job entries.

http://javadoc.pentaho.com/kettle/org/pentaho/di/trans/TransMeta.html
http://javadoc.pentaho.com/kettle/org/pentaho/di/trans/TransMeta.html#setName%28java.lang.String%29
http://javadoc.pentaho.com/kettle/org/pentaho/di/trans/TransMeta.html#addParameterDefinition%28java.lang.String,%20java.lang.String,%20java.lang.String%29
http://javadoc.pentaho.com/kettle/org/pentaho/di/trans/TransMeta.html#addDatabase%28org.pentaho.di.core.database.DatabaseMeta%29
http://javadoc.pentaho.com/kettle/org/pentaho/di/trans/TransMeta.html
http://javadoc.pentaho.com/kettle/org/pentaho/di/trans/steps/getfilenames/GetFileNamesMeta.html
http://javadoc.pentaho.com/kettle/org/pentaho/di/core/plugins/PluginRegistry.html
http://javadoc.pentaho.com/kettle/org/pentaho/di/core/plugins/PluginRegistry.html#getPluginId%28java.lang.Class,%20java.lang.Object%29
http://javadoc.pentaho.com/kettle/org/pentaho/di/trans/step/StepMeta.html#setDraw(boolean)
http://javadoc.pentaho.com/kettle/org/pentaho/di/trans/step/StepMeta.html#setLocation(int,%20int)
http://javadoc.pentaho.com/kettle/org/pentaho/di/trans/TransMeta.html#addStep%28org.pentaho.di.trans.step.StepMeta%29
http://javadoc.pentaho.com/kettle/org/pentaho/di/trans/TransHopMeta.html
http://javadoc.pentaho.com/kettle/org/pentaho/di/trans/TransMeta.html#addTransHop%28org.pentaho.di.trans.TransHopMeta%29
http://javadoc.pentaho.com/kettle/org/pentaho/di/job/JobMeta.html
http://javadoc.pentaho.com/kettle/org/pentaho/di/job/JobMeta.html#setName%28java.lang.String%29
http://javadoc.pentaho.com/kettle/org/pentaho/di/job/JobMeta.html#addParameterDefinition%28java.lang.String,%20java.lang.String,%20java.lang.String%29
http://javadoc.pentaho.com/kettle/org/pentaho/di/job/JobMeta.html#addDatabase%28org.pentaho.di.core.database.DatabaseMeta%29

 | Embedding Pentaho Data Integration | 37

The control flow of a job is defined by job entries that are connected by hops.

a) Create the job entry by instantiating its class directly and configure it using its get and set methods. The job
entries reside in sub-packages of org.pentaho.di.job.entries. For example, use the File Exists job
entry, create an instance of org.pentaho.di.job.entries.fileexists.JobEntryFileExists, and use
setFilename() to configure it.

The Start job entry is implemented by org.pentaho.di.job.entries.special.JobEntrySpecial.
b) Create an instance of org.pentaho.di.job.entry.JobEntryCopy by passing the job entry created in the

previous step to the constructor. An instance of JobEntryCopy encapsulates the properties of a job entry, as
well as controls the placement of the job entry on the Spoon canvas and connections to hops. Once created, call
setDrawn(true) and setLocation(x,y) to make sure the job entry appears correctly on the Spoon canvas.
Finally, add the job entry to the job by calling addJobEntry() on the job definition object.

It is possible to place the same job entry in several places on the canvas by creating multiple instances of
JobEntryCopy and passing in the same job entry instance.

c) Once job entries have been added to the job definition, they need to be connected by hops. To create a
hop, create an instance of org.pentaho.di.job.JobHopMeta, passing in the From and To job entries
as arguments to the constructor. Configure the hop consistently. Configure it as a green or red hop by
calling setConditional() and setEvaluation(true/false). If it is an unconditional hop, call
setUnconditional(). Add the hop to the job definition by calling addJobHop().

After all job entries have been added and connected by hops, the job definition object can be
serialized to a .kjb file by calling getXML(), and opened in Spoon for inspection. The sample class
org.pentaho.di.sdk.samples.embedding.GeneratingJobs generates this job.

.

Obtaining Logging Information
When you need more information about how transformations and jobs execute, you can view PDI log lines and text.

PDI collects log lines in a central place. The class org.pentaho.di.core.logging.KettleLogStore
manages all log lines and provides methods for retrieving the log text for specific entities. To retrieve log text or
log lines, supply the log channel id generated by PDI during runtime. You can obtain the log channel id by calling

http://javadoc.pentaho.com/kettle/org/pentaho/di/job/entries/fileexists/JobEntryFileExists.html
http://javadoc.pentaho.com/kettle/org/pentaho/di/job/entries/fileexists/JobEntryFileExists.html#setFilename%28java.lang.String%29
http://javadoc.pentaho.com/kettle/org/pentaho/di/job/entries/special/JobEntrySpecial.html
http://javadoc.pentaho.com/kettle/org/pentaho/di/job/entry/JobEntryCopy.html
http://javadoc.pentaho.com/kettle/org/pentaho/di/job/entry/JobEntryCopy.html#setDrawn%28boolean%29
http://javadoc.pentaho.com/kettle/org/pentaho/di/job/entry/JobEntryCopy.html#setLocation%28int,%20int%29
http://javadoc.pentaho.com/kettle/org/pentaho/di/job/JobMeta.html#addJobEntry%28org.pentaho.di.job.entry.JobEntryCopy%29
http://javadoc.pentaho.com/kettle/org/pentaho/di/job/JobHopMeta.html
http://javadoc.pentaho.com/kettle/org/pentaho/di/job/JobHopMeta.html#setConditional%28%29
http://javadoc.pentaho.com/kettle/org/pentaho/di/job/JobHopMeta.html#setEvaluation%28boolean%29
http://javadoc.pentaho.com/kettle/org/pentaho/di/job/JobHopMeta.html#setUnconditional%28%29
http://javadoc.pentaho.com/kettle/org/pentaho/di/job/JobMeta.html#addJobHop%28org.pentaho.di.job.JobHopMeta%29
http://javadoc.pentaho.com/kettle/org/pentaho/di/job/JobMeta.html#getXML%28%29
http://javadoc.pentaho.com/kettle/org/pentaho/di/core/logging/KettleLogStore.html

 | Embedding Pentaho Data Integration | 38

getLogChannelId(), which is part of LoggingObjectInterface. Jobs, transformations, job entries, and
transformation steps all implement this interface.

For example, assuming the job variable is an instance of a running or completed job. This is how you retrieve its log
lines:

LoggingBuffer appender = KettleLogStore.getAppender();
String logText = appender.getBuffer(job.getLogChannelId(), false).toString();

The main methods in the sample classes org.pentaho.di.sdk.samples.embedding.RunningJobs and
org.pentaho.di.sdk.samples.embedding.RunningTransformations retrieve log information from the
executed job or transformation in this manner.

Exposing a Transformation or Job as a Web Service
Running a PDI job or transformation as part of a web-service is implemented by writing a servlet that maps incoming
parameters for a transformation or job entry and executes them as part of the request cycle.

Alternatively, you can use Carte or the Data Integration server directly by building a transformation that writes its
output to the HTTP response of the Carte server. This is achieved by using the Pass Output to Servlet feature of the
Text output, XML output, JSON output, or scripting steps. For an example, run the sample transformation, /data-
integration/samples/transformations/Servlet Data Example.ktr, on Carte.

http://javadoc.pentaho.com/kettle/org/pentaho/di/core/logging/LoggingObjectInterface.html#getLogChannelId%28%29
http://javadoc.pentaho.com/kettle/org/pentaho/di/core/logging/LoggingObjectInterface.html

	Contents
	Getting Started
	Extending Pentaho Data Integration
	Creating Step Plugins
	Maintaining Step Settings
	Implementing the Step Settings Dialog Box
	Processing Rows
	Storing the Processing State
	Working with Rows
	Working With Fields
	Handling Errors
	Understanding Row Counters
	Logging in Transformation Steps

	Deploying Step Plugins
	Sample Step Plugin
	Exploring More Steps

	Creating Job Entry Plugins
	Implementing a Job Entry
	Implementing the Job Entry Settings Dialog Box
	Logging in Job Entries
	Deploying Job Entry Plugins
	Sample Job Entry Plugin
	Exploring More Job Entries

	Creating Database Plugins
	Exploring Existing Database Implementations
	Deploying Database Plugins
	Sample Database Plugin

	Creating Partioner Plugins
	Implementing the Partitioner Interface
	Implementing the Partitioner Settings Dialog Box
	Deploying Partitioner Plugins
	Sample Partitioner Plugin
	Exploring Existing Partitioners

	Debugging Plugins
	Localization

	Embedding Pentaho Data Integration
	Running Transformations
	Running Jobs
	Building Transformations Dynamically
	Building Jobs Dynamically
	Obtaining Logging Information
	Exposing a Transformation or Job as a Web Service

