
Space Details
Key: PentahoDoc

Name: BI Server Documentation - Latest

Description:
Latest version of the Pentaho BI Server

Creator (Creation Date): admin (Nov 15, 2006)

Last Modifier (Mod. Date): admin (Nov 27, 2006)

Available Pages

• Creating Pentaho Solutions
• I - Solution Oriented Approach
• II - Building Solutions

• 01. Configuring the BI Server and Design Studio
• 02. Terminology
• 03. Architecture
• 04. Action Sequences

• 01 - Anatomy of an Action Sequence
• 02 - Creating and Editing an Action Sequence
• 03 - Executing an Action Sequence
• 04 - Action Sequence XML

• 1 - Example Action Sequence XML
• 2 - Defining Inputs
• 3 - Data Types

• content
• long
• propert-map-list
• property-map
• string
• string-list

• 5 - Actions
• 6 - XML Schema
• file
• solution-file
• url

• 05. Integrating Pentaho Reports (JFreeReports)
• III - Actions and Component Reference

• BIRT Reports
• Call External Action Sequence
• Charting

• Charting XAction Reference
• CategoryDatasetComponent

Document generated by Confluence on Jun 13, 2007 09:27 Page 1

• Chart Component
• Chart Tag Reference

• by-row
• chart
• chart-attributes
• chart-background
• chart-type
• color
• color-palette
• dataset-type
• domain-includes-zero
• domain-label-rotation
• domain-label-rotation-dir
• domain-period-type
• domain-sticky-zero
• domain-title
• domain-title-font
• domain-vertical-tick-labels
• dot-height
• dot-width
• height
• is-3D
• is-stacked
• line-style
• line-width
• markers-visible
• orientation
• paramName
• paramName2
• plot-background
• range-title
• range-title-font
• subtitle
• title
• title-font
• title-position
• url-template
• width

• TimeSeriesCollectionComponent
• XYSeriesCollectionComponent

• Content Repository Cleaner
• Email
• Hello World
• Jasper Reports
• JavaScript

Document generated by Confluence on Jun 13, 2007 09:27 Page 2

• JFree Reports
• Kettle
• MDX Query
• Prepared Components - Enabling Subreporting and Connection Sharing
• Printing
• Scheduling

• Misfires
• Triggers

• Secure Filter (Prompting)
• SQL Execute
• SQL Query

Document generated by Confluence on Jun 13, 2007 09:27 Page 3

Creating Pentaho Solutions

This page last changed on Nov 28, 2006 by dmoran.

This guide describes the philosophy and tools for creating solutions to business problems using the
Pentaho BI Platform. The Pentaho BI Platform integrates capabilities from the major application areas of
the Pentaho BI Suite: Reporting, Analysis, Dashboard, Data Mining and Workflow. The integration
includes security, scheduling, auditing, deployment, solution management and workflow capabilities.

This guide is broken up into the following parts:

• I - Solution Oriented Approach — The philosophy behind the Pentaho BI Platform and its solutions.
• II - Building Solutions — Technical description of the BI Platform's major components and how to

create, deploy and manage solutions.
• III - Actions and Component Reference — Detailed reference for the components distributed with

the Platform.

Document generated by Confluence on Jun 13, 2007 09:27 Page 4

I - Solution Oriented Approach

This page last changed on Nov 30, 2006 by dmoran.

Creating Pentaho
Solutions

II - Building Solutions

In many years of helping customers create reports and analytical systems, we have encountered a similar
situation many times. The scenario is always different, but the basic need is always the same: a report is
delivered or a particular situation is encountered in the data and something specific needs to happen - a
decision must be made, causes must be discovered, or a process must be started. In these cases the
information presentation, analysis, and delivery (BI) is a part of a larger process. This process exists to
solve the business problem: it is the solution.

To clarify:

• Often the solution to a business problem is a process that includes Business Intelligence.
• Therefore: the Business Intelligence, by itself, is not the solution to the problem.
• If Business Intelligence is part of the process, the Business Intelligence tools are, unavoidably, also

part of the process.
• A Business Intelligence tool that does not understand processes, or how to be part of one, will be

hard to integrate into the solution.

The Pentaho BI Platform is the first process-centric and solution-oriented Business
Intelligence platform.

Sure we can throw in a little bold text and make it look grand but how do we back up a statement like
that when other BI providers are claiming to be adding process-centric features?

Workflow at the Core

The Pentaho BI Platform has several options available for executing activities. The default execution
engine is a built-in, lightweight, Business Flow Sequencer. This sequencer allows the solution developer
to build solutions from collections of Business Flows that are generally linear and success oriented
utilizing passed parameters and a minimum of looping. For example: run a query to find out which
departments are over budget, run a budget report for each of those departments, and finally email each
report to the department manager.

When the business requirements require user interaction, parallel tasks, deadlines and extensive error
handling, there is built-in support for utilizing a comprehensive workflow engine. The workflow engine
uses a standard language, XML Process Definition Language (XPDL), to execute the Business Flows within
the system. An example of this type of solution would be a Human Resources new hire process where
multiple departments have to be notified about the new hire, actions would need to be coordinated and a
final task to verify all resources have been issued and all paperwork is complete can be verified and
marked completed.

In the case where a solution needs to be coordinated externally, any Business Flow defined in the system
is available as web services and return their results via SOAP packages. This allows actions to be
coordinated via an orchestration technology such a BPEL workflow engine or a remote application.

Document generated by Confluence on Jun 13, 2007 09:27 Page 5

http://wiki.pentaho.org/display/PentahoDoc/Creating+Pentaho+Solutions
http://wiki.pentaho.org/display/PentahoDoc/Creating+Pentaho+Solutions
http://wiki.pentaho.org/display/PentahoDoc/II+-+Building+Solutions

Components may also be embedded directly into a custom Java application. This can be important when
your solution needs to be part of an existing application or you just need complete programmatic control.

No matter what deployment option you choose:

• The platform understands the nature of processes because everything in it is one.
• The processes are defined in a standard process definition language that is externally viewable,

editable, and customizable.
• There is no hidden business logic.

The platform is built on processes and process definitions.

Service-Oriented Architecture (SOA)

This is rapidly becoming a meaningless term with every application that accepts URLs claiming to have a
SOA. When you design a system with a workflow engine as the conductor and director every activity in
the system, every step of each process, every bubble in your process diagram must be implemented as a
standalone, re-usable component that can be directed to execute the activity required.
This is not just an SOA, this is a Service-Implemented Architecture (SIA). Every activity in every process
can be a web service because all activities only ever execute as services. They know no other invocation.
The three rules to web services success are: invocation, invocation, invocation.

Services are the building blocks of automated business processes.

Process Integration

Every process and activity in the Pentaho BI Platform executes as a service. If you want to call a process
or activity defined in the platform from a process executing in another system, you can. It's easy.

Every activity in the system understands how to be part of another process.

Rules, Rules, Rules

The definition of the platform processes are externally defined, but what about the rules that govern the
workflow? XPDL has built in support for complex routing control, and we have added support for multiple
rules engines so business logic can be integrated easily into the processes. Multiple rules engines are
supported and required because it is unlikely the logic for every decision in every process can be defined
easily by only one rules engine.

For example, the business rule to determine the credit analyst for a customer might be best described
three different ways in three implementations:

• A simple piece of script: if (customerNo < 3000) return 'Bob' else return 'Mary'
• A complex chaining algorithm that bases the decision on the customer's current sales pipeline,

service level agreement, lifetime value, payment history, industry segment, and location

Document generated by Confluence on Jun 13, 2007 09:27 Page 6

• A call to a database or ERP system to lookup the analyst for the customer

If the credit analyst for each customer is stored as a record in an ERP system, trying to maintain the rule
in a different system will be a redundant effort with additional cost, additional risk, and no added value.

Flexible business rules are a critical part of automated business processes.

Business Intelligence / Business Process Boundary

The line between business intelligence and business processes is flexible in the Pentaho BI Platform. This
is because the line between business intelligence and business processes is blurry and should be up to
you. If you have a BI platform that clearly defines the boundaries between it and your other systems, you
probably have an application silo that is hard to integrate the way you need it to. It is your processes,
your data, and your software.

• The default engine executing processes within the platform allows you to easily script a light-weight
workflow

• When required all or part of the light-weight flow can be implemented with a full-featured workflow
engine

• The Pentaho BI Platform includes multiple rules engines
• The Pentaho BI Platform activities are easily integrated into other processes

Case Study

Problem: When an employee shows up for work at a health care organization with an expired license,
there are two outcomes. It may be noticed and a more costly agency worker must replace the employee
until their license is renewed, or it is not noticed in which case a patient safety hazard and a liability risk
occurs

Business goals: increase patient safety, reduce liability of unlicensed employees, and reduce money
spent on agency staff covering for unlicensed employees.

Current process: Each manager maintains a list of license expirations for their department.

Proposed 'solution': Scheduled execution of a report from a central database that lists, by department,
licenses held by each employee, and the expiration date of their current licenses.

Solution 1: Give them what they ask for

Create a 50 page report and deliver it to each department once a month.

Resulting Business Process:

• Running of report is not audited. If it does not happen when expected how long before someone
realizes?

Document generated by Confluence on Jun 13, 2007 09:27 Page 7

• Managers in each department are required to read the report and filter the information. Reports get
lost, managers take vacations, and dates get misread.

• When managers spot upcoming license expirations they leave a note in the employee's mail box.
Notes get lost or placed in wrong boxes.

• Employees try to schedule preparation, application and certification time. Schedule conflicts arise,
preparation suffers.

• Employees fail certification with no time for further preparation or certification before license
expiration.

This solution is incomplete because it only automates the information delivery, it does not help the real
process that has to occur. The business goal is reached at best as a by-product of the reporting solution.

Solution 2: Give them what they need

• Create business rules that determine the lead time required for adequate preparation for each type
of license and escalation paths for problem cases.

• Run an audited report every day or week that lists those employees within their lead time. For each
employee initiate a defined license renewal process:

1. Deliver the information electronically to both manager and employee
2. Require electronic acknowledgment from both
3. Direct employee to schedule preparation time
4. Direct manger to approve schedule
5. Require employee to enter certification test date
6. Escalate warnings if insufficient re-test time has been allowed
7. Require manager to validate new license
8. Deliver notifications on certification failure to manager and scheduling application.

• Provide on-line, real-time reporting on the license renewal process
• Produce audit reports of monthly and quarterly performance

This solution solves the business problem.

Conclusion

In order to deliver this solution you need reporting and analysis tools that:

• Support the business rules needed
• Audit report execution and delivery of information
• Integrate seamlessly with a workflow system

You also need a workflow / business process engine that:

• Handles time-based escalations
• Audits execution of activities within the process
• Integrates with reporting and analysis tools

You also need to provide real-time and historical process performance reports

This is the Pentaho BI Platform.

Document generated by Confluence on Jun 13, 2007 09:27 Page 8

The Pentaho BI Platform is uniquely process-centric and solution-oriented.

• It is process-centric because it is built ground-up to be process-based.
• It is solution-oriented because the solution for many business problems is a process, and the

platform includes all the major components required to implement process-based solutions.

Creating Pentaho
Solutions

II - Building Solutions

Document generated by Confluence on Jun 13, 2007 09:27 Page 9

http://wiki.pentaho.org/display/PentahoDoc/Creating+Pentaho+Solutions
http://wiki.pentaho.org/display/PentahoDoc/Creating+Pentaho+Solutions
http://wiki.pentaho.org/display/PentahoDoc/II+-+Building+Solutions

II - Building Solutions

This page last changed on Dec 12, 2006 by dmoran.

I - Solution Oriented
Approach

Creating Pentaho
Solutions

III - Actions and
Component
Reference

This document describes the architecture of the Pentaho BI Platform and details the components and
tools required to build solutions. It is intended for people interested in building solutions and creating
content. It is also valuable for anyone who needs to interface with or develop portions of the Pentaho BI
Platform.

To get the most out of this documentation, it is recommended that you have the Pentaho BI Suite
(Pre-Configured Installation) and Pentaho Design Studio installed on your local machine. Many of the
examples in this document refer to the sample solutions and data that come with the Pentaho BI Suite.
Either version of the Pentaho BI Suite, Open and Pro, will work.

Many of the examples are illustrated by using the Pentaho Design Studio. Using the design studio along
with this guide will save you from hand editing XML. A task that for some reason is not enjoyable by all
people (or - so I have been told - many times.)

If you already have a working Pentaho Server and functioning Design Studio, you can skip the first
section.

• 01. Configuring the BI Server and Design Studio
• 02. Terminology
• 03. Architecture
• 04. Action Sequences
• 05. Integrating Pentaho Reports (JFreeReports)

I - Solution Oriented
Approach

Creating Pentaho
Solutions

III - Actions and
Component
Reference

Document generated by Confluence on Jun 13, 2007 09:27 Page 10

http://wiki.pentaho.org/display/PentahoDoc/I+-+Solution+Oriented+Approach
http://wiki.pentaho.org/display/PentahoDoc/I+-+Solution+Oriented+Approach
http://wiki.pentaho.org/display/PentahoDoc/Creating+Pentaho+Solutions
http://wiki.pentaho.org/display/PentahoDoc/Creating+Pentaho+Solutions
http://wiki.pentaho.org/display/PentahoDoc/III+-+Actions+and+Component+Reference
http://wiki.pentaho.org/display/PentahoDoc/III+-+Actions+and+Component+Reference
http://wiki.pentaho.org/display/PentahoDoc/III+-+Actions+and+Component+Reference
http://wiki.pentaho.org/display/PentahoDoc/I+-+Solution+Oriented+Approach
http://wiki.pentaho.org/display/PentahoDoc/I+-+Solution+Oriented+Approach
http://wiki.pentaho.org/display/PentahoDoc/Creating+Pentaho+Solutions
http://wiki.pentaho.org/display/PentahoDoc/Creating+Pentaho+Solutions
http://wiki.pentaho.org/display/PentahoDoc/III+-+Actions+and+Component+Reference
http://wiki.pentaho.org/display/PentahoDoc/III+-+Actions+and+Component+Reference
http://wiki.pentaho.org/display/PentahoDoc/III+-+Actions+and+Component+Reference

01. Configuring the BI Server and Design Studio

This page last changed on Dec 01, 2006 by dmoran.

II - Building Solutions 02. Terminology

The quickest way to get started with the BI Platform is to download and run the Pentaho BI Platform
Pre-Configured Install (PCI). For more information, see Getting Started with the BI Platform.

The Pentaho Design Studio provides a graphical environment for building, managing, and testing your
solutions. It provides a collection of templates, editors and wizards to help create and maintain solutions.
Many of the examples in this document refer to the Design Studio. For information, see studio: Getting
Started with Design Studio.

Both the Design Studio and PCI are available from the Pentaho Downloads page

Setting up Design Studio to use the samples

At this point, you have either installed the standalone Design Studio or installed the Design Studio plug-in
into Eclipse, and you have a working install of the Pentaho samples. You should have tested that the
samples in samples/getting-started work and tried one or two reports in
samples/steel-wheels/reports within your environment and with your browser. Your Pentaho BI
Server is running and waiting for requests.

Tech Tip

The Design Studio is file-system based. All of the content that is being edited exists on or is
available via the local machines file-system. This could include shared folders, nfs mounts, etc.
This is why we recommend, for following this guide, having both the BI Server and Design Studio
running on the same computer.

If you haven't done so already, start the Design Studio. If the welcome screen appears, close it by
clicking on the X next to Welcome.

• Select File->New->Project.
• Select Simple from the New Project wizard
• Press the Next> button.
• Enter Pentaho Solutions as the project name. Although any name is fine, this document will refer

to Pentaho Solutions
• Uncheck the Use default check box
• Browse to the pentaho-solutions directory. If you are using the PCI, this will be

/pentaho-demo/pentaho-solutions.
• Select Finish.

You are now have a Design Studio project that is set up to edit and test your samples solution.

Browsing the Solution Repository

Document generated by Confluence on Jun 13, 2007 09:27 Page 11

http://wiki.pentaho.org/display/PentahoDoc/II+-+Building+Solutions
http://wiki.pentaho.org/display/PentahoDoc/02.+Terminology
http://wiki.pentaho.org//display/PentahoDoc/Getting+Started+with+the+BI+Platform
http://wiki.pentaho.org//display/studio/Getting+Started+with+Design+Studio
http://wiki.pentaho.org//display/studio/Getting+Started+with+Design+Studio
http://www.pentaho.org/download

You should now see your Pentaho Solutions project displayed in the tree on the left side of the Design
Studio. If you expand the solution folder you'll see plenty of files. These are the files that make up your
solution and are managed within the Design Studio. Let's take a look at one to get a feel of what the
Design Studio can do for us. Go ahead and in the left hand tree, open the Pentaho
Solutions/samples/getting-started folder. Double-click on the HelloWorld.xaction file and the
Action Sequence editor will open in the edit pane.

Verify that you can test from within the Design Studio

The Test tab at the bottom of the Design Studio is used for generating and testing Action Sequences. At
this point, don't worry about what an Action Sequence means, it will be explained later. Make sure you're
looking at the HelloWorld.xaction from the last section then click the test tab. Now let's test out the
action sequence.

Tech Tip

Currently, the Design Studio uses the Pentaho BI Server to execute Action Sequences. When
pressing the Run button, the Design Studio submits an HTTP request to the server and displays
the result in the built in browser. The built in browser is usually the default browser on your
computer.

This is exactly the same as if you used your browser to navigate the PCI samples and clicked on
that Action Sequence. It is why you are prompted to save changes to your Action Sequence when
going to the test tab. And, it is why you see a URL next to the Run button.

• Make sure that the Pentaho Server URL points to your running BI Server.
• Press the Test Server button. If everything is set up properly, the Pentaho Demo home page should

Document generated by Confluence on Jun 13, 2007 09:27 Page 12

appear.
• Now select the Run button to submit an HTTP request to the BI Server to execute the current action

sequence. In the embedded browser window you should see "Hello World. Greetings from the
Pentaho BI Platform."

Now let's change the message displayed by this action sequence and test our change to make sure that it
works.

• Select the Define Process tab.
• Select Hello World in the Process Actions box.
• Change the text %quote in the Message text box to something else like - I did it!.
• Return to the Test tab. Select Yes to save if prompted to save.
• If you are using the Pro Pentaho Server...

° The default configuration of the Pro BI Server doesn't run action sequences from the file
system, but instead runs them from the Pro BI Server repository. You will need to tell the
server to refresh the database from the file-system.

° Navigate to the Admin page of your Pentaho BI Server using your browser.
° Select the Solution Repository icon.
° Select Yes when prompted Are you sure you want to do this?

• Select Run.

You should now see the new message - Hello World - I did it!.

Tech Tip

The original message reads %quote. This notation is used to internationalize action sequences.
There are HelloWorld_xx.properties files in the same directory as the action sequence we're
currently modifying. Each file has the strings used by this action sequence translated into the
appropriate language. Within the Design Studio, you can double click the
HelloWorld_en.properties file and find the string assigned to quote and change it to read I did
it!. For any strings starting with %, the server will first look for a local properties file, walk the
path back to the top of the solution tree looking for the correct .properties file, and finally, use
the text it as is.

If you successfully changed and tested Hello World; congratulations, you are ready to move on.

I had issues

Sorry you are having trouble. The most likely problem is that the Design Studio and BI Server are not
pointing to the same location for the solution.

TODO

• Add additional troubleshooting steps
• Write a set of the steps for each bullet item below

• Use the browser to navigate the solution directly to see if it is a caching issue.
• Verify that the folder path in the web.xml matches the solution directory and the Design Studio

project directory

Document generated by Confluence on Jun 13, 2007 09:27 Page 13

• Open the Action Sequence in a text editor make sure change happened
• Others?

II - Building Solutions 02. Terminology

Document generated by Confluence on Jun 13, 2007 09:27 Page 14

http://wiki.pentaho.org/display/PentahoDoc/II+-+Building+Solutions
http://wiki.pentaho.org/display/PentahoDoc/02.+Terminology

02. Terminology

This page last changed on Jun 05, 2007 by bseyler.

01. Configuring the
BI Server and
Design Studio

II - Building
Solutions

03. Architecture

TODO

I think we should move some or all of this to a master glossary somewhere at the top level and
include or link to it. It might be good to break the terms up into categories like products, Design
Studio related, BI Server related etc...

The list here is not meant to be inclusive, just relevant to this document. The frivolous text at the
top would make more sense in a top level glossary and may not be palatable by marketing but I
like acknowledging the difficulty of naming and maybe getting some input from the community on
where we can improve.

-Doug

The Pentaho Project has many, many parts and can be used in a many different configurations. A lot of
the names are similar or similar in meaning. Terms like Reporting can mean different things depending
on context. For example: Pentaho Reporting is the name of the report server formerly known as
jFreeReports. There is a Reporting Pillar that represents all of the components, APIs and applications
related to creating, deploying, executing and distributing reports. You can design a Report using the
Report Designer or Report Design Wizard and you can deploy a report using the Pentaho BI Server.
There will soon be a Web Based Query and Reporting module. To confuse things a little further, you can
deploy BIRT and JasperReports reports via the server too. Then, for our international friends... all those
names need to be translated.

Naming is never easy, and unfortunately, bad names are often hard to retire. With all that said, this
section will define some of the most important names that will be used throughout this document and
hopefully will not conflict with other documents.

Common Terms Used Within Pentaho

Pentaho BI Platform Project The open source project focused on delivery of
platform infrastructure services, that also provides
integration of Pentaho's end user and data
integration capabilities. The Pentaho BI Platform
project includes capabilities like security,
integration, APIs, scheduling, and workflow.

Pentaho BI Pillar Also referred to as a Pentaho module A grouping
of products related by functionality. The 6 Pillars
of the Pentaho BI Project are: Reporting, Analysis,
Dashboards, Data Mining, Data Integration and BI
Platform.

Document generated by Confluence on Jun 13, 2007 09:27 Page 15

http://wiki.pentaho.org/display/PentahoDoc/01.+Configuring+the+BI+Server+and+Design+Studio
http://wiki.pentaho.org/display/PentahoDoc/01.+Configuring+the+BI+Server+and+Design+Studio
http://wiki.pentaho.org/display/PentahoDoc/01.+Configuring+the+BI+Server+and+Design+Studio
http://wiki.pentaho.org/display/PentahoDoc/II+-+Building+Solutions
http://wiki.pentaho.org/display/PentahoDoc/II+-+Building+Solutions
http://wiki.pentaho.org/display/PentahoDoc/03.+Architecture
http://wiki.pentaho.org//display/PentahoDoc/Getting+Started+with+the+BI+Platform

Pentaho BI Platform The applications, APIs and components that
support Pentaho's end-user reporting, analysis,
and dashboard capabilities with back-end security,
integration, scheduling, and workflow capabilities.

Pentaho Open BI Suite This is the all-inclusive, external name for
Pentaho's open source capabilities, including
Reporting, Analysis, Dashboards, Data Mining,
Data Integration, and a BI Platform.

Pre-Configured Install (PCI) It is a Pentaho BI Platform deployed into a
pre-installed and configured JBoss Application
Server. In addition, it contains ready to use
solution repositories including sets of reports
demonstrating functionality and is meant to be a
quick start demo.

Pentaho BI Server This is the J2EE application that runs within a host
application server and services user requests. The
term is used to refer to the server portion of the
platform without regard to how or where it is
deployed.

XMI XML Metadata Interchange: The XML Metadata
Interchange (XMI) is an OMG standard for
exchanging metadata information via Extensible
Markup Language (XML).

Pro "Pro" is a legacy terms that used to describe
closed-source capabilities that were only available
to paying customers. When referencing a
software build, Pentaho now uses the term
"Subscription Edition" to describe the build.
And the additional closed-source features included
in that build are now known as Pentaho
Management Services.

Design Studio A stand alone application that hosts a set of
Pentaho plug-ins used for creating, testing and
administering content for the Pentaho Project. It is
an Eclipse http://eclipse.org workbench,
pre-configured and customized for Pentaho.
Currently there is only one plug-in; the Action
Sequence Editor. In many cases people use the
Design Studio to refer to the this plug-in. Future
releases will provide more plug-ins and more
capabilities. The goal is to have it be the client UI
for as much of the administration and content
creation as possible. This is considered to be an
Administrator, Developer or Content Creator tool.
Not a typical end user tool.

Action Sequence Editor The Eclipse Plug-in that allows people to generate
Action Sequences (a script that run within the
Pentaho BI Platform.)

WAQR Pronounce "wacker". Web Ad hoc Query and
Reporting

Document generated by Confluence on Jun 13, 2007 09:27 Page 16

http://wiki.pentaho.org/display/PentahoDoc/Getting+Started+with+the+BI+Platform
http://sourceforge.net/projects/pentaho/
http://wiki.pentaho.org//display/PentahoDoc/Latest+BI+Server+Documentation
http://en.wikipedia.org/wiki/XMI
http://en.wikipedia.org/wiki/XML_Metadata_Interchange
http://wiki.pentaho.org//display/PentahoDoc/Getting+Started+with+Design+Studio
http://eclipse.org
http://wiki.pentaho.org//display/studio/3.+Action+Sequence+Editor

Pimper a.k.a. The PME, the Pentaho Metadata Editor

SWAG Scientific Wild Assed Guess

CWM Common Warehouse Metamodel

BI Platform Specific Terms

Solution A solution consists of a collection of documents
(files) that collectively define the processes and
activities that are the system's part in
implementing a solution to a business problem.
These documents include Action Sequences,
workflow process definitions, report definitions,
images, rules, queries etc. A solution is
represented in the file system as the top level
folder.

Solutions Folder Refers to the top level folder containing all of the
solutions available to the BI Server. In the DB
Based Repository, this is the top level of the
solution hierarchy

Solution Repository The location where solutions and the metadata
they rely on is stored and maintained. Requests
made to the platform to have actions executed
rely on the action being defined in the Solution
Repository. There are two implementations of the
solution repository - The file-based solution
repository and the DB based solution
repository The DB based solution repository is
only available in Pro.

Solution Engine The software that retrieves the definition of an
action from the Solution Repository and directs its
execution.

Component The component layer is an API that provides a
standard interface between the solution engine
and the application that executes business logic. A
component may contain all of the code required to
perform a task or may just be an interface to
another application or system. Data and
instructions to the component are provided via an
Action Definition.

Action Definition An XML definition specifying the parameters,
resources and settings required for the execution
of a task within a single component. The Action
Definition defines which component to call, what
data to pass into and receive from the component
and any component specific information required.
An action definition is not a stand alone document;
it is a part of an Action Sequence.

Action Sequence An XML document that defines the interaction
between one or more Action Definitions. It defines

Document generated by Confluence on Jun 13, 2007 09:27 Page 17

http://en.wikipedia.org/wiki/Swag_(disambiguation)
http://www.omg.org/technology/cwm/
http://wiki.pentaho.org//display/PentahoDoc/04.+Configure+the+Solutions
http://wiki.pentaho.org//display/PentahoDoc/1.+Solution+Repository
http://wiki.pentaho.org//display/PentahoDoc/Building+Components
http://wiki.pentaho.org//display/PentahoDoc/4.+Action+Sequences

the smallest complete task that the Solution
Engine can perform. When the Solution Engine is
told to execute - it is given an Action Sequence
document to execute. The execution of the Action
Sequence can be completed autonomously or may
execute as part of another Action Sequence.
Action Sequence Definitions are stored in the
Solution Repository.

Runtime Context Action Sequences are transformed from XML by
the solution engine into objects that are
interpreted by the Runtime Context. The Runtime
Context maintains a contract between the Solution
Engine and the Action Sequence and enforces a
contract between the Action Sequence and the
components.

PMD Pentaho MetaData

PME Pentaho Metadata Editor

WAQR Web Ad hoc Query and Reporting

MQL MetaData Query Language

MDR MetaData Repository

01. Configuring the
BI Server and
Design Studio

II - Building
Solutions

03. Architecture

Document generated by Confluence on Jun 13, 2007 09:27 Page 18

http://wiki.pentaho.org/display/PentahoDoc/01.+Configuring+the+BI+Server+and+Design+Studio
http://wiki.pentaho.org/display/PentahoDoc/01.+Configuring+the+BI+Server+and+Design+Studio
http://wiki.pentaho.org/display/PentahoDoc/01.+Configuring+the+BI+Server+and+Design+Studio
http://wiki.pentaho.org/display/PentahoDoc/II+-+Building+Solutions
http://wiki.pentaho.org/display/PentahoDoc/II+-+Building+Solutions
http://wiki.pentaho.org/display/PentahoDoc/03.+Architecture

03. Architecture

This page last changed on Dec 11, 2006 by dmoran.

02. Terminology II - Building
Solutions

04. Action
Sequences

The architecture diagram below shows the relationship between the major components of the BI Server
and it's interfaces with the outside world. The heart of the server is the Solution Engine. The Solution
Engine is the focal point for activity within the Pentaho BI Platform. It "sits" between the outside world -
Web Client, Services, System Monitor etc. and the Component Layer. Requests to do work come into the
solution engine and are routed to the appropriate component or components for execution.

Document generated by Confluence on Jun 13, 2007 09:27 Page 19

http://wiki.pentaho.org/display/PentahoDoc/02.+Terminology
http://wiki.pentaho.org/display/PentahoDoc/II+-+Building+Solutions
http://wiki.pentaho.org/display/PentahoDoc/II+-+Building+Solutions
http://wiki.pentaho.org/display/PentahoDoc/04.+Action+Sequences
http://wiki.pentaho.org/display/PentahoDoc/04.+Action+Sequences

Action Sequences

An Action Sequence is an XML document that defines the smallest complete task that the solution engine
can perform. It is executed by a very lightweight process flow engine and defines the order of execution
of one or more the components of the Pentaho BI Platform. We avoid calling this a process flow because
it is missing many of the capabilities of a true process flow engine. It is good for sequencing small, linear,
success oriented tasks like reporting and bursting. It has the ability to loop through a result set, call

Document generated by Confluence on Jun 13, 2007 09:27 Page 20

another Action Sequence and conditionally execute components. The Action Sequence document should
have a ".xaction" suffix.

Solutions and the Solution Repository

A solution is not a single document; it's a collection of documents. It's a logical grouping of Action
Sequences and the resources they require. The grouping is maintained by the Solution Repository. You
can see the structure of the solution repository by navigating to the pentaho-solution directory in the top
level PCI install directory. The default location is: /pentaho-demo/pentaho-solutions. All folders within
this directory with the exception of system are solution folders. Solution folders may contain any
numbers of folders, those folders may contain any number of folders and so on. This is also true for the
DB based Repository which actually models a file-system.

!SolutionFilesystem.png|align=left!In this view of the solutions folder, there are 3 solutions defined,
admin, samples, and test. The system folder is not a solution. It is where system configuration
information, component specific settings and resources are located.

The HelloWorld Action Sequence is located in the samples solution with a path of getting-started and
an Action Sequence name of HelloWorld.xaction. This illustrates the three part address that is used to
locate an Action Sequence within the repository: solution id, path and Action Sequence name. With
this kind of naming, it is possible to group Action Sequences in any manner desired; by department or
role etc. Use whatever structure makes sense for that solution.

The system Folder

As mentioned earlier, the system folder is a special case. One of the most important files it contains is
the pentaho.xml configuration file. The pentaho.xml file contains system wide configuration settings
for the Pentaho BI Platform. See the pentaho.xml Reference for more information.

Most of the directories under system are used by individual components.

Directory Description

BIRT Settings, Configuration files and pluins used by the
BIRT Reporting component.

content The storage directory for content generated by
Action Sequences like Reports, PDF's, HTML pages
etc. This is also known as the content repository.

custom Location where the UI templates are stored for
both the PCI navigation and default and custom
parameter pages. The XSL's used to generate the
PCI navigation UI is also stored here.

dtd The DTD's used by the Platform are located here.

google Contains settings like license key for Google maps
integration.

hibernate Location of the hibernate-jboss-managed.xml.

Document generated by Confluence on Jun 13, 2007 09:27 Page 21

http://wiki.pentaho.org//display/PentahoDoc/pentaho.xml+Reference

jasperreports JasperReports Configuration file. Compiled
JasperReports are also stored here.

kettle Kettle settings.xml.

logs Components can store any log files they generate
here.

olap Mondrian stores it's data source information here.

quartz Location for the Quartz properties file.

shark Enhydra Shark workflow engine working directory
containing configuration, logs and repository.

simple-jndi JNDI settings for the client tools.

smtp-email Server email configuration.

test-suite Configuration settings for the Test Manager
interface.

tmp Temporary files that need to be available via URL
call like images or generated charts.

The test solution

The test solution contains Action Sequences and JUnit tests used to test functionality of parts of the BI
Server. The JUnit tests are used during the nightly builds to perform regression testing.

TODO

Document the JUnit tests and the Test Manager stuff.

The Runtime Context

When requested to run, the solution, path and name of an Action Sequence is passed to the Solution
Engine for execution. The Solution Engine retrieves the Action Sequence from the Solution Repository
and creates a runtime environment. This runtime environment, called the Runtime Context, is where the
Action Sequence is executed step by step.

TODO

Finish this section

Putting it all together

02. Terminology II - Building
Solutions

04. Action
Sequences

Document generated by Confluence on Jun 13, 2007 09:27 Page 22

http://wiki.pentaho.org/display/PentahoDoc/02.+Terminology
http://wiki.pentaho.org/display/PentahoDoc/II+-+Building+Solutions
http://wiki.pentaho.org/display/PentahoDoc/II+-+Building+Solutions
http://wiki.pentaho.org/display/PentahoDoc/04.+Action+Sequences
http://wiki.pentaho.org/display/PentahoDoc/04.+Action+Sequences

04. Action Sequences

This page last changed on Dec 13, 2006 by dmoran.

03. Architecture II - Building
Solutions

05. Integrating
Pentaho Reports
(JFreeReports)

The Action Sequence is an XML document that defines the smallest complete task that the solution engine
can perform. It is executed by a very lightweight process flow engine and defines the order of execution
of one or more the components of the Pentaho BI Platform. We avoid calling this a process flow because
it is missing many of the capabilities of a true process flow engine. It is good for sequencing small, linear,
success oriented tasks like reporting and bursting. It has the ability to loop through a result set, call
another Action Sequence and conditionally execute components. The Action Sequence document should
have a ".xaction" suffix.

• 01 - Anatomy of an Action Sequence
• 02 - Creating and Editing an Action Sequence
• 03 - Executing an Action Sequence
• 04 - Action Sequence XML

03. Architecture II - Building
Solutions

05. Integrating
Pentaho Reports
(JFreeReports)

Document generated by Confluence on Jun 13, 2007 09:27 Page 23

http://wiki.pentaho.org/display/PentahoDoc/03.+Architecture
http://wiki.pentaho.org/display/PentahoDoc/II+-+Building+Solutions
http://wiki.pentaho.org/display/PentahoDoc/II+-+Building+Solutions
http://wiki.pentaho.org/display/PentahoDoc/05.+Integrating+Pentaho+Reports+%28JFreeReports%29
http://wiki.pentaho.org/display/PentahoDoc/05.+Integrating+Pentaho+Reports+%28JFreeReports%29
http://wiki.pentaho.org/display/PentahoDoc/05.+Integrating+Pentaho+Reports+%28JFreeReports%29
http://wiki.pentaho.org/display/PentahoDoc/03.+Architecture
http://wiki.pentaho.org/display/PentahoDoc/II+-+Building+Solutions
http://wiki.pentaho.org/display/PentahoDoc/II+-+Building+Solutions
http://wiki.pentaho.org/display/PentahoDoc/05.+Integrating+Pentaho+Reports+%28JFreeReports%29
http://wiki.pentaho.org/display/PentahoDoc/05.+Integrating+Pentaho+Reports+%28JFreeReports%29
http://wiki.pentaho.org/display/PentahoDoc/05.+Integrating+Pentaho+Reports+%28JFreeReports%29

01 - Anatomy of an Action Sequence

This page last changed on Jun 05, 2007 by bseyler.

04. Action Sequences 02 - Creating and Editing
an Action Sequence

The easiest way to explore an Action Sequence is via the Action Sequence Editor plugin in the Pentaho
Design Studio. The Action Sequence editor has four tabs along the bottom: General, Define Process, XML
Source and Test. The function of each tab will be discussed in more detail later, their basic functions are:

• 1. General - Basic properties like title, help etc.
• 2. Define Process - Defines the inputs, outputs, resources required by the Action Sequence and

allows you to program the interactions between the Action Sequence and the Pentaho Components
• XML Source - The raw XML that the editor is generating
• Test - Interface for executing the Action Sequence on the Pentaho BI Server

Click through each tab to get familiar with the editor. Check out the XML Source tab to get an idea of
what the editor is saving you from. Now let's look a bit more closely at the HelloWorld.xaction.

General Information

As we mentioned earlier the "General" tab contains some general information about the action sequence,
such as the title, author, icon, description, and help text to be displayed in the browser window (as shown
below). Notice that the design studio shows the title for action sequence to be "%title". The "%" indicates
that this is the name of a string whose value is defined in a properties file with the same name is the
same as the action sequence. In this case the property file is named HelloWorld.properties. This is how
action sequences accommodate internationalization. . Additionally you can indicate the logging level you
would like to use for this action sequence. Logged messages will appear in the
pentaho-demo/jboss/server/default/log/server.log file. If you're having problems getting your action
sequences working, the log file is a good place to look for clues as to what the problem might be.

Inputs and Resources

Now press the "Define Process" tab. You should see a section labeled "Process Inputs" which lists the
inputs and resources used by the action sequence. The inputs are the pieces of information the action
sequence will need from the outside world when it runs. They can come from four sources; runtime,
request, session, global and default. Runtime parameters are parameters that are stored in the Runtime
Context. Remember, the Runtime Context stores the inputs and outputs from previous instances and
makes them available to future executions of the same runtime instance id. Request parameters are the
name-value pairs specified on a URL. Session parameters are variables that are stored in the user's
session and may contain unique values for each user. Global parameters are similar to session
parameters except they have the same values for all users. Default values can be specified for each input

Document generated by Confluence on Jun 13, 2007 09:27 Page 24

http://wiki.pentaho.org/display/PentahoDoc/04.+Action+Sequences
http://wiki.pentaho.org/display/PentahoDoc/02+-+Creating+and+Editing+an+Action+Sequence
http://wiki.pentaho.org/display/PentahoDoc/02+-+Creating+and+Editing+an+Action+Sequence
http://wiki.pentaho.org//download/attachments/2696/helloWorld.PNG

and in the Action Sequence document and are used as a last resort.

Session and Global parameters can be used to provide secure filtering of data within the Action
Sequence. A session parameter gets initialized by executing an action sequence when the user logs onto
the system. The Action Sequence called upon login can be set up to perform a query using the user's
login name in the where clause. The result is stored in the user's session and is available to subsequent
Action Sequences. Global parameters are initialized when the system starts up and are available for all
users. See the "Securing Data Access with Session and Global Filters" document for information on how
to set up the filters and use them.

There are two implicit inputs instance-id and solution-id that are always available and do not need to
be specified as inputs or outputs. They are the... well I'm sure you can guess what they are.

Resources are the files needed by the action sequence to complete its job. For example: if the action
sequence is going to run a JFree report, one of the resources would be the location of the JFree report
definition file.

Using the Design Studio let's take a look at some examples of inputs and resources. Browse to the
samples/reporting directory in your "Pentaho Solutions" project and double-click on the
JFree_Quad.xaction. Select each of the process inputs to view the details about each of the inputs and
resources used by this action sequence.

Outputs

The action sequence outputs are what the action sequence will leave behind when it's complete. Outputs
can have three destinations: runtime, session, or content. The first two destinations correspond to the
input sources discussed above. The third destination indicates that the output will be put in the http
response header or content.

Flow Control

The Action Sequence is not meant to be a replacement for workflow, that being said, there are two ways
to control the sequence of execution; loops and conditions. An Action Sequence can execute a group of
actions multiple times. The most common usage is to perform the set of actions once for each row in a
query result set. The data types that can be specified for a loop are string-list, result-set and
property-map-list. Conditional execution can be specified.

A group of actions can also be executed conditionally. The condition that will be evaluated for true is
based on a JavaScript result.

Actions (Components)

Within the design studio open the samples/bursting/BurstActionSequence.xaction. What you see in the
Process Actions section is a list of all the actions to be performed by this action sequence. Note that the
order is important here. The topmost action will be run first, followed by the one below it, and so on. The
second action, the one that starts with "Action Loop" probably deserves special mention. It's a loop action
that will perform the actions it contains multiple times, depending on what it's set to loop on. In this case

Document generated by Confluence on Jun 13, 2007 09:27 Page 25

it looks like there are five actions contained in the loop. Click on the first action in the list.

On the right side you can view the action details. You'll notice that there is a place for entering a brief
description for the action. It's not necessary to enter anything here, but it's a good idea, as it makes the
action sequence much easier to read. Each component has its own editor. Since this action uses the SQL
query component, there is an area to specify the database connection, the query, and the expected
contents of the query result. Now lets click on the "+" sign next to this action in the Process Actions tree.
Notice that there are four items listed under the action. These are the outputs from this action. The
rule-result output tells the system where the results of the query are stored. The remaining three outputs
correspond to particular columns within the rule-result output. Other actions that follow can use these
outputs as their inputs. So, one action can leave outputs that following actions can use as inputs.
Additionally each action has available to it the action sequence inputs we discussed earlier. The idea is
that each little action has something it can do really well. It takes in some input does some work and
leaves some output for some other action(s) to use. Your job is to tie these individual actions together to
do something meaningful.

Let's now take a quick look at each of the actions in this action sequence and see how they're working
together to get something useful done. As we go through this don't get tied up in all the little details. The
idea is to get a feel for how the actions work together. Later we'll learn about the details of each
individual type of action.

Let's start with the first action in the actions tree. It performs a SQL query to extract some region,
manager, and email information from a database. As mentioned earlier, it leaves some outputs behind.
The query results are saved in an output called rule-result, and the other three outputs tell the world the
column names for information in the results. Anytime you run a SQL query action make sure you include
the column names in the output. That way other actions know what data is available in the rule result.

Next is the action loop. If you select it you'll notice that there isn't a whole lot to it. One notable point is
that whenever you see "<" and ">" around a string it indicates that a parameter is being referenced. In
this case the parameter is "rule-result". It's not by coincidence that this happens to be the name of the
output from the preceding SQL Query action. This is an example of an action using the outputs from a
previous action. So the five actions within the loop will each be performed once for each row that was
returned in the outputs of the previous query action.

The next three actions are all similar. They're each string formatting actions. They take some input
strings, place them into a formatted message, and leave the formatted string as an output. Basically they
get things in order for the last two actions. If you click on the "+" sign next to each of these actions in
the Process Actions tree, you'll see the outputs that each leaves behind.

Click on the action titled "Generate the report". This action will be generating a JFree report. In the
configuration section you'll find that the JFree report specification and report format are being referenced
using parameter named "report-definition" and "output-type" respectively. Notice both of these
parameters are defined under the Process Inputs. Additionally the configuration section contains the
database connection and query information that will be passed to the JFree report. Note that since these
values are not enclosed within "<>" they are not parameter names, but are constant values. Finally you'll
notice that the report is being saved in an output called "report-output". So we've generated this report
and it's sitting in an action output parameter called "report-output". Now what?

Select the last action in the sequence. The name says it all. This action will email the report to the
manager of the region for which the JFree report was generated. Take a look at the configuration details
and you'll see how this action ties all the pieces together to send report off as an attachment.

Document generated by Confluence on Jun 13, 2007 09:27 Page 26

Again don't be too concerned if you don't understand every detail. Each type of action has its own set of
inputs and outputs. Once you get familiar with them you'll soon be putting them together to do all kinds
of useful stuff.

04. Action Sequences 02 - Creating and Editing
an Action Sequence

Document generated by Confluence on Jun 13, 2007 09:27 Page 27

http://wiki.pentaho.org/display/PentahoDoc/04.+Action+Sequences
http://wiki.pentaho.org/display/PentahoDoc/02+-+Creating+and+Editing+an+Action+Sequence
http://wiki.pentaho.org/display/PentahoDoc/02+-+Creating+and+Editing+an+Action+Sequence

02 - Creating and Editing an Action Sequence

This page last changed on Dec 13, 2006 by dmoran.

01 - Anatomy of an
Action Sequence

04. Action
Sequences

03 - Executing an
Action Sequence

Select the Pentaho Design Studio icon (circled in red) and choose "New Action Sequence". Then select the
Container Browse button, and choose the "getting-started" folder in the PCI then select OK. Now give
your new action sequence a name. Name your action sequence (make sure it ends with ".xaction") and
from the "Template" pull-down select "Sample Burst Action" and press the Finish button.

Templates are a great way to get a jump start on building action sequences. A good bit of the information
is already filled in for you. All you have to do is fill in the blanks. Feel free to build your own reusable
action sequences. When you're done, save them in the PentahoDesign
Studio\plugins\org.pentaho.designstudio.editors.actionsequence_x.x.x.x/templates directory. Next time
you start the Action Sequence Wizard, your action sequence will be one of the available templates

A burst report is a report that is run multiple times for multiple people. It is most useful if there is a
parameter that will filter data specifically for each person. In this example, we do a query to get a list of
managers, their email address and the region for which they are responsible. We loop through the
result-set and generate a report filtered by the region. A personalized message is created and the report
is emailed to the responsible manager.

On the general tab enter a title and description. Notice that the template we used didn't specify an icon.
Let's assign one by clicking on the "Browse...", and selecting the
samples/bursting/BurstActionSequence.png file. Now choose File->Save and we'll move on.

Now press the "Define Process" tab. In brief this action sequence is going to run a report, then send a
report to the each manager in the form of an attached Excel spreadsheet. Let's make a few changes.
We'll send a second email to all our managers and let them all know how cool this action sequence stuff
is.

Document generated by Confluence on Jun 13, 2007 09:27 Page 28

http://wiki.pentaho.org/display/PentahoDoc/01+-+Anatomy+of+an+Action+Sequence
http://wiki.pentaho.org/display/PentahoDoc/01+-+Anatomy+of+an+Action+Sequence
http://wiki.pentaho.org/display/PentahoDoc/04.+Action+Sequences
http://wiki.pentaho.org/display/PentahoDoc/04.+Action+Sequences
http://wiki.pentaho.org/display/PentahoDoc/03+-+Executing+an+Action+Sequence
http://wiki.pentaho.org/display/PentahoDoc/03+-+Executing+an+Action+Sequence

In the Process Actions, tree right click on the "Email the report" action. Then select Add->Email. A new
email action will be added as the last step in the loop, and the details of the newly created action will
appear to the right of the tree. Since we want to send the email to the same managers that received the
reports, we'll use the same email address used in the previous email action. Expand the "Lookup the
region..." action in the Process Actions tree by clicking on the "+" sign next to the action. Now press and
hold down the right mouse button over the "EMAIL" output listed under this action in the tree and drag
the mouse over the field labeled "To" on the right hand side, then release the mouse button. A string
labeled "<EMAIL>" should appear with the field indicating that the value of the "EMAIL" parameter will be
used as the email destination. Let's fill in the "From" address by using the pull-down menu to the right of
the "From" field and selecting "<from>". For the sake of example let's CC the email to some hard coded
email address. Click in the CC field and type in the email address of your choice. Note that since this is
occurring within a loop the person being CC'd will receive the same email for each manager in the loop.
So make sure you CC it to someone you really want to annoy. Finally, type in the subject and text
message of your choice. When you're done you should end up with something similar to what's shown
below. If you run this action sequence your newly created email action should send your email to the
appropriate parties.

The point of this little exercise was to give you a taste of how you create your own actions within an
action sequence and how to tie the outputs of one action to the inputs of a later action.

01 - Anatomy of an
Action Sequence

04. Action
Sequences

03 - Executing an
Action Sequence

Document generated by Confluence on Jun 13, 2007 09:27 Page 29

http://wiki.pentaho.org/display/PentahoDoc/01+-+Anatomy+of+an+Action+Sequence
http://wiki.pentaho.org/display/PentahoDoc/01+-+Anatomy+of+an+Action+Sequence
http://wiki.pentaho.org/display/PentahoDoc/04.+Action+Sequences
http://wiki.pentaho.org/display/PentahoDoc/04.+Action+Sequences
http://wiki.pentaho.org/display/PentahoDoc/03+-+Executing+an+Action+Sequence
http://wiki.pentaho.org/display/PentahoDoc/03+-+Executing+an+Action+Sequence

03 - Executing an Action Sequence

This page last changed on Dec 13, 2006 by dmoran.

02 - Creating and
Editing an Action
Sequence

04. Action
Sequences

04 - Action
Sequence XML

There are several ways to execute a solution; via Design Studio, URL, Java Code or a Web Service call.

Design Studio

Click on the test tab on the HelloWorld.xaction editor. At the top of the test page, there is a field titled
"Pentaho Server URL." If your pentaho server is running, enter the URL to your Pentaho BI Server which
is likely to be http://localhost:8080/pentaho if you are running the PCI. Click the "Test Server" button
and verify that you see the top level samples page displayed on the test page. Click on "Run" to execute
the HelloWorld Action Sequence. You should see the familiar "Hello World. Greetings from the Pentaho BI
Platform." message. In the unlikely event that you are not able to not see the Hello World message,
make sure the server is running and that you typed the Server URL correctly. Verify that you can run the
samples from your browser. If all else fails, try checking the Design Studio forum at www.pentaho.org.

URL

The samples that come with the preconfigured install are launched via URL using the ViewAction
(org.pentaho.ui.servlet.ViewAction) servlet. The following URL will launch the HelloWorld Action
Sequence:

http://localhost:8080/pentaho/ViewAction?&solution=samples&path=getting-started&action=HelloWorld.xaction

The result returned depends on the Action Sequence Document. You may get a report to view, a text
message or just "Action Successful." The following parameters can be entered on the URL:

• ° solution, path, action* - The location of the Action Sequence document to load.
° instance_id* - The instance Id of a previous Runtime Context
° debug* - set to "true" in order to have debug information written to the execution log.

Web Service Call

In the "Settings and Services" group of the samples that come with the preconfigured install is a Web
Service Example. It is still a URL call, this time to the servlet ServiceAction
(org.pentaho.ui.servlet.HttpWebService). The following URL will launch the HelloWorld Action Sequence:

http://localhost:8080/pentaho/ServiceAction?solution=samples&path=getting-started&action=HelloWorld.xaction

In this case, the result returned is an XML SOAP Response. The following parameters can be entered on
the URL:

Document generated by Confluence on Jun 13, 2007 09:27 Page 30

http://wiki.pentaho.org/display/PentahoDoc/02+-+Creating+and+Editing+an+Action+Sequence
http://wiki.pentaho.org/display/PentahoDoc/02+-+Creating+and+Editing+an+Action+Sequence
http://wiki.pentaho.org/display/PentahoDoc/02+-+Creating+and+Editing+an+Action+Sequence
http://wiki.pentaho.org/display/PentahoDoc/04.+Action+Sequences
http://wiki.pentaho.org/display/PentahoDoc/04.+Action+Sequences
http://wiki.pentaho.org/display/PentahoDoc/04+-+Action+Sequence+XML
http://wiki.pentaho.org/display/PentahoDoc/04+-+Action+Sequence+XML
http://localhost:8080/pentaho
http://www.pentaho.org/
http://localhost:8080/pentaho/ViewAction?&solution=samples&path=getting-started&action=HelloWorld.action.xml
http://localhost:8080/pentaho/ServiceAction?solution=samples&path=getting-started&action=HelloWorld.action.xml

• ° solution, path, action* - The location of the Action Sequence document to load.
° instance_id* - The instance Id of a previous Runtime Context
° debug* - set to "true" in order to have debug information written to the execution log.

Java Call

An Action Sequence can be executed directly from a Java application. For an example of how to do this,
open the Java file "org.pentaho.test.RuntimeTest.java" and look at the JUnit test for HelloWorld. This
class code can be found by accessing the Pentaho public repository at svn://source.pentaho.org/svnroot.

Action Sequence Recap

The inputs, outputs and resources in the Action Sequence header define a contract between the Action
Sequence and the outside world. The Sequence requires the specified inputs and resources to be passed
in and will return the specified outputs.

The action-definition defines a contract between each component and the Action Sequence. The
action-inputs and action-resources define the parameters that a component requires to execute. The
action-outputs define what parameters will be available after the component completes executing.
Outputs from one component can be used as inputs to another component. The mapping attribute of the
action-inputs allow outputs from one component that have different names to be used as inputs to
another component.

Specifying the input/output relationships and their data types allows the system to validate an Action
Sequence or set of Action Sequences without actually executing the components. A complete solution can
be validated and "locked down" to prevent modification of the Action Sequence documents and eliminate
errors due to "broken links" between these documents.

02 - Creating and
Editing an Action
Sequence

04. Action
Sequences

04 - Action
Sequence XML

Document generated by Confluence on Jun 13, 2007 09:27 Page 31

http://wiki.pentaho.org/display/PentahoDoc/02+-+Creating+and+Editing+an+Action+Sequence
http://wiki.pentaho.org/display/PentahoDoc/02+-+Creating+and+Editing+an+Action+Sequence
http://wiki.pentaho.org/display/PentahoDoc/02+-+Creating+and+Editing+an+Action+Sequence
http://wiki.pentaho.org/display/PentahoDoc/04.+Action+Sequences
http://wiki.pentaho.org/display/PentahoDoc/04.+Action+Sequences
http://wiki.pentaho.org/display/PentahoDoc/04+-+Action+Sequence+XML
http://wiki.pentaho.org/display/PentahoDoc/04+-+Action+Sequence+XML

04 - Action Sequence XML

This page last changed on Dec 13, 2006 by dmoran.

03 - Executing an Action
Sequence

04. Action Sequences

This section explains the XML that makes up an Action Sequence. Even if you never, ever, ever want to
see XML or have anything to do with it (I don't know why anyone would ever think such a thought),
there is still some valuable information in this section and it is worth reading or at least skimming.

In most cases the Design Studio will suffice for building Action Sequences. There are times, however,
when you may need to work directly with the Action Sequence XML. Some examples of when you might
need to edit the XML directly:

• There is usually a time lag between when a new feature is added to the platform and when the
Design Studio GUI is ready.

• You may need to work around a Design Studio bug.
• Sometimes the UI for a rarely used feature or special case property would be more confusing than

editing the XML
• Custom components or components that you create may not have a corresponding UI
• Copying and pasting pieces from one Acton Sequence to another
• If you are developing your own components you will need to understand the XML

Even when you do need to edit the XML directly, you can still use the Design Studio. Simply click on the
XML Source tab and go. When switching off the XML Tab, the Action Sequence will be checked for valid
XML and Action Sequence structure.

Custom components and components that the Design Studio does not understand will still be visible and
editable in the Process Actions pane on the 2. Define Process tab. These components will be
displayed with a generic UI that lets you edit inputs, outputs and resources and has a text box for editing
the component XML.

• 1 - Example Action Sequence XML
• 2 - Defining Inputs
• 3 - Data Types
• 4 - Resource Types
• 5 - Actions
• 6 - XML Schema

03 - Executing an Action
Sequence

04. Action Sequences

Document generated by Confluence on Jun 13, 2007 09:27 Page 32

http://wiki.pentaho.org/display/PentahoDoc/03+-+Executing+an+Action+Sequence
http://wiki.pentaho.org/display/PentahoDoc/03+-+Executing+an+Action+Sequence
http://wiki.pentaho.org/display/PentahoDoc/04.+Action+Sequences
http://wiki.pentaho.org//display/PentahoDoc/4+-+Resource+Types
http://wiki.pentaho.org/display/PentahoDoc/03+-+Executing+an+Action+Sequence
http://wiki.pentaho.org/display/PentahoDoc/03+-+Executing+an+Action+Sequence
http://wiki.pentaho.org/display/PentahoDoc/04.+Action+Sequences

1 - Example Action Sequence XML

This page last changed on Dec 13, 2006 by dmoran.

04 - Action Sequence XML 2 - Defining Inputs

This is a listing of the Example1.xaction Action Sequence Document.

<action-sequence>
<name>Example1.xaction</name>

<!-- some header nodes deleted -->

<inputs>
<region type="string">

<default-value>Central</default-value>
<sources>

<request>REGION</request>
<session>aRegion</session>

</sources>
</region>

<from type="string">
<default-value>joepentaho@pentaho.org</default-value>

</from>

<subject type="string">
<default-value>Pentaho Example1</default-value>

</subject>

<message-plain type="string">
<default-value>

This is an email from the Pentaho BI Platform - Example1
</default-value>

</message-plain>
</inputs>

<outputs/>

<resources/>

<actions>
<action-definition>

<action-inputs>
<region type="string"/>

</action-inputs>

<action-outputs>
<rule_result type="string"/>

</action-outputs>

<component-name>JavascriptRule</component-name>
<component-definition>

<script>
<![CDATA[

if ("Central".equals(region)) {
rule_result = "joe@pentaho.org";

}
else {

rule_result = "suzy@pentaho.org";
}

]]>
</script>

</component-definition>
</action-definition>

<action-definition>
<action-inputs>

<to type="string" mapping="rule_result"/>
<from type="string"/>
<subject type="string"/>

Document generated by Confluence on Jun 13, 2007 09:27 Page 33

http://wiki.pentaho.org/display/PentahoDoc/04+-+Action+Sequence+XML
http://wiki.pentaho.org/display/PentahoDoc/2+-+Defining+Inputs

<message-plain type="string"/>
</action-inputs>
<component-name>EmailComponent</component-name>
<component-definition/>

</action-definition>

</actions>
</action-sequence>

In this example, the Action Sequence has 4 inputs: region, from, subject and message-plain. For
region, the type is defined as a string; it has a default value of Central and may come from one of two
sources; request and session. When the RuntimeContext resolves the region input at runtime, it will
first look in the request (most likely an http request.) If it doesn't find it in the request, it will look in the
session (most likely the http session.) If it is not available in the session, the default value will be used.
The order that the sources are specified in the XML document is the order that they will be searched. The
default is always used as a last resort.

The other inputs only specify a default value. This is analogous to hard coding the parameters to a
constant value. Since the output of this Action Sequence is an email, no output parameters will be set.

There are 2 action-definition nodes for this sequence. The first defines a JavaScript rule and requires a
region parameter; it will create a new parameter called rule_result. This new parameter will be made
available to other action-definition nodes in the sequence.

Without getting too deep into the workings of the JavaScript rule, the script defined in the
component-definition will be executed and will set the value of rule_result to the appropriate email
address based on the value of region.

When the first <action-definition> completes, the second will execute. It defines an interaction with
the Email component. The email component requires 4 action-inputs: to, from, subject and
message-plain. You may have noticed that the action-inputs: from, subject and message-plain are
specified in the inputs section of the Action Sequence header. The RuntimeContext will take the values
from there and hand them to the Email Component just as it handed region to the JavaScript
Component. The source of the to action-input isn't directly defined. It is indirectly defined with the
mapping attribute. This attribute is telling the RuntimeContext to use the value from rule_result that
was generated by the JavaScript rule and use it as the components to input.

04 - Action Sequence XML 2 - Defining Inputs

Document generated by Confluence on Jun 13, 2007 09:27 Page 34

http://wiki.pentaho.org/display/PentahoDoc/04+-+Action+Sequence+XML
http://wiki.pentaho.org/display/PentahoDoc/2+-+Defining+Inputs

2 - Defining Inputs

This page last changed on Dec 13, 2006 by dmoran.

1 - Example Action
Sequence XML

04 - Action
Sequence XML

3 - Data Types

There are three types of parameters that Action Sequence documents understand; inputs, outputs and
resources. Inputs and outputs are variables of a specific data type like string or property-map (see ADD
LINK TO valid data types.) Resources are similar to inputs except they specify a mime type and path. A
default value cannot be specified for resources. Typically resources represent large amounts of data like
report definitions or images (see ADD LINK TO for valid resource types.)

Parameters can come from four sources; runtime, request, session, global and default.

• Runtime parameters are parameters that are stored in the Runtime Context. Remember, the
Runtime Context stores the inputs and outputs from previous instances and makes them available
to future executions of the same runtime instance id.

• Request parameters are the name-value pairs specified on a URL
• Session parameters are variables that are stored in the user's session and may contain unique

values for each user.
• Global parameters are similar to session parameters except they have the same values for all users.
• Default values are specified in the Action Sequence document and are used as a last resort.

Session and Global parameters can be used to provide secure filtering of data within the Action
Sequence. A session parameter gets initialized by executing an action sequence when the user logs onto
the system. The Action Sequence called upon login can be set up to perform a query using the user's
login name in the where clause. The result is stored in the user's session and is available to subsequent
Action Sequences. Global parameters are initialized when the system starts up and are available for all
users. See Using System Actions to Control Data Access for information on how to set up the filters and
use them.

Here is an example if the inputs section of an Action Sequence document:

<inputs>
<region type="string">

<sources>
<request>REGION</request>
<runtime>aRegion</runtime>

</sources>
<default-value>Central</default-value>

</region>
</inputs>

This example indicates that the Action Sequence document requires a parameter named region (case
sensitive.) When executed, the Runtime Context will first look to see if there was a parameter named
REGION in the request. If the Action Sequence was launched from a URL, and there was a parameter
REGION=xxx specified, than this value (xxx) will be substituted for the region input. If it doesn't find
the parameter in the request, it will look in its own runtime data for a parameter named aRegion. If it
doesn't find it in the Runtime Context Data, the value Central will be used. The Runtime Context always
looks in the sources in the order in which they are specified and takes the default last. If no default was
specified, then the Action Sequence would throw an error and return.

Document generated by Confluence on Jun 13, 2007 09:27 Page 35

http://wiki.pentaho.org/display/PentahoDoc/1+-+Example+Action+Sequence+XML
http://wiki.pentaho.org/display/PentahoDoc/1+-+Example+Action+Sequence+XML
http://wiki.pentaho.org/display/PentahoDoc/04+-+Action+Sequence+XML
http://wiki.pentaho.org/display/PentahoDoc/04+-+Action+Sequence+XML
http://wiki.pentaho.org/display/PentahoDoc/3+-+Data+Types
http://wiki.pentaho.org//display/PentahoDoc/Using+System+Actions+to+Control+Data+Access

There are two implicit parameters instance-id and solution-id that are always available and do not
need to be specified as inputs or outputs. They are the... well I'm sure you can guess what they are.

1 - Example Action
Sequence XML

04 - Action
Sequence XML

3 - Data Types

Document generated by Confluence on Jun 13, 2007 09:27 Page 36

http://wiki.pentaho.org/display/PentahoDoc/1+-+Example+Action+Sequence+XML
http://wiki.pentaho.org/display/PentahoDoc/1+-+Example+Action+Sequence+XML
http://wiki.pentaho.org/display/PentahoDoc/04+-+Action+Sequence+XML
http://wiki.pentaho.org/display/PentahoDoc/04+-+Action+Sequence+XML
http://wiki.pentaho.org/display/PentahoDoc/3+-+Data+Types

3 - Data Types

This page last changed on Dec 13, 2006 by dmoran.

2 - Defining Inputs 04 - Action
Sequence XML

4 - Resource Types

The following data types are currently supported by the Pentaho BI Platform.

• content — Content is large chunk of data that is generated within a component.
• long — A Java Long Object.
• propert-map-list — A list of property maps of Java Strings.
• property-map — A property map of Java Strings.
• string — The standard stinky old Java String.
• string-list — A list of Java String Objects.

2 - Defining Inputs 04 - Action
Sequence XML

4 - Resource Types

Document generated by Confluence on Jun 13, 2007 09:27 Page 37

http://wiki.pentaho.org/display/PentahoDoc/2+-+Defining+Inputs
http://wiki.pentaho.org/display/PentahoDoc/04+-+Action+Sequence+XML
http://wiki.pentaho.org/display/PentahoDoc/04+-+Action+Sequence+XML
http://wiki.pentaho.org/display/PentahoDoc/4+-+Resource+Types
http://wiki.pentaho.org/display/PentahoDoc/2+-+Defining+Inputs
http://wiki.pentaho.org/display/PentahoDoc/04+-+Action+Sequence+XML
http://wiki.pentaho.org/display/PentahoDoc/04+-+Action+Sequence+XML
http://wiki.pentaho.org/display/PentahoDoc/4+-+Resource+Types

content

This page last changed on Dec 13, 2006 by dmoran.

Content is large chunk of data that is generated within a component.

One example of content is a PDF file generated by the reporting component. You cannot specify a default
value for content since it can be of any type and is represented internally as a byte stream.

Example:

This XML defines a content node named attachment that is expected to exist in the runtime context
under the name report-output. In this example, the report component generated a document and
stored it as report-output. The email component could embed this data as an attachment in an email.

<attachment type="content">
<sources>

<runtime>report-output</runtime>
</sources>

</attachment>

Document generated by Confluence on Jun 13, 2007 09:27 Page 38

long

This page last changed on Dec 13, 2006 by dmoran.

A Java Long Object.

Example:

This XML node defines a long with a default value of 25.

<amount type="long">
<default-value>25</default-value>

</amount>

Document generated by Confluence on Jun 13, 2007 09:27 Page 39

propert-map-list

This page last changed on Dec 13, 2006 by dmoran.

A list of property maps of Java Strings.

Example:

This XML node defines a property-map with the name fruit-data with 3 property-map sets. Items in the
list are contained within <entry key="xxx"> nodes. Property map lists are sometimes used to store the
result of a database query. Each property map in the list represents 1 row of data with the keys mapping
to column names and the values mapping to data cells.

<fruit-data type="property-map-list">
<default-value type="property-map-list">

<property-map>
<entry key="name">orange</entry>
<entry key="color">orange</entry>
<entry key="shape">sphere</entry>
<entry key="texture">dimply</entry>

</property-map>
<property-map>

<entry key="name">grapefruit</entry>
<entry key="color">Yellow</entry>
<entry key="shape">sphere</entry>
<entry key="texture">dimply</entry>

</property-map>
<property-map>

<entry key="name">cucumber</entry>
<entry key="color">green</entry>
<entry key="shape">ellipsoid</entry>
<entry key="texture">smooth</entry>

</property-map>
</default-value>

</fruit-data>

Document generated by Confluence on Jun 13, 2007 09:27 Page 40

property-map

This page last changed on Dec 13, 2006 by dmoran.

A property map of Java Strings.

Example:

This XML node defines a property-map with the name veggie-data with 4 name value pairs. Items in the
list are contained within <entry key="xxx"> nodes. Property maps are sometimes used to represent a
single row of data from a database query. The keys map to column names and the value maps to that
column's data.

<veggie-data type="property-map ">
<default-value type="property-map">

<property-map>
<entry key="name">carrot</entry>
<entry key="color">orange</entry>
<entry key="shape">cone</entry>
<entry key="texture">bumpy</entry>

</property-map>
</default-value>

</veggie-data>

Document generated by Confluence on Jun 13, 2007 09:27 Page 41

string

This page last changed on Dec 13, 2006 by dmoran.

The standard stinky old Java String.

Example:

This XML node defines a string with a default value of Central. The RuntimeContext will first look for an
input parameter named REGION in the http request. It will then ask the session for an object named
aRegion. If neither have a value it will create a string set to Central.

<region type="string">
<sources>

<request>REGION</request>
<session>aRegion</session>

</sources>
<default-value>Central</default-value>

</region>

Document generated by Confluence on Jun 13, 2007 09:27 Page 42

string-list

This page last changed on Dec 13, 2006 by dmoran.

A list of Java String Objects.

Example:

This XML node defines a string-list with the name to-address with 4 entries. Items in the list are
contained within <list-item> nodes.

<to-address type="string-list">
<default-value type="string-list">

<list-item>joe.pentaho@pentaho.org</list-item>
<list-item>admin@pentaho.org</list-item>
<list-item>sales@pentaho.org</list-item>
<list-item>noxidj@pentaho.org</list-item>

</default-value>
</to-address >

Document generated by Confluence on Jun 13, 2007 09:27 Page 43

5 - Actions

This page last changed on Dec 18, 2006 by dmoran.

4 - Resource Types 04 - Action
Sequence XML

6 - XML Schema

The Action Sequence document is the definition, the Runtime Context provides an execution environment
and the Components are the business logic. A Component performs a single function, a group of related
functions or is a bridge between the Pentaho BI Platform and an external application. The jFree Reports
component is an example of a component that interfaces the platform to the jFree Reports reporting
engine.

There are two major functions that a Component gets called to do - validate and execute. Validate is
called to verify that the inputs are valid and all resources required to execute are available. Execute
actually performs the action.

The action-definition node in the Action Sequence document defines how the component should function.
It is the place to define and map inputs, outputs and any other metadata or settings the component will
require when it is executed. The name of the component that executes the action definition is identified
using the component-name node. The name is the name of a Java class that is dynamically loaded at
runtime. When referring to the built in Pentaho components, the fully qualified name of the component
should not be used, just the class name. For example, use EmailComponent instead of
org.pentaho.plugin.email.EmailComponent.

Action-inputs

The action-inputs and action-resources define the parameters that will be passed into the component
when it executes. Some components have required inputs that must be available or runtime error will
occur. Some inputs may be specified but are optional. For example, the Email Component requires a to
but the cc is optional. There are several ways to satisfy a required input. It can be provided as a passed
parameter with the same name to the component. It can be mapped to a different name and passed to
the component. It can be hard coded with a constant value or in some cases it could be prompted for. By
default the email component should have an action input that looks like:

<action-inputs>
<to type="string" />

. . .
</action-inputs>

Action Input Mapping

What happens if a component requires an input named x and I want to pass it a suitable parameter
named y? You can map any action-input to a different name using the mapping attribute. Again, using
our trusty Email Component example, let's assume we have a JavaScript rule that performs a query and
returns the email address for a user in an output-parameter named EMAIL. Let's further assume that I
want to use that parameter as the to parameter in the Email Component. The XML fragment would look
like:

Document generated by Confluence on Jun 13, 2007 09:27 Page 44

http://wiki.pentaho.org/display/PentahoDoc/4+-+Resource+Types
http://wiki.pentaho.org/display/PentahoDoc/04+-+Action+Sequence+XML
http://wiki.pentaho.org/display/PentahoDoc/04+-+Action+Sequence+XML
http://wiki.pentaho.org/display/PentahoDoc/6+-+XML+Schema

<action-inputs>
<to type="string" mapping="EMAIL"/>

. . .
</action-inputs>

Constant Values as Inputs

If a component requires an input parameter and it is not found in the action-inputs, the component will
automatically look for an XML node with the same name, in the component-definition section. If it finds
one, it will use the value from there. The XML fragment would look like:

<action-inputs>
</action-inputs>

<component-definition>
<to>joe.pentaho@pentaho.org</to>

</component-definition>

Replaceable Parameters

All components have the ability to use the built in template mechanism to perform text replacement using
input parameters. This means that a constant value can be modified using the value of an action-input.
Hmmm that wasn't very clear either. Let's try with an example:

<action-inputs>
<EMAIL type="string"/>

. . .
</action-inputs>

<component-definition>
<to>{EMAIL}@pentaho.org</to>

</component-definition>

The text within the curly braces {} is replaced by an input parameter with the same name. In this
example, if the value of the action-input EMAIL is joe.pentaho then the value of the to parameter
passed to the email component would be joe.pentaho@pentaho.org.

TODO

Explain

Unknown macro: {PREPARE}
and the date parameter.

Prompting

Some components will generate a prompt for certain parameters that they require. The prompt
will be generated by the runtime if the calling mechanism permits it. For example, the above
mentioned Email Component requires a to parameter in order to know where to send the email.
If the to parameter is specified as an action-input but it has a null value, the Email Component
will ask the runtime if prompting is allowed. If the Action Sequence being executed has been

Document generated by Confluence on Jun 13, 2007 09:27 Page 45

launched from a web browser, the runtime will respond with true and the Email Component will
ask the runtime to prompt the user for the to email address. If the Action Sequence was running
via a web service call, the runtime would reply with false and the Email Component would
generate a parameter not found error and return.

Action-outputs

The action-outputs define what parameters will be saved in the Runtime Context and be made
available to other Components when that component finishes executing. Like an action-input,
an action-output can be mapped to another variable name using the mapping attribute.

Component-definition

The component-definition node provides a place for any Component specific options or
parameters.

TODO

Add more about component-definition and action-outputs

4 - Resource Types 04 - Action
Sequence XML

6 - XML Schema

Document generated by Confluence on Jun 13, 2007 09:27 Page 46

http://wiki.pentaho.org/display/PentahoDoc/4+-+Resource+Types
http://wiki.pentaho.org/display/PentahoDoc/04+-+Action+Sequence+XML
http://wiki.pentaho.org/display/PentahoDoc/04+-+Action+Sequence+XML
http://wiki.pentaho.org/display/PentahoDoc/6+-+XML+Schema

6 - XML Schema

This page last changed on Dec 13, 2006 by dmoran.

5 - Actions 04 - Action Sequence XML

This is not actually a schema, but it does explain the Action Sequence XML and node requirements.

XML Nodes marked as REQUIRED are only required if their parent node is being used. Attributes shown in
square brackets [] are optional.

• <action-sequence> REQUIRED - Top level node for the Action Sequence Document
° <name> NOT REQUIRED - The name of the Action Sequence, it must match the file name of

the document.
° <version> NOT USED - The version of this document
° <title> NOT REQUIRED - Friendly name of the document. Used for display only
° <logging-level> NOT REQUIRED - Sets the logging level for the entire Action Sequence. Valid

values are: TRACE, DEBUG, INFO, WARN, ERROR and FATAL. If no logging level is set, ERROR
will be used.

° <documentation> NOT REQUIRED - Contains descriptive nodes used for generating
documentation.

- <author> - NOT REQUIRED - The author of this Action Sequence
- <description> - NOT REQUIRED - Short (1-3 lines) description of the Action Sequence.

This description is used by the solution navigation component to generate its display.
- <help> - NOT REQUIRED - Long Description of the Action Sequence including

instructions for it's use by an end user.
- <result-type> - NOT REQUIRED - Type of output this Action Sequence will generate. It

is used by the solution navigation component to generate its display. Action Sequences
without a result-type will not be displayed by the navigation component. Valid values are:
Report, Process, Rule, View and None.

- <icon> - NOT REQUIRED - Thumbnail image that the navigation component will use for
generating its display. The path to the image is relative to the directory that the
ActionSequence document is in. For example: Example1_image.png

° <inputs> - NOT REQUIRED - Collection of input parameters.
- <param-name type="data-type" > - NOT REQUIRED - param-nameis the name of a

parameter that the Action Sequence is expecting to be available at run time. The type
attribute specifies the data type of this parameter. See below for valid data types.

- <default-value> - NOT REQUIRED - Allows the input parameter to specify a default
value if a value has not been supplied. If the default-value node is present but has no
value specified, the user will be prompted for the value if possible.

- <sources> - NOT REQUIRED - list of parameter providers in the order they should be
queried to obtain a parameter. Valid values are request, session and runtime. Note: if a
param-name is set but default-value and sources are both not specified, a validation error
will occur.

° <outputs> - NOT REQUIRED - Collection of output parameters.
- <param-name type="data-type" > - NOT REQUIRED - param-nameis the name of a

parameter that the Action Sequence is expecting will be set by the time all
action-definitions have executed. The type attribute specifies the data type of this
parameter. See below for valid data types.

° <logging-level> NOT REQUIRED - Sets the logging level during this execution of the
action-definition. Valid values are: TRACE, DEBUG, INFO, WARN, ERROR and FATAL. If no
logging level is set, ERROR will be used.

Document generated by Confluence on Jun 13, 2007 09:27 Page 47

http://wiki.pentaho.org/display/PentahoDoc/5+-+Actions
http://wiki.pentaho.org/display/PentahoDoc/04+-+Action+Sequence+XML

° <resources> - NOT REQUIRED - Collection of resource parameters.
- <resource-name > - NOT REQUIRED - resource-nameis the name of a resource that the

Action Sequence is expecting to use. The type attribute specifies the data type of this
parameter. See below for valid data types.

- <resource-type> - REQUIRED - The name of the type of resource required. Valid values
are: solution-file, file and url.

- <location> - REQUIRED - The path to the resource. For a resource-type of
"solution-file", the location is a pathname relative to the top level of the current solution.
If the resource-type is "file" then the location is assumed to be the a fully qualified path.
For resource-type of "url" the location is assumed to be a fully qualified URL.

- <mime-type> - NOT REQUIRED - Gives a hint about the mime type of the resource.
<*actions [loop-on="parameter-name"] > - REQUIRED - The actions node contains
"action-definition" nodes and optionally more "actions" nodes. The loop-on attribute is
optional. When it is used, the nodes within "actions" will be executed multiple times. It is
necessary to specify a parameter that is of type list (string-list or property-map-list) and
the group of nodes that will be executed once for each element in the list. An input
parameter will be generated with the same name as the loop-on attribute but it will have
the value of one element in the list. For example: if a loop-on attribute named
"department" is a string-list with department names, then a parameter named
department will be available and be set to a different department name for each iteration.

° <actions [loop-on="parameter-name"] > - NOT REQUIRED - Since a single level of looping is
not very fun, actions nodes can be nested within actions nodes to any level desired - no matter
how silly it may be to do so.

° <action-definition> - REQUIRED (At least 1) - It defines one complete call to a component
for execution of a task.

° <action-inputs> - NOT REQUIRED - Collection of action-input parameters.
- <input-name type="data-type" mapping="param"> - NOT REQUIRED - input-name is

the name of a parameter that the Action Definition is expecting to be available at run
time. The type attribute specifies the data type of this parameter. See 3 - Data Types for
valid data types. The mapping attribute allows this input to be mapped to an Action
Sequence input or a previous action-definition output with a different name.

° <action-outputs> - NOT REQUIRED - Collection of action-output parameters.
- <output-name type="data-type" > - NOT REQUIRED - output-nameis the name of a

parameter that the Component will have set by the time it finishes executing. The type
attribute specifies the data type of this parameter. See below for valid data types.

- <component-name> - REQUIRED - The name of the java class that executes the action
definition.

- <component-definition> - REQUIRED - The component specific XML definition. See the
documentation for the specific component for more information. This node may be empty
but it must exist or a validation error will occur.

TODO

• Verify this is up to date
• Add output destinations
• Add resource types xml and string
• come up with a better way to display this - table maybe?

5 - Actions 04 - Action Sequence XML

Document generated by Confluence on Jun 13, 2007 09:27 Page 48

http://wiki.pentaho.org/display/PentahoDoc/5+-+Actions
http://wiki.pentaho.org/display/PentahoDoc/04+-+Action+Sequence+XML

file

This page last changed on Dec 13, 2006 by dmoran.

An absolute path on the file system.

<file>
<location>D:\samples\reporting\MyReport.rptdesign</location>
<mime-type>text/xml</mime-type>

</file>

Document generated by Confluence on Jun 13, 2007 09:27 Page 49

solution-file

This page last changed on Dec 13, 2006 by dmoran.

A file on the file system relative to the location of the current Action Sequence document.

<solution-file>
<location>MyReport.rptdesign</location>
<mime-type>text/xml</mime-type>

</solution-file>

Document generated by Confluence on Jun 13, 2007 09:27 Page 50

url

This page last changed on Dec 13, 2006 by dmoran.

A URL.

<file>
<location>http://www.myserver.com/logo.png</location>
<mime-type>image/png</mime-type>

</file>

Document generated by Confluence on Jun 13, 2007 09:27 Page 51

05. Integrating Pentaho Reports (JFreeReports)

This page last changed on Dec 15, 2006 by dmoran.

04. Action Sequences II - Building Solutions

For a more documentation on using JFreeReport with the Pentaho Platform please see Reporting:Report
Design Wizard

JFreeReport Report Definitions

JFreeReport report definitions are XML documents typically with a .xml extension, although this is not
necessary. The Pentaho JFreeReportComponent (org.pentaho.plugin.jfree.JFReeReportComponent) uses
the report definitions along with your data to produce a comprehensive set of output formats. The
JFreeReport output formats worth noting are HTML, PDF, CSV, XLS and RTF.

JFreeReport gets its data from a Java TableModel. There is a custom TableModel implementation in the
Pentaho Platform which provides for a memory friendly and performance efficient operation. Since
JFreeReport operates against a definition and a TableModel there is no way to parameterize the
JFreeReport itself. This is accomplished in the action-sequence and in the query itself.

Using the Pentaho Report Design Wizard you can create a JFreeReport definition and a basic action
sequence. In the most simple case create a report against a <Blank> template and enter a SQL query
against your database.

The screenshot above shows a parameterized SQL query for use with the Report Design Wizard. The
column 'REGION' is what we are using for our parameter. The name of the parameter is also 'REGION'
but this is not necessary. The wizard does not currently have the ability to prompt the user for parameter
values, so a default value of 'Eastern' has been supplied. The full parameter is specified as
{REGION=Eastern} in the query.

When the report is previewed in the Report Design Wizard the REGION parameter value is replaced with
the specified default value (Eastern). When the report is published for use in the Pentaho platform the
REGION parameter is setup in the action-sequence and the user will be prompted to enter a value. The
action-sequence generated by the Report Design Wizard can be further customized by the Pentaho
Design Studio.

Creating the Action Sequence

Once you have verified that the report works in the Report Design Wizard you can rest assured that it will

Document generated by Confluence on Jun 13, 2007 09:27 Page 52

http://wiki.pentaho.org/display/PentahoDoc/04.+Action+Sequences
http://wiki.pentaho.org/display/PentahoDoc/II+-+Building+Solutions
http://wiki.pentaho.org//display/Reporting/Report+Design+Wizard
http://wiki.pentaho.org//display/Reporting/Report+Design+Wizard

work in the Pentaho Platform. The reason for this is that the Report Design Wizard runs the report in an
embedded standalone version of the Pentaho Platform. There is no need to create an action-sequence
since once is generated automatically by the wizard. However, should you have an existing JFreeReport
definition that was created by hand or from another tool. To see an example of an action sequence that
generates a JFree report using report parameters refer to
pentaho_demo/pentaho_solutions/samples/bursting/BurstActionSequence.xaction. Select the Define
Process tab and select the JFree Report action in the Process actions tree.

JDBC Driver Setup

If you are using a database driver other than Hypersonic you'll need to configure the JBoss PCI to use
that driver.

TODO

add the JDBC setup. We should have an generic JDBC setup doc that the components all like to

Verifying JFreeReport Integration into Pentaho Platform

At this point the report should be plugged in and ready for use. Point your web browser to your PCI
(typically http://localhost:8080). Navigate to the report that you created under the Reporting Examples
group.

Document generated by Confluence on Jun 13, 2007 09:27 Page 53

http://localhost:8080/

When you hit the URL for the report a default parameter page is generated prompting you for an input to
the parameter for REGION.

Once you submit the parameter the report will be generated and depending on the output-type in the
action-sequence you'll see your report in the format desired. The example above shows an HTML
screenshot.

The Report Design Wizard

The Pentaho Report Design Wizard provides for quick and easy creation of JFree reports using a simple
step-by-step process, that allows for editing of the most commonly used report formatting features. The
design wizard is the easiest way to quickly develop customized JFree reports. The wizard is available both
as a stand alone application as well as an editor built into the Pentaho Design Studio. For a detailed
description of how to use the wizard refer to the Report Design Wizard User's Guide.

Creating a Design Wizard Specification

Select the Pentaho Design Studio icon and choose "New JFree Report Wizard File". Then select the
Container Browse button, and choose the "reporting" folder in the PCI then select OK. Now give your new
action sequence a name. You're now ready to design your report. If you're new to the Report Design
Wizard, you can work through the example in the Report Design Wizard User's Guide. You'll want to skip
the step titled "Deploying Reports into Pentaho BI Platform". When your design is complete make sure to
save your new report specification.

Document generated by Confluence on Jun 13, 2007 09:27 Page 54

Using a Design Wizard Specification

Once you've designed your report wizard specification it's time to integrate it into an action sequence that
will allow it to run as part of the installed solution. Using the same process we described earlier, create a
new blank action sequence in the "reporting" directory of your solution. Assign title, icon, and brief
description to your new action sequence to assist you in finding it when we test our action sequence.
Select the define process tab then right-click in the Process Actions tree area and select
Add->Report->JFree Report. Now select the Browse link on the right side of the page. In the file chooser
dialog select the Report Wizard Spec (*.xreportspec) file type then select the wizard specification you
created above and select Open. Now save your new action sequence and your ready to go. It's that
simple. Use your favorite browser and go to the reporting examples within the PCI. You should see a new
entry for the new action sequence you've created. Go ahead and select it and your report should display.

04. Action Sequences II - Building Solutions

Document generated by Confluence on Jun 13, 2007 09:27 Page 55

http://wiki.pentaho.org/display/PentahoDoc/04.+Action+Sequences
http://wiki.pentaho.org/display/PentahoDoc/II+-+Building+Solutions

III - Actions and Component Reference

This page last changed on Dec 12, 2006 by dmoran.

II - Building Solutions Creating Pentaho
Solutions

Actions are the workhorse of any action sequence. Each action in an action sequence is responsible for
describing a particular type of task to be performed by the Solution Engine. For example a SQL Query
action will describe a SQL query to be performed, the JNDI or JDBC connection to use, and the name of
the action output where the query results are to be stored. Behind each action is a component that
performs the action. Components are server side Java classes. As the Solution Engine processes each
action in an action sequence it executes the component that performs that type of action. In many cases
there is a one-to-one correspondence between an action type and the component that performs the
action. For example the SQLLookupRule is a component that only processes SLQ query actions. However,
that is not always the case. For example the UtilityComponent can perform multiple types of actions.

Like the action sequence itself, each action within the action sequence has a list of inputs and outputs.
The action input parameters describe to the component how to perform the action. Each action in the
Pentaho BI Platform has unique and specific inputs must be correctly specified. They also have optional
inputs and definitions.

The outputs define what parameters will be available in the runtime context when the component has
finished executing. Other actions/components that execute later on can use these outputs as inputs. This
section describes many of the available actions along with their inputs and outputs.

• BIRT Reports
• Call External Action Sequence
• Charting
• Content Repository Cleaner
• Email
• Hello World
• Jasper Reports
• JavaScript
• JFree Reports
• Kettle
• MDX Query
• Prepared Components - Enabling Subreporting and Connection Sharing
• Printing
• Scheduling
• Secure Filter (Prompting)
• SQL Execute
• SQL Query

II - Building Solutions Creating Pentaho
Solutions

Document generated by Confluence on Jun 13, 2007 09:27 Page 56

http://wiki.pentaho.org/display/PentahoDoc/II+-+Building+Solutions
http://wiki.pentaho.org/display/PentahoDoc/Creating+Pentaho+Solutions
http://wiki.pentaho.org/display/PentahoDoc/Creating+Pentaho+Solutions
http://wiki.pentaho.org/display/PentahoDoc/II+-+Building+Solutions
http://wiki.pentaho.org/display/PentahoDoc/Creating+Pentaho+Solutions
http://wiki.pentaho.org/display/PentahoDoc/Creating+Pentaho+Solutions

BIRT Reports

This page last changed on Dec 12, 2006 by dmoran.

Please see Reporting:BIRT

TODO

Should the components settings go here or be imported into this page?

Document generated by Confluence on Jun 13, 2007 09:27 Page 57

http://wiki.pentaho.org//display/Reporting/BIRT

Call External Action Sequence

This page last changed on Dec 12, 2006 by dmoran.

This action is used within an action sequence to allow calling of other action sequences in much the same
way as a programming "GoSub". SubActions are executed synchronously.

Component Name: SubActionComponent

Inputs:

REQUIRED
solution -- The solution containing the action sequence being called.
path -- The path to the action sequence within the referenced solution.
action -- The name of the .xaction to be called (must include the .xaction extension).

OPTIONAL
Any input names from the calling .xaction that are desired to be passed to the called .xaction. The called
action sequence can get access to the inputs as request inputs.

Outputs:

Any outputs from the called .xaction that need to be consumed by following action definitions or need to
be passed out of the action sequence.

Document generated by Confluence on Jun 13, 2007 09:27 Page 58

Charting

This page last changed on Jan 10, 2007 by bseyler.

The Pentaho BI platform currently employs JFreeChart as its charting engine. Each chart component can
create at least 1 type of chart. Several of the chart components can create many chart types. Certain
charts (where it makes sense) can be rendered as stacked and three dimensional. The platform charts
render themselves as XML and then the XML is transformed to HTML via the use of an .xslt
transformation.
Supported chart types are, dial, pie, grid, bar, line, and area charts.

Component Name: ChartComponent

Inputs:

REQUIRED
Chart Data -- The report data. Often this is the output of a SQL Query action.

OPTIONAL
Chart Row Dimension -- Indicates the chart data is to be aggregated along the row dimensions.
Title -- The chart title.
Subtitle -- The chart subtitle.
Title Font Style -- The font style to be used with the title and subtitle.
Title Font Size -- The font point size to be used with the title and subtitle.
Border Color -- The color of the chart border.
Chart Width -- The chart width.
Chart Height -- The chart height.
Title Position - Describes the position of the chart title. Valid positions are TOP, BOTTOM, LEFT, and
RIGHT.
Range Title - Optional node that describes the chart range (usually the y-axis).
Chart Background - The color or image to be used as the chart background. This replaces the
background of the chart itself and NOT the plot area. So if you set the image here you will probably see
your image under the axis labels and scales and not in the plot area.
Plot Background - The color or image to be used as the plot background. This replaces the background
of the plot area only.
Orientation -- The chart orientation. This can be either "Horizontal", "Vertical". Defaults to "Vertical".
Is 3D - If true the charting engine does it best to render a 3-D view of the chart.
Is Stacked - If true the charting engine will create a stacked version of this chart type (if possible).
Color Pallette - Singleton that contains a list of colors that make up the series palette.

Outputs:

None

Note:

Title Position, Range Title, Chart Background, Plot Background, Orientation, Is 3D, Is Stacked, URL
Template, Prameter Name, and Color Pallette are not currently supported by the design studio.

Document generated by Confluence on Jun 13, 2007 09:27 Page 59

• Charting XAction Reference

Document generated by Confluence on Jun 13, 2007 09:27 Page 60

Charting XAction Reference

This page last changed on Jan 10, 2007 by bseyler.

The Pentaho BI platform currently employs JFreeChart as its charting engine. The implementation of the
engine currently includes UI components for the following charts: Dial, Pie, Pie Grid, Bar Chart, Line, and
Area. Each chart component can create at least 1 type of chart. Several of the chart components can
create many chart types. Certain charts (where it makes sense) can be rendered as stacked and three
dimensional. The platform charts render themselves as XML and then the XML is transformed to HTML via
the use of an .xslt transformation. Currently not all tags are implemented in the design studio so some
of these may have to be added by direct editing of the xaction.

• CategoryDatasetComponent
• Chart Component
• Chart Tag Reference
• TimeSeriesCollectionComponent
• XYSeriesCollectionComponent

Document generated by Confluence on Jun 13, 2007 09:27 Page 61

CategoryDatasetComponent

This page last changed on Jan 10, 2007 by bseyler.

Charting XAction
Reference

Chart Component

The CategoryDatasetComponent is a UI component that can create a variety of charts including Bar, Line,
Pie, Pie Grid, and Area. Where applicable there are several options that can be applied. The creation of
the chart is commonly performed by a JSP or indirectly by creating the appropriate portlet object, via the
CategoryDatasetChartPortlet. See the Chart Tag Reference for explanations of each node.

<chart>
<chart-type>BarChart</chart-type>
<title>Sample Chart</title>
<subtitle>a simple sample</subtitle>
<chart-background type="color">#FFFFFF</chart-background>
<chart-background-image>test\charts\ChartBackground.jpg</chart-background-image>
<plot-background-color>#FFFFFF</plot-background-color>
<plot-background-image>test\charts\ChartBackground.jpg</plot-background-image>
<orientation>Horizontal</orientation>
<height>550</height>
<width>650</width>
<is-3D>true</is-3D>
<is-stacked>true</is-stacked>
<urlTemplate>

<![CDATA\[/pentaho/Pivot?solution=samples&path=analysis&action=query1.xaction&department=.[{DEPARTMENT}]&measures=.[{MEASURES}]]]>
</urlTemplate>
<paramName>MEASURES</paramName>
<paramName2>DEPARTMENT</paramName2>
<color-palette>

<color>#336699</color>
<color>#99CCFF</color>
<color>#999933</color>
<color>#666699</color>
<color>#CC9933</color>
<color>#006666</color>
<color>#3399FF</color>
<color>#993300</color>
<color>#CCCC99</color>
<color>#666666</color>
<color>#FFCC66</color>
<color>#6699CC</color>
<color>#663366</color>
<color>#9999CC</color>
<color>#CCCCCC</color>
<color>#669999</color>
<color>#CCCC66</color>
<color>#CC6600</color>
<color>#9999FF</color>
<color>#0066CC</color>
<color>#99CCCC</color>
<color>#999999</color>
<color>#FFCC00</color>
<color>#009999</color>
<color>#99CC33</color>
<color>#FF9900</color>
<color>#999966</color>
<color>#66CCCC</color>
<color>#339966</color>
<color>#CCCC33</color>

</color-palette>
</chart>

Document generated by Confluence on Jun 13, 2007 09:27 Page 62

http://wiki.pentaho.org/display/PentahoDoc/Charting+XAction+Reference
http://wiki.pentaho.org/display/PentahoDoc/Charting+XAction+Reference
http://wiki.pentaho.org/display/PentahoDoc/Chart+Component

Chart Component

This page last changed on Jan 10, 2007 by bseyler.

CategoryDatasetComponentCharting XAction
Reference

Chart Tag Reference

The ChartComponent is a UI component that can create a variety of charts including Bar, Line, Pie, Pie
Grid, and Area. Where applicable there are several options that can be applied. The following action
sequence uses the output from an as the input for a ChartComponent. See the Chart Tag Reference for a
n explanation of the tags

<action-sequence>
<name>Chart.xaction</name>
<title>Default Title</title>
<version>1</version>
<logging-level>DEBUG</logging-level>
<documentation>

<author>William E. Seyler</author>
<description>Default Description</description>
<icon>JFree-quadrant-budget-hsql.png</icon>
<help>Help</help>
<result-type>rule</result-type>

</documentation>
<inputs>

<chart-type type="string">
<default-value>.png</default-value>
<sources>

<request>type</request>
</sources>

</chart-type>
</inputs>
<actions>

<action-definition>
<action-outputs>

<result-set type="list" />
</action-outputs>
<component-name>SQLLookupRule</component-name>
<action-type>rule</action-type>
<component-definition>

<source>sql</source>
<live>true</live>
<jndi>SampleData</jndi>
<query>

<![CDATA[select QUADRANT_ACTUALS.REGION, QUADRANT_ACTUALS.DEPARTMENT,
QUADRANT_ACTUALS.POSITIONTITLE, QUADRANT_ACTUALS.ACTUAL, QUADRANT_ACTUALS.BUDGET
from QUADRANT_ACTUALS order by

QUADRANT_ACTUALS.REGION,QUADRANT_ACTUALS.DEPARTMENT]]>
</query>

</component-definition>
</action-definition>
<action-definition>

<action-inputs>
<output-type type="string" mapping="chart-type" />
<result-output type="file" />
<chart-data type="list" mapping="result-set" />

</action-inputs>
<action-outputs>

<chart-output type="string" />
<base-url type="string" />

</action-outputs>
<component-name>ChartComponent</component-name>
<action-type>report</action-type>
<component-definition>

<by-row>false</by-row>
<chart-attributes>

<chart-type>PieChart</chart-type>
<title>Actual vs Budget by Region</title>
<title-position>TOP</title-position>
<title-font>
<font-family>Serif</font-family>

Document generated by Confluence on Jun 13, 2007 09:27 Page 63

http://wiki.pentaho.org/display/PentahoDoc/CategoryDatasetComponent
http://wiki.pentaho.org/display/PentahoDoc/Charting+XAction+Reference
http://wiki.pentaho.org/display/PentahoDoc/Charting+XAction+Reference
http://wiki.pentaho.org/display/PentahoDoc/Chart+Tag+Reference

<size>36</size>
<is-bold>false</is-bold>
<is-italic>false</is-italic>

</title-font>
<range-title>US Dollars</range-title>
<chart-background type="color">#FFFFFF</chart-background>
<plot-background type="color">#FF0000</plot-background>
<orientation>Horizontal</orientation>
<height>400</height>
<width>800</width>
<is-3D>true</is-3D>
<is-stacked>false</is-stacked>
<category-label-rotation>90</category-label-rotation>
<border-visible>false</border-visible>
<border-paint>#3399FF</border-paint>
<include-legend>true</include-legend>

</chart-attributes>
</component-definition>

</action-definition>
</actions>

</action-sequence>

Document generated by Confluence on Jun 13, 2007 09:27 Page 64

Chart Tag Reference

This page last changed on Jan 10, 2007 by bseyler.

Chart Component Charting XAction
Reference

TimeSeriesCollectionComponent

The following is a comprehensive list of tags available for the ChartComponent.

• by-row
• chart
• chart-attributes
• chart-background
• chart-type
• color
• color-palette
• dataset-type
• domain-includes-zero
• domain-label-rotation
• domain-label-rotation-dir
• domain-period-type
• domain-sticky-zero
• domain-title
• domain-title-font
• domain-vertical-tick-labels
• dot-height
• dot-width
• height
• is-3D
• is-stacked
• line-style
• line-width
• markers-visible
• orientation
• paramName
• paramName2
• plot-background
• range-title
• range-title-font
• subtitle
• title
• title-font
• title-position
• url-template
• width

Document generated by Confluence on Jun 13, 2007 09:27 Page 65

http://wiki.pentaho.org/display/PentahoDoc/Chart+Component
http://wiki.pentaho.org/display/PentahoDoc/Charting+XAction+Reference
http://wiki.pentaho.org/display/PentahoDoc/Charting+XAction+Reference
http://wiki.pentaho.org/display/PentahoDoc/TimeSeriesCollectionComponent

by-row

This page last changed on Jan 10, 2007 by bseyler.

Chart Tag Reference chart

<by-row/>

Required node that describes how the chart data is aggregated. Values are TRUE or FALSE. This tag
specifies if the supplied data should be processed by row or (default) by column. If your chart series
are on the wrong axis... then add this tag as true.

Document generated by Confluence on Jun 13, 2007 09:27 Page 66

http://wiki.pentaho.org/display/PentahoDoc/Chart+Tag+Reference
http://wiki.pentaho.org/display/PentahoDoc/chart

chart

This page last changed on Jan 10, 2007 by bseyler.

by-row Chart Tag Reference chart-attributes

<chart/>

The chart root node. This item is a mandatory singleton node.

Document generated by Confluence on Jun 13, 2007 09:27 Page 67

http://wiki.pentaho.org/display/PentahoDoc/by-row
http://wiki.pentaho.org/display/PentahoDoc/Chart+Tag+Reference
http://wiki.pentaho.org/display/PentahoDoc/chart-attributes

chart-attributes

This page last changed on Jan 10, 2007 by bseyler.

chart Chart Tag Reference chart-background

<chart-attributes/>

Required by the ChartComponent, this node contains all chart attributes nodes.

Document generated by Confluence on Jun 13, 2007 09:27 Page 68

http://wiki.pentaho.org/display/PentahoDoc/chart
http://wiki.pentaho.org/display/PentahoDoc/Chart+Tag+Reference
http://wiki.pentaho.org/display/PentahoDoc/chart-background

chart-background

This page last changed on Jan 10, 2007 by bseyler.

chart-attributes Chart Tag Reference chart-type

<chart-background/>

Optional singleton node that describes the background type. Valid types include color and image. If
type="color", designate the color with 6 byte hexadecimal notation. When type="image", the value is a
filepath (relative to the solution directory) of an image file to use as the chart background image.

Note: This image replaces the background of the chart itself and NOT the plot area. So if you set the
image here you will probably see your image under the axis labels and scales and not in the plot area.

Document generated by Confluence on Jun 13, 2007 09:27 Page 69

http://wiki.pentaho.org/display/PentahoDoc/chart-attributes
http://wiki.pentaho.org/display/PentahoDoc/Chart+Tag+Reference
http://wiki.pentaho.org/display/PentahoDoc/chart-type

chart-type

This page last changed on Jan 10, 2007 by bseyler.

chart-background Chart Tag Reference color

<chart-type/>

Optional singleton node that contains the chart type in the node text. When used with the
CategoryDatasetComponent, if the chart-type is not set in the xml definition then it must be set on the
CategoryDataset Component directly in code (servlet or JSP). Valid chart type strings for
CategoryDataset are "PieChart", "PieGrid", "BarChart", "LineChart", and "AreaChart". Valid values for a
TimeSeriesCollection or XYSeriesCollection are "BarChart", LineChart", AreaChart", "StepChart",
"StepAreaChart", "DifferenceChart", and "DotChart".

Document generated by Confluence on Jun 13, 2007 09:27 Page 70

http://wiki.pentaho.org/display/PentahoDoc/chart-background
http://wiki.pentaho.org/display/PentahoDoc/Chart+Tag+Reference
http://wiki.pentaho.org/display/PentahoDoc/color

color

This page last changed on Jan 10, 2007 by bseyler.

chart-type Chart Tag Reference color-palette

<color/>

Optional multiple nodes that contain a 6 byte hexadecimal notation to be used as an entry in the color
series palette.

Document generated by Confluence on Jun 13, 2007 09:27 Page 71

http://wiki.pentaho.org/display/PentahoDoc/chart-type
http://wiki.pentaho.org/display/PentahoDoc/Chart+Tag+Reference
http://wiki.pentaho.org/display/PentahoDoc/color-palette

color-palette

This page last changed on Jan 10, 2007 by bseyler.

color Chart Tag Reference dataset-type

<color-palette/>

Singleton that contains a list of <color/> nodes that make up the series palette.

Document generated by Confluence on Jun 13, 2007 09:27 Page 72

http://wiki.pentaho.org/display/PentahoDoc/color
http://wiki.pentaho.org/display/PentahoDoc/Chart+Tag+Reference
http://wiki.pentaho.org/display/PentahoDoc/dataset-type

dataset-type

This page last changed on Jan 10, 2007 by bseyler.

color-palette Chart Tag Reference domain-includes-zero

<dataset-type/>

Optional singleton node that used in the ChartComponent to determine which type of dataset component
to use. Valid dataset types are CategoryDataset, XYSeriesCollection, TimeSeriesCollection. The default
value is CategoryDataset.

Document generated by Confluence on Jun 13, 2007 09:27 Page 73

http://wiki.pentaho.org/display/PentahoDoc/color-palette
http://wiki.pentaho.org/display/PentahoDoc/Chart+Tag+Reference
http://wiki.pentaho.org/display/PentahoDoc/domain-includes-zero

domain-includes-zero

This page last changed on Jan 10, 2007 by bseyler.

dataset-type Chart Tag Reference domain-label-rotation

<domain-includes-zero/>

Optional singleton node indicating that a tick mark for zero should be included on the domain, if zero is in
the range of values. This is only used by the XYSeriesCollection. Default = true

Document generated by Confluence on Jun 13, 2007 09:27 Page 74

http://wiki.pentaho.org/display/PentahoDoc/dataset-type
http://wiki.pentaho.org/display/PentahoDoc/Chart+Tag+Reference
http://wiki.pentaho.org/display/PentahoDoc/domain-label-rotation

domain-label-rotation

This page last changed on Jun 05, 2007 by bseyler.

domain-includes-zeroChart Tag Reference domain-label-rotation-dir

<domain-label-rotation/>

Accepts the degree of rotation as radiant (45°= 0.25 radiant) in string form. For a degree/radiant
conversion check out: http://www.unitconversion.org/unit_converter/angle.html

Document generated by Confluence on Jun 13, 2007 09:27 Page 75

http://wiki.pentaho.org/display/PentahoDoc/domain-includes-zero
http://wiki.pentaho.org/display/PentahoDoc/Chart+Tag+Reference
http://wiki.pentaho.org/display/PentahoDoc/domain-label-rotation-dir
http://www.unitconversion.org/unit_converter/angle.html

domain-label-rotation-dir

This page last changed on Jun 05, 2007 by bseyler.

domain-label-rotationChart Tag Reference domain-period-type

<domain-label-rotation-dir/>

Optional value that controls the direction of rotation of the domain labels. Possible values are up
(clockwise) and down (counterclockwise). Needs to be used with <domain-label-rotation> tag to have
any effect.

Document generated by Confluence on Jun 13, 2007 09:27 Page 76

http://wiki.pentaho.org/display/PentahoDoc/domain-label-rotation
http://wiki.pentaho.org/display/PentahoDoc/Chart+Tag+Reference
http://wiki.pentaho.org/display/PentahoDoc/domain-period-type

domain-period-type

This page last changed on Jan 10, 2007 by bseyler.

domain-label-rotation-dirChart Tag Reference domain-sticky-zero

<domain-period-type/>

Optional singleton node that specifies what time periods should be used on the domain of a
TimeSeriesCollection. This is valid only for TimeSeriesCollection. Valid Values are "Day", "Hour",
"Millisecond", "Minute", "Month", "Quarter", "Second", "Week", and "Year". Default = Millisecond.

Document generated by Confluence on Jun 13, 2007 09:27 Page 77

http://wiki.pentaho.org/display/PentahoDoc/domain-label-rotation-dir
http://wiki.pentaho.org/display/PentahoDoc/Chart+Tag+Reference
http://wiki.pentaho.org/display/PentahoDoc/domain-sticky-zero

domain-sticky-zero

This page last changed on Jan 10, 2007 by bseyler.

domain-period-type Chart Tag Reference domain-title

<domain-sticky-zero/>

Optional singleton node indicating that zero must be included in the domain, event if it is not in the range
of values. This is only used by the XYSeriesCollection. Default = true

Document generated by Confluence on Jun 13, 2007 09:27 Page 78

http://wiki.pentaho.org/display/PentahoDoc/domain-period-type
http://wiki.pentaho.org/display/PentahoDoc/Chart+Tag+Reference
http://wiki.pentaho.org/display/PentahoDoc/domain-title

domain-title

This page last changed on Jan 10, 2007 by bseyler.

domain-sticky-zero Chart Tag Reference domain-title-font

<domain-title/>

Optional singleton node that describes the chart domain (usually the x-axis)

Document generated by Confluence on Jun 13, 2007 09:27 Page 79

http://wiki.pentaho.org/display/PentahoDoc/domain-sticky-zero
http://wiki.pentaho.org/display/PentahoDoc/Chart+Tag+Reference
http://wiki.pentaho.org/display/PentahoDoc/domain-title-font

domain-title-font

This page last changed on Jan 10, 2007 by bseyler.

domain-title Chart Tag Reference domain-vertical-tick-labels

<domain-title-font/>

Optional singleton node that describes the font used for the domain title. See title-font for information on
describing fonts.

Document generated by Confluence on Jun 13, 2007 09:27 Page 80

http://wiki.pentaho.org/display/PentahoDoc/domain-title
http://wiki.pentaho.org/display/PentahoDoc/Chart+Tag+Reference
http://wiki.pentaho.org/display/PentahoDoc/domain-vertical-tick-labels

domain-vertical-tick-labels

This page last changed on Jan 10, 2007 by bseyler.

domain-title-font Chart Tag Reference dot-height

<domain-vertical-tick-labels/>

Optional singleton node that indicates that domain tick labels should be printed vertically. This is valid
for TimeSeriesCollection and XYSeriesCollection. Default = false

Document generated by Confluence on Jun 13, 2007 09:27 Page 81

http://wiki.pentaho.org/display/PentahoDoc/domain-title-font
http://wiki.pentaho.org/display/PentahoDoc/Chart+Tag+Reference
http://wiki.pentaho.org/display/PentahoDoc/dot-height

dot-height

This page last changed on Mar 09, 2007 by gmoran.

domain-vertical-tick-labelsChart Tag Reference dot-width

<dot-height/>

As of Version 1.2.1

Available as a chart definition XML attribute as of Pentaho platform version 1.2.1.

This tag is specifically for the Dot chart. Sets the height of the dot (actually a square) in pixels. Default
dot height is 5 pixels.

Document generated by Confluence on Jun 13, 2007 09:27 Page 82

http://wiki.pentaho.org/display/PentahoDoc/domain-vertical-tick-labels
http://wiki.pentaho.org/display/PentahoDoc/Chart+Tag+Reference
http://wiki.pentaho.org/display/PentahoDoc/dot-width

dot-width

This page last changed on Mar 09, 2007 by gmoran.

dot-height Chart Tag Reference height

<dot-width/>

As of Version 1.2.1

Available as a chart definition XML attribute as of Pentaho platform version 1.2.1.

This tag is specifically for the Dot chart. Sets the width of the dot (actually a square) in pixels. Default dot
width is 5 pixels.

Document generated by Confluence on Jun 13, 2007 09:27 Page 83

http://wiki.pentaho.org/display/PentahoDoc/dot-height
http://wiki.pentaho.org/display/PentahoDoc/Chart+Tag+Reference
http://wiki.pentaho.org/display/PentahoDoc/height

height

This page last changed on Jan 10, 2007 by bseyler.

dot-width Chart Tag Reference is-3D

<height/>

Optional singleton whose text value is an integer that represents the height of the chart.

Document generated by Confluence on Jun 13, 2007 09:27 Page 84

http://wiki.pentaho.org/display/PentahoDoc/dot-width
http://wiki.pentaho.org/display/PentahoDoc/Chart+Tag+Reference
http://wiki.pentaho.org/display/PentahoDoc/is-3D

is-3D

This page last changed on Jan 10, 2007 by bseyler.

height Chart Tag Reference is-stacked

<is-3D/>

Optional singleton whose text value can be either "true" or "false". Defaults to "false". If true the charting
engine does it best to render a 3-D view of the chart.

Document generated by Confluence on Jun 13, 2007 09:27 Page 85

http://wiki.pentaho.org/display/PentahoDoc/height
http://wiki.pentaho.org/display/PentahoDoc/Chart+Tag+Reference
http://wiki.pentaho.org/display/PentahoDoc/is-stacked

is-stacked

This page last changed on Jan 10, 2007 by bseyler.

is-3D Chart Tag Reference line-style

<is-stacked/>

Optional singleton whose text value can be either "true" or "false". Defaults to "false". If true the charting
engine will create a stacked version of this chart type (if possible).

Document generated by Confluence on Jun 13, 2007 09:27 Page 86

http://wiki.pentaho.org/display/PentahoDoc/is-3D
http://wiki.pentaho.org/display/PentahoDoc/Chart+Tag+Reference
http://wiki.pentaho.org/display/PentahoDoc/line-style

line-style

This page last changed on Mar 09, 2007 by gmoran.

is-stacked Chart Tag Reference line-width

<line-style/>

As of Version 1.2.1

Available as a chart definition XML attribute as of Pentaho platform version 1.2.1.

This attribute will set the style of all line series in supported charts. Valid values for this attribute are:

• solid (default)
• dash
• dot
• dashdot
• dashdotdot

Implemented chart types that support this attribute are :

• LineChart (with time series, categorical or xy data)
• StepChart (with time series, categorical or xy data)

Setting the line style per series is not yet supported, but will be implemented in a future version.

Document generated by Confluence on Jun 13, 2007 09:27 Page 87

http://wiki.pentaho.org/display/PentahoDoc/is-stacked
http://wiki.pentaho.org/display/PentahoDoc/Chart+Tag+Reference
http://wiki.pentaho.org/display/PentahoDoc/line-width

line-width

This page last changed on Mar 09, 2007 by gmoran.

line-style Chart Tag Reference markers-visible

<line-width/>

As of Version 1.2.1

Available as a chart definition XML attribute as of Pentaho platform version 1.2.1.

This attribute will set the line width of all line series in supported charts. Valid values for this attribute are
numerical float values greater than or equal to zero. Default line width is 1.0.

Implemented chart types that support this attribute are :

• LineChart (with time series, categorical or xy data)
• StepChart (with time series, categorical or xy data)

Setting the line width per series is not yet supported, but will be implemented in a future version.

Document generated by Confluence on Jun 13, 2007 09:27 Page 88

http://wiki.pentaho.org/display/PentahoDoc/line-style
http://wiki.pentaho.org/display/PentahoDoc/Chart+Tag+Reference
http://wiki.pentaho.org/display/PentahoDoc/markers-visible

markers-visible

This page last changed on Mar 14, 2007 by gmoran.

line-width Chart Tag Reference orientation

<markers-visible/>

As of Version 1.2.1

Available as a chart definition XML attribute as of Pentaho platform version 1.2.1.

This attribute sets whether the markers (data points) are shown as shapes on the line series in supported
charts. The default is that these markers are invisible.

Valid values for this attribute are true or false.

Implemented chart types that support this attribute are :

• LineChart (with time series, categorical or xy data)
• Markers do not display on 3D LineCharts.

Setting the markers visible or invisible per series is not yet supported, but will be implemented in a future
version.

Document generated by Confluence on Jun 13, 2007 09:27 Page 89

http://wiki.pentaho.org/display/PentahoDoc/line-width
http://wiki.pentaho.org/display/PentahoDoc/Chart+Tag+Reference
http://wiki.pentaho.org/display/PentahoDoc/orientation

orientation

This page last changed on Jan 10, 2007 by bseyler.

markers-visible Chart Tag Reference paramName

<orientation/>

Optional singleton whose text value can be either "Horizontal", "Vertical". Defaults to "Vertical".

Document generated by Confluence on Jun 13, 2007 09:27 Page 90

http://wiki.pentaho.org/display/PentahoDoc/markers-visible
http://wiki.pentaho.org/display/PentahoDoc/Chart+Tag+Reference
http://wiki.pentaho.org/display/PentahoDoc/paramName

paramName

This page last changed on May 07, 2007 by jcornelius.

orientation Chart Tag Reference paramName2

<paramName/>

Optional singleton whose test values is the parameter name of the innermost query variable. If this name
occurs in the url-template, it will be replaced with the correct item.

Document generated by Confluence on Jun 13, 2007 09:27 Page 91

http://wiki.pentaho.org/display/PentahoDoc/orientation
http://wiki.pentaho.org/display/PentahoDoc/Chart+Tag+Reference
http://wiki.pentaho.org/display/PentahoDoc/paramName2

paramName2

This page last changed on May 07, 2007 by jcornelius.

paramName Chart Tag Reference plot-background

<paramName2/>

Optional singleton whose test values is the parameter name of the outermost query variable. If this name
occurs in the urlTemplate, it will be replaced with the correct item.

Document generated by Confluence on Jun 13, 2007 09:27 Page 92

http://wiki.pentaho.org/display/PentahoDoc/paramName
http://wiki.pentaho.org/display/PentahoDoc/Chart+Tag+Reference
http://wiki.pentaho.org/display/PentahoDoc/plot-background

plot-background

This page last changed on Jan 10, 2007 by bseyler.

paramName2 Chart Tag Reference range-title

<plot-background/>

Optional singleton node that describes the plot type. Valid types include color and image. If type="color",
designate the color with 6 byte hexadecimal notation. When type="image", the value is a filepath
(relative to the solution directory) of an image file to use as the plot background image.

Note: This image replaces the background of the plot area only.

Document generated by Confluence on Jun 13, 2007 09:27 Page 93

http://wiki.pentaho.org/display/PentahoDoc/paramName2
http://wiki.pentaho.org/display/PentahoDoc/Chart+Tag+Reference
http://wiki.pentaho.org/display/PentahoDoc/range-title

range-title

This page last changed on Jan 10, 2007 by bseyler.

plot-background Chart Tag Reference range-title-font

<range-title/>

Optional node that describes the chart range (usually the y-axis).

Document generated by Confluence on Jun 13, 2007 09:27 Page 94

http://wiki.pentaho.org/display/PentahoDoc/plot-background
http://wiki.pentaho.org/display/PentahoDoc/Chart+Tag+Reference
http://wiki.pentaho.org/display/PentahoDoc/range-title-font

range-title-font

This page last changed on Jan 10, 2007 by bseyler.

range-title Chart Tag Reference subtitle

<range-title-font/>

Optional singleton node that describes the font for the range-title. See title-font to see how a font is
described.

Document generated by Confluence on Jun 13, 2007 09:27 Page 95

http://wiki.pentaho.org/display/PentahoDoc/range-title
http://wiki.pentaho.org/display/PentahoDoc/Chart+Tag+Reference
http://wiki.pentaho.org/display/PentahoDoc/subtitle

subtitle

This page last changed on Jan 10, 2007 by bseyler.

range-title-font Chart Tag Reference title

<subtitle/>

Optional singleton node that contains the requested subtitle in the node text.

Document generated by Confluence on Jun 13, 2007 09:27 Page 96

http://wiki.pentaho.org/display/PentahoDoc/range-title-font
http://wiki.pentaho.org/display/PentahoDoc/Chart+Tag+Reference
http://wiki.pentaho.org/display/PentahoDoc/title

title

This page last changed on Jan 10, 2007 by bseyler.

subtitle Chart Tag Reference title-font

<title/>

Optional singleton node that contains the requested title in the node text.

Document generated by Confluence on Jun 13, 2007 09:27 Page 97

http://wiki.pentaho.org/display/PentahoDoc/subtitle
http://wiki.pentaho.org/display/PentahoDoc/Chart+Tag+Reference
http://wiki.pentaho.org/display/PentahoDoc/title-font

title-font

This page last changed on Jan 10, 2007 by bseyler.

title Chart Tag Reference title-position

<title-font/>

Optional singleton node that describes the chart font. Font attributes are included as child nodes. Child
nodes include, <font-family>, <size>, <is-bold>, and <is-italic>.

Document generated by Confluence on Jun 13, 2007 09:27 Page 98

http://wiki.pentaho.org/display/PentahoDoc/title
http://wiki.pentaho.org/display/PentahoDoc/Chart+Tag+Reference
http://wiki.pentaho.org/display/PentahoDoc/title-position

title-position

This page last changed on Jan 10, 2007 by bseyler.

title-font Chart Tag Reference url-template

<title-position/>

Optional node that describes the position of the chart title. Valid positions are TOP, BOTTOM, LEFT, and
RIGHT.

Document generated by Confluence on Jun 13, 2007 09:27 Page 99

http://wiki.pentaho.org/display/PentahoDoc/title-font
http://wiki.pentaho.org/display/PentahoDoc/Chart+Tag+Reference
http://wiki.pentaho.org/display/PentahoDoc/url-template

url-template

This page last changed on May 07, 2007 by jcornelius.

title-position Chart Tag Reference width

<url-template/>

Optional singleton whose text value is used as a template to create a drill link map for the image. In
order for the image map to be created, the output must be <image-tag type="string"/>.

Document generated by Confluence on Jun 13, 2007 09:27 Page 100

http://wiki.pentaho.org/display/PentahoDoc/title-position
http://wiki.pentaho.org/display/PentahoDoc/Chart+Tag+Reference
http://wiki.pentaho.org/display/PentahoDoc/width

width

This page last changed on Jan 10, 2007 by bseyler.

url-template Chart Tag Reference

<width/>

Optional singleton whose text value is an integer that represents the width of the chart.

Document generated by Confluence on Jun 13, 2007 09:27 Page 101

http://wiki.pentaho.org/display/PentahoDoc/url-template
http://wiki.pentaho.org/display/PentahoDoc/Chart+Tag+Reference

TimeSeriesCollectionComponent

This page last changed on Jan 10, 2007 by bseyler.

Chart Tag Reference Charting XAction
Reference

XYSeriesCollectionComponent

The TimeSeriesCollectionComponent is a UI component that can create a variety of charts, using a Time
Series as the domain axis, including Bar, Line, Step, StepArea, Area, Difference, and Dot. Where
applicable there are several options that can be applied. The creation of the chart is commonly performed
by a JSP or indirectly by creating the appropriate portlet object via the TimeSeriesCollectionChartPortlet.
See the Chart Tag Reference for explanations of each node.

If the data for this component is arranged by column, each record is expected to have three fields. Each
record is assumed to represent one data point on the chart, ordered by the series name and domain
value. The first field is a String containing the name of the series. The second field is a Date/Timestamp
containing the domain value of the data point. The third field is a Number containing the range value of
the data point.

If the data for this component is arranged by row, each record is expected to contain all the data points
for the series. The first field will contain a String representing the name of the series. It is assumed the
other fields in the record consist of a collection of date/number data points (i.e. fields 2, 4, 6 etc. will be
dates, and fields 3, 5, 7 etc will be numbers)

Document generated by Confluence on Jun 13, 2007 09:27 Page 102

http://wiki.pentaho.org/display/PentahoDoc/Chart+Tag+Reference
http://wiki.pentaho.org/display/PentahoDoc/Charting+XAction+Reference
http://wiki.pentaho.org/display/PentahoDoc/Charting+XAction+Reference
http://wiki.pentaho.org/display/PentahoDoc/XYSeriesCollectionComponent

XYSeriesCollectionComponent

This page last changed on Mar 07, 2007 by gmoran.

TimeSeriesCollectionComponentCharting XAction
Reference

The XYSeriesCollectionComponent is a UI component that can create a variety of charts, using a numeric
value range as the domain axis, including Line, Step, StepArea, Area, Difference, and Dot. Where
applicable there are several options that can be applied. The creation of the chart is commonly performed
by a JSP or indirectly by creating the appropriate portlet object via the XYSeriesCollectionChartPortlet.
See the Chart Tag Reference for explanations of each node.

If the data for this component is arranged by column, each record is expected to have three fields. Each
record is assumed to represent one data point on the chart, ordered by the series name and domain
value. The first field is a String containing the name of the series. The second field is a Number
containing the domain value of the data point. The third field is a Number containing the range value of
the data point.

If the data for this component is arranged by row, each record is expected to contain all the data points
for the series. The first field will contain a String representing the name of the series. It is assumed the
other fields in the record consist of a collection of x/y data points (i.e. fields 2, 4, 6 etc. will be domain
values, and fields 3, 5, 7 etc will be range values)

Missing features in Dot Charts

As of the 1.0.4 JFreeChart library, tooltips, item labels and URLs are NOT generated for Dot
charts.

Document generated by Confluence on Jun 13, 2007 09:27 Page 103

http://wiki.pentaho.org/display/PentahoDoc/TimeSeriesCollectionComponent
http://wiki.pentaho.org/display/PentahoDoc/Charting+XAction+Reference
http://wiki.pentaho.org/display/PentahoDoc/Charting+XAction+Reference

Content Repository Cleaner

This page last changed on Dec 12, 2006 by dmoran.

This action remove stale items from the content repository. It takes only one input, a number that
represents how long an item is allowed to reside in the content repository. ie. If the value 90 is used then
items older than 90 days will be removed from the content repository.

Component Name: ContentRepositoryCleaner

Inputs:

REQUIRED
Expiration Days -- The number of days an item should be retained in the Content repository.

Outputs:

Deleted Items -- The number of items deleted from the content repository.

TODO

This action is not currently supported by the Design Studio.

Document generated by Confluence on Jun 13, 2007 09:27 Page 104

Email

This page last changed on Dec 12, 2006 by dmoran.

This action sends text or HTML based emails that may contain attachments. If the data type of the to
parameter is property-map, then the map is assumed to contain the name value pairs for to, subject
and from. The parameter attach should contain the name of a parameter of type content that contains
the attachment. attach-name is the file name that the attachment will appear to have when opened by
the email client.

Component Name: EmailComponent

Inputs:

REQUIRED
To - The recipients email address.
Subject - The email subject line.
Text Message - Plain text message body.
HTML Message - HTML message body.

OPTIONAL
From - The email address of the sender. If not specified, the default from "email_config.xml" will be
used.
CC - The email address of carbon copy recipient.
BCC - The email address of blind carbon copy recipient.
Attachment Name - The name of the attachment as displayed in the email.
Attachment - The content to be attached.

Outputs: None

Notes

The underlying action sequence XML for the email action supports providing the "To" address in the form
of a property-map. In this case, the map is assumed to contain the name value pairs for to, **subject,
and **from inputs. This functionality is not supported within the Design Studio.

TODO

Add more info about attachments

Document generated by Confluence on Jun 13, 2007 09:27 Page 105

Hello World

This page last changed on Dec 12, 2006 by dmoran.

This action simply returns the specified text to the client browser.

Component Name: HelloWorldComponent

Inputs:
Message - The text to be returned.

Outputs: None

Document generated by Confluence on Jun 13, 2007 09:27 Page 106

Jasper Reports

This page last changed on Dec 12, 2006 by dmoran.

Please see Reporting:Jasper

TODO
Should the components settings go here or be imported into this page?

Document generated by Confluence on Jun 13, 2007 09:27 Page 107

http://wiki.pentaho.org//display/Reporting/Jasper

JavaScript

This page last changed on Dec 12, 2006 by dmoran.

This action executes the specified Javascript. Parameters specified as inputs will be available to the script
for use. The JavascriptRule can have one or more outputs.
The component can also define library elements in the component definition. Each specified library file
must exist in the solution, and will be pre-pended to the script that's specified in the component
definition. In this way, you can create a library of commonly used javascript code, and include it at
runtime execution.

Component Name: JavascriptRule

Inputs:

REQUIRED
Javascript - The Javascript to be executed.
Imported Javascript - Any files in the solution containing Javascript functions referenced by this
Javascript.

OPTIONAL
Any inputs to the action sequence and any outputs from preceding actions in the action sequence can be
specified. Inputs will be available as a variable to the scripting engine.

Outputs:

Any variable in the Javascript may be specified as an output from the action. Any output that is defined in
the outputs, and not actually assigned a value in the Javascript Rule will be created and assigned a null
value when the rule finishes execution.

Document generated by Confluence on Jun 13, 2007 09:27 Page 108

JFree Reports

This page last changed on Dec 12, 2006 by dmoran.

This action generates JFree reports using JFree report definitions or Report Wizard Specification.

Component Name: JFreeReportComponent

Inputs:

REQUIRED
Report Specification -- The JFree Report definition or Report Wizard Specification to use when
generating the report.
Report Data -- The report data. Often this is the output of a SQL Query action. This is required only if
the Report Specification is a Report Wizard Specification (*.xreportspec).

OPTIONAL
Report Parameters -- The format in which to generate the report (Ex. Html, xsl).
Report Format -- The stylesheet to use when displaying the report.
Report Destination -- The name of the output variable in which to save the report.

Outputs:

None

TODO

This needs way more information

Document generated by Confluence on Jun 13, 2007 09:27 Page 109

Kettle

This page last changed on Dec 12, 2006 by dmoran.

The Kettle actions allow for the execution ETL operations within your action sequence using the Kettle
open source ETL tool. Supported operations include the execution of Kettle ETL transformation and Kettle
jobs. For further information on Kettle refer to http://kettle.pentaho.org.

Kettle Transformation

Executes a Kettle transformation and saves the resulting data into an output result set.

Component Name: KettleComponent

Inputs:

REQUIRED
Transformation Step - The step in the transformation from which to retrieve data.

OPTIONAL
Transformation Inputs __-- Allows for the inclusion of miscellaneous inputs to the Kettle
transformation.

Outputs:

Output Name - The name of the result set containing the data from executing the Kettle transformation.

Resources:

REQUIRED
Transformation File -- The kettle transformation file that is be executed.

Kettle Job

Executes a Kettle Job.

Component Name: KettleComponent

Inputs:

OPTIONAL
Job Inputs -- Allows for the inclusion of miscellaneous inputs miscellaneous inputs to the Kettle job.

Document generated by Confluence on Jun 13, 2007 09:27 Page 110

http://kettle.pentaho.org

Resources:
REQUIRED
Job File - The Kettle job file to be executed.

TODO

Add parameters for RDBMS transform repository

Document generated by Confluence on Jun 13, 2007 09:27 Page 111

MDX Query

This page last changed on Dec 12, 2006 by dmoran.

The MDX lookup provides a facility to query multidimensional datasources using the the MDX query
structure.

Inputs:

REQUIRED
JDBC Connection - - This is a JDBC connect string for the desired datasource. If you need connectivity
to a datasource other than hypersonic you must provide the JDBC drivers in a connection string see MDX
Connection below for information on how to do this. Either this node or the MDX Connection must be
supplied.

Or

MDX Connection - This can be used in lieu of all the above connection properties and in fact will
override the above properties should any exist. This string is a semicolon separated named properties list
that is parsed by mondrian to create the connection. Here is an example for a connection based on the
mdx-connection-string: mondrian; Jdbc=jdbc:odbc:MondrianFoodMart;
Catalog=/WEB-INF/FoodMart.xml. When using this format the user name and password could be passed
in as part of the jdbc connection string. This is dependent on the driver being used. Driver names can
also be passed in on this string. More information about this type of connection string consult the
mondrian documentation. Either this or JDBC Connection must be specified.

JDCB User Name - The JDBC user ID. If using other than hypersonic as the datasource then this may
not evaluate correctly and you may need to use the MDX Connection (see below) to set the user ID and
password.
JDBC Password - The JDBC password If using other than hypersonic as the datasource then this may
not evaluate correctly and you may need to use the MDX Connection (see below) to set the user ID and
password.
Query - This is the MDX query string that defines the desired dataset. For more information about MDX
query strings consult the mondrian documentation or visit:
http://www.informit.com/articles/article.asp?p=29418&seqNum=3&rl=1

Resources:

REQUIRED
Catalog -- The ROLAP catalog path. If the catalog starts with HTTP then this path is evaluated as an
absolute URL and the system will attempt to load the catalog directly. If the catalog does not start with
HTTP then the path is assumed to be from the solution root and a URL is constructed accordingly and
passed to the datasource engine (mondrian).Either this or MDX Connection must be specified.

TODO

Document output

Document generated by Confluence on Jun 13, 2007 09:27 Page 112

http://www.informit.com/articles/article.asp?p=29418&seqNum=3&rl=1

Prepared Components - Enabling Subreporting and Connection Sharing

This page last changed on Apr 09, 2007 by wgorman.

Most of the data source components now support a new feature called "prepared_component". This
functionality allows data source components to be executed by other components and also share their
connections.

Data Source Components that implement the prepared component feature include:

• SQLLookupRule
• MDXLookupRule
• HQLLookupRule
• XQueryLookupRule

Also note that SQLExecute can use a prepared_component as an action input for sharing connections.

Enabling JFreeReport Subreporting

By defining a component output with the name "prepared_component", a datasource component goes
into a prepared state vs. the standard execution state. The component initializes its connection and sets
up its query, but waits for another component to execute the prepared statement. An example of this is
a subreport in JFreeReport. JFreeReport will execute the prepared statement for each item in its primary
result set. Note that currently only the JFreeReport Component uses the prepared_component for later
execution. Here is an example action sequence that uses the prepared_component functionality in a
subreport.

<action-definition>
<component-name>SQLLookupRule</component-name>
<action-type>SQL Query For Report Data</action-type>
<action-inputs>

<max_rows type="string"/>
</action-inputs>
<action-outputs>

<prepared_component type="prepared-component" mapping="main_query"/>
</action-outputs>
<component-definition>

<jndi>SampleData</jndi>
<query><![CDATA[select DISTINCT POSITIONTITLE from QUADRANT_ACTUALS order by

POSITIONTITLE]]></query>
<max_rows>3</max_rows>

</component-definition>
</action-definition>

<action-definition>
<component-name>SQLLookupRule</component-name>
<action-type>SQL Query For Report Data</action-type>
<action-inputs>

<prepared_component type="prepared-component" mapping="main_query"/>
</action-inputs>
<action-outputs>

<prepared_component type="prepared-component" mapping="subreport_query"/>
</action-outputs>
<component-definition>

<jndi>SampleData</jndi>
<query><![CDATA[select DISTINCT DEPARTMENT from QUADRANT_ACTUALS WHERE POSITIONTITLE =

{PREPARELATER:POSITIONTITLE} order by DEPARTMENT]]></query>
<dept>Finance</dept>

</component-definition>

Document generated by Confluence on Jun 13, 2007 09:27 Page 113

</action-definition>

<action-definition>
<component-name>JFreeReportComponent</component-name>
<action-type>Create Report Using Query Results</action-type>
<action-inputs>

<default mapping="main_query"/>
<subreport_query mapping="subreport_query"/>
<output-type type="string"/>

</action-inputs>
<action-resources>

<report-definition type="resource"/>
</action-resources>
<component-definition/>

</action-definition>

See the pentaho-solutions/test/reporting/jfreereport-subreport-ipreparedcomponent-test.xaction for the
complete example above.

New syntax introduced includes the "PREPARELATER" template item in the sub query above. The
PREPARELATER field "POSITIONTITLE" is resolved when the query is executed within the
JFreeReportComponent. In this example, The subquery is executed for each row in the main query. This
relationship is defined within the JFreeReport xml file. Also note that the second SQLLookupRule takes in
the first SQLLookupRule as an action input. This is another benefit of using Prepared Component,
components can now share connections.

Within the JFreeReportComponent itself, the only changes that need to be made to support subreports
are to include the additional lookup rules as action inputs as seen above. The action input name needs to
match the subreport query name provided in the JFreeReport XML.

Connection Sharing

An additional benefit of the prepared_component feature is the ability to share connections across
components. For instance, if two SQLLookupRules need to share a connection, they are able to do so
using the prepared_component functionality. In this example, notice that the first SQLLookupRule makes
a connection available by using the action output prepared_component, and then the two following SQL
components use the prepared_component as input for sharing a connection:

<!-- first create a connection -->

<action-definition>
<component-name>SQLLookupRule</component-name>
<action-type>Get Connection</action-type>
<action-inputs/>
<action-outputs>

<prepared_component mapping="connObj"/>
</action-outputs>
<component-definition>

<jndi>SampleDataAdmin</jndi>
</component-definition>

</action-definition>

<!-- second, create temporary table w/ connection and add data -->

<action-definition>
<action-inputs>

<prepared_component mapping="connObj"/>
</action-inputs>
<action-outputs/>
<component-name>SQLExecute</component-name>
<action-type>Create a temp table</action-type>

Document generated by Confluence on Jun 13, 2007 09:27 Page 114

<component-definition>
<continue_on_exception>true</continue_on_exception>
<query><![CDATA[
drop table tmptbl;
create temp table tmptbl(val int) ON COMMIT PRESERVE ROWS;
insert into tmptbl values (1)

]]></query>
</component-definition>

</action-definition>

<!-- third, extract inserted data from temporary table -->

<action-definition>
<component-name>SQLLookupRule</component-name>
<action-type>Check for Data</action-type>
<action-inputs>

<prepared_component mapping="connObj"/>
</action-inputs>
<action-outputs>

<query-result mapping="a_result"/>
</action-outputs>
<component-definition>

<query>SELECT * FROM tmptbl</query>
</component-definition>

</action-definition>

See the pentaho-solutions/test/ipreparedcomponents/ipreparedcomponent_sql_temptable.xaction for the
complete example above

Document generated by Confluence on Jun 13, 2007 09:27 Page 115

Printing

This page last changed on Dec 12, 2006 by dmoran.

Prints reports and content to a named printer accessible from the computer hosting the solution engine.
The content to print can be specified in one of two ways.

1. Specify the file as a printFile resource or component setting.
2. Have a previous action in the sequence output content to the parameter report-output.

Currently, the org.pentaho.plugin.jfreereport.JFreeComponent,
org.pentaho.plugin.eclipsebirt.BIRTComponent, and org.pentaho.plugin.jasperreports.JasperComponent
have the ability to generate report content as report-output. If no content to print is specified, the
action sequence will fail.

Component Name: PrintComponent

Inputs:

OPTIONAL
printFile - string If not specified, the report-output parameter is used.
printerName - string If not specified, the default printer is used
copies - number

Outputs:

last-printer-selected - string If not specified in the action-outputs and action-inputs, value is not set.

Document generated by Confluence on Jun 13, 2007 09:27 Page 116

Scheduling

This page last changed on Dec 12, 2006 by dmoran.

The Pentaho BI platform currently employs Quartz as its scheduler. The implementation is a singleton
that is JDBC persisted. It is fault tolerant and fault recoverable. Scheduled misfires are handled according
to a set of predefined rules.

Access to the scheduler is through the org.pentaho.plugin.quartz.JobSchedulerComponent by
implementing an Action Sequence. Samples can be found in test/scheduler/. There are currently four
different actions available to the job scheduler. "startJob", "suspendJob", "resumeJob", and "deleteJob".

Start Job

Creates a job and a trigger and then registers the job and trigger for execution with the scheduler. In the
case of a "Simple Trigger", actual job execution occurs when the trigger condition is met and occurs at
the defined repeat interval until the number of defined repeat cycles has occurred. In the case of "Cron
Trigger" the firing of the job occurs according to the rules set forth in the cron expression string (see
below). The job itself is a solution document that is to be performed. This allows the scheduling of any
other existing solution such as printing and email. In the event of a fault such as power failure, system
crash, etc., after the scheduler restarts it will apply the misfire rules to any trigger that has misfired. The
values of the "jobName", "triggerType" (and the trigger types associated inputs), "solution", "path", and
"action" need to be defined in the solution document.

Component Name: JobSchedulerComponent

Inputs:

REQUIRED
Job Name -- Name of the job to be suspended.

Outputs:

None

See Triggers

See Misfires

Suspend Job

Pauses a specified running job. Once the job is paused the only way to start it again is with a resume job.

Component Name: JobSchedulerComponent

Document generated by Confluence on Jun 13, 2007 09:27 Page 117

Inputs:

REQUIRED
Job Name -- Name of the job to be suspended.

Outputs:

None

Resume Job

Resumes a previously suspended job. Once the job is resumed it will apply the misfire rules if required.

Component Name: JobSchedulerComponent

Inputs:

REQUIRED
Job Name -- Name of the job to be suspended.

Outputs:

None

Delete Job

Deletes a specified job. The job is deleted immediately. However if a job is currently executing in a
scheduler thread then it will continue to execute. No new instances of the job will be scheduled. The only
input for this action is a "jobName".

Component Name: JobSchedulerComponent

Inputs:

REQUIRED
Job Name -- Name of the job to be deleted.

Outputs:

None

Document generated by Confluence on Jun 13, 2007 09:27 Page 118

Document generated by Confluence on Jun 13, 2007 09:27 Page 119

Misfires

This page last changed on Dec 12, 2006 by dmoran.

When a trigger misses its firing time due to reasons such as the Scheduler was paused or shut down, this
is referred to as a misfire. Misfires are determined by the triggers misfire instruction. There are trigger
misfires types available for all trigger types and those that are specific to "simple" and "cron" trigger
types.

All Triggers - These misfire instructions are applicable to any trigger.

MISFIRE_INSTRUCTION_SMART_POLICY: This misfire instruction is the default for all triggers
created. Essentially this instructs the trigger to use a default policy dependent on the type of trigger that
is created. For a "simple" trigger the rule is as follows:

• If the Repeat Count is 0 then the instruction will be interpreted as
MISFIRE_INSTRUCTION_FIRE_NOW.

• If the Repeat Count is REPEAT_INDEFINITELY, then the instruction will be interpreted as
MISFIRE_INSTRUCTION_RESCHEDULE_NEXT_WITH_REMAINING_COUNT. WARNING: using
MISFIRE_INSTRUCTION_RESCHEDULE_NEXT_WITH_REMAINING_COUNT with a trigger that has a
non-null end-time may cause the trigger to never fire again if the end-time arrived during the
misfire time span.

• If the Repeat Count is 0, then the instruction will be interpreted as
MISFIRE_INSTRUCTION_RESCHEDULE_NOW_WITH_EXISTING_REPEAT_COUNT.

INSTRUCTION_RE_EXECUTE_JOB: Instructs the Scheduler that the Trigger wants the JobDetail to
re-execute immediately.

INSTRUCTION_SET_TRIGGER_COMPLETE: Instructs the Scheduler that the Trigger should be put in
the COMPLETE state. It essentially skips the misfired trigger.

INSTRUCTION_DELETE_TRIGGER: Instructs Scheduler that the Trigger wants itself deleted.

INSTRUCTION_SET_TRIGGER_ERROR: Instructs the Scheduler that Trigger should be put in the error
state.

Simple Triggers - These misfire instructions are applicable to only "simple" triggers.

MISFIRE_INSTRUCTION_FIRE_NOW: Instructs the Scheduler that upon a misfire situation, the
trigger wants to be fired now by the Scheduler. NOTE This instruction should typically only be used for
'one-shot' (non-repeating) Triggers. If it is used on a trigger with a repeat count > 0 then it is equivalent
to the instruction MISFIRE_INSTRUCTION_RESCHEDULE_NOW_WITH_REMAINING_REPEAT_COUNT.

MISFIRE_INSTRUCTION_RESCHEDULE_NOW_WITH_EXISTING_REPEAT_COUNT: Instructs the
Scheduler that upon a misfire situation, the trigger wants to be re-scheduled to with the repeat count left
as-is. NOTE: Use of this instruction causes the trigger to 'forget' the start-time and repeat-count that it
was originally setup with. NOTE: This instruction could cause the Trigger to go to the 'COMPLETE' state
after firing 'now', if all the repeat-fire-times where missed.

Document generated by Confluence on Jun 13, 2007 09:27 Page 120

MISFIRE_INSTRUCTION_RESCHEDULE_NOW_WITH_REMAINING_REPEAT_COUNT: Instructs the
Scheduler that upon a misfire situation, the trigger wants to be re-scheduled to 'now' with the repeat
count set to what it would be, if it had not missed any firings. NOTE: Use of this instruction causes the
trigger to 'forget' the start-time and repeat-count that it was originally setup with (this is only an issue if
you for some reason wanted to be able to tell what the original values were at some later time). NOTE:
This instruction could cause the trigger to go to the 'COMPLETE' state after firing 'now', if all the
repeat-fire-times where missed.

MISFIRE_INSTRUCTION_RESCHEDULE_NEXT_WITH_REMAINING_COUNT: Instructs the
Scheduler that upon a misfire situation, the trigger wants to be re-scheduled to the next scheduled time
after 'now' and with the repeat count set to what it would be, if it had not missed any firings.
NOTE/WARNING: This instruction could cause the trigger to go directly to the 'COMPLETE' state if all
fire-times where missed.

MISFIRE_INSTRUCTION_RESCHEDULE_NEXT_WITH_EXISTING_COUNT: Instructs the Scheduler
that upon a misfire situation, the trigger wants to be re-scheduled to the next scheduled time after 'now'
and with the repeat count left unchanged. NOTE: Use of this instruction causes the trigger to 'forget' the
repeat-count that it was originally setup with. NOTE/WARNING: This instruction could cause the trigger to
go directly to the 'COMPLETE' state if all fire-times where missed.

CRON Triggers - these apply to the "cron" type triggers

MISFIRE_INSTRUCTION_FIRE_ONCE_NOW: Instructs the Scheduler that upon a misfire situation,
trigger wants to be fired now by the Scheduler.

MISFIRE_INSTRUCTION_DO_NOTHING: Instructs the Scheduler that upon a misfire, the trigger
wants to have it's next-fire-time updated to the next time in the schedule after the current time (taking
into account any associated <code>{@link Calendar}</code>, but it does not want to be fired now.

Document generated by Confluence on Jun 13, 2007 09:27 Page 121

Triggers

This page last changed on Dec 12, 2006 by dmoran.

The Pentaho BI Platform currently supports two different types of triggers.

Simple Trigger - A simple trigger allows a task to be scheduled at a specified regular interval for a
specified number of repetitions. The inputs to the simple trigger are the integer values "repeatInterval"
(in seconds) and "repeatCount". The trigger will begin firing immediately and continue at the
"repeatInterval" for "repeatCount" number of cycles. See Figure X.X -- Sample StartJob Action Sequence
for an example.

Cron Trigger - selected in the "triggerType" node as "cron". This trigger uses unix style cron task
definitions. The cron trigger takes a "cronString" that represents the trigger definition much like an entry
into crontab. The following excerpt from the javadoc for org.quartz.cronTrigger describes the format of
the cron expression string.

A "cronString" is a string comprised of 6 or 7 fields separated by white space. The 6 mandatory and 1
optional fields are as follows:

Field Name Allowed Values Allowed Special Characters

Seconds 0-59 , - * /

Minutes 0-59 , - * /

Hours 0-23 , - * /

Day-of-month 1-31 , - * ? / L W C

Month 1-12 or JAN-DEC , - * /

Day-of-Week 1-7 or SUN-SAT , - * ? / L C #

Year (Optional) empty, 1970-2099 , - * /

The '' character is used to specify all values. For example, "" in the minute field means "every
minute".

The '?' character is allowed for the day-of-month and day-of-week fields. It is used to specify 'no specific
value'. This is useful when you need to specify something in one of the two fileds, but not the other. See
the examples below for clarification.

The '-' character is used to specify ranges For example "10-12" in the hour field means "the hours 10, 11
and 12".

The ',' character is used to specify additional values. For example "MON,WED,FRI" in the day-of-week
field means "the days Monday, Wednesday, and Friday".

The '/' character is used to specify increments. For example "0/15" in the seconds field means "the
seconds 0, 15, 30, and 45". And "5/15" in the seconds field means "the seconds 5, 20, 35, and 50". You
can also specify '/' after the '' character - in this case '' is equivalent to having '0' before the '/'.

Document generated by Confluence on Jun 13, 2007 09:27 Page 122

The 'L' character is allowed for the day-of-month and day-of-week fields. This character is short-hand for
"last", but it has different meaning in each of the two fields. For example, the value "L" in the
day-of-month field means "the last day of the month" - day 31 for January, day 28 for February on
non-leap years. If used in the day-of-week field by itself, it simply means "7" or "SAT". But if used in the
day-of-week field after another value, it means "the last xxx day of the month" - for example "6L" means
"the last friday of the month". When using the 'L' option, it is important not to specify lists, or ranges of
values, as you'll get confusing results.

The 'W' character is allowed for the day-of-month field. This character is used to specify the weekday
(Monday-Friday) nearest the given day. As an example, if you were to specify "15W" as the value for the
day-of-month field, the meaning is: "the nearest weekday to the 15th of the month". So if the 15th is a
Saturday, the trigger will fire on Friday the 14th. If the 15th is a Sunday, the trigger will fire on Monday
the 16th. If the 15th is a Tuesday, then it will fire on Tuesday the 15th. However if you specify "1W" as
the value for day-of-month, and the 1st is a Saturday, the trigger will fire on Monday the 3rd, as it will
not 'jump' over the boundary of a month's days. The 'W' character can only be specified when the
day-of-month is a single day, not a range or list of days.

The 'L' and 'W' characters can also be combined for the day-of-month expression to yield 'LW', which
translates to "last weekday of the month".

The '#' character is allowed for the day-of-week field. This character is used to specify "the nth" XXX day
of the month. For example, the value of "6#3" in the day-of-week field means the third Friday of the
month (day 6 = Friday and "#3" = the 3rd one in the month). Other examples: "2#1" = the first Monday
of the month and "4#5" = the fifth Wednesday of the month. Note that if you specify "#5" and there is
not 5 of the given day-of-week in the month, then no firing will occur that month.

The 'C' character is allowed for the day-of-month and day-of-week fields. This character is short-hand for
"calendar". This means values are calculated against the associated calendar, if any. If no calendar is
associated, then it is equivalent to having an all-inclusive calendar. A value of "5C" in the day-of-month
field means "the first day included by the calendar on or after the 5th". A value of "1C" in the
day-of-week field means "the first day included by the calendar on or after sunday".

The legal characters and the names of months and days of the week are not case sensitive.
Here are some full examples:

Expression Meaning

"0 0 12 * * ?" Fire at 12pm (noon) every day

"0 15 10 ? * *" Fire at 10:15am every day

"0 15 10 * * ?" Fire at 10:15am every day

"0 15 10 * * ? *" Fire at 10:15am every day

"0 15 10 * * ? 2005" Fire at 10:15am every day during the year 2005

"0 * 14 * * ?" Fire every minute starting at 2pm and ending at
2:59pm, every day

"0 0/5 14 * * ?" Fire every 5 minutes starting at 2pm and ending
at 2:55pm, every day

"0 0/5 14,18 * * ?" Fire every 5 minutes starting at 2pm and ending
at 2:55pm, AND fire every 5 minutes starting at

Document generated by Confluence on Jun 13, 2007 09:27 Page 123

6pm and ending at 6:55pm, every day

"0 0-5 14 * * ?" Fire every minute starting at 2pm and ending at
2:05pm, every day

"0 10,44 14 ? 3 WED" Fire at 2:10pm and at 2:44pm every Wednesday
in the month of March

"0 15 10 ? * MON-FRI" Fire at 10:15am every Monday, Tuesday,
Wednesday, Thursday and Friday

"0 15 10 15 * ?" Fire at 10:15am on the 15th day of every month

"0 15 10 L * ?" Fire at 10:15am on the last day of every month

"0 15 10 ? * 6L" Fire at 10:15am on the last Friday of every month

"0 15 10 ? * 6L 2002-2005" Fire at 10:15am on every last friday of every
month during the years 2002, 2003, 2004 and
2005

"0 15 10 ? * 6#3" Fire at 10:15am on the third Friday of every
month

Document generated by Confluence on Jun 13, 2007 09:27 Page 124

Secure Filter (Prompting)

This page last changed on Feb 14, 2007 by wgorman.

The secure filter component has two separate but related functions. It allows you to customize the default
prompting done by the runtime context and can verify that the only valid selections are returned.

From the example below, the Secure Filter Component will check for a parameter named DEPARTMENT, if
it doesn't exist, it will generate the prompt and add values to select from based on the values in the
"Display" column of the DEPARTMENT_FILTER parameter.

When the selection has been made by the user, and DEPARTMENT is passed back to the Action Sequence
and eventually to the Secure Filter component, it will verify that the value returned exists in the "Dept"
column.

If the value of DEPARTMENT is valid, execution of the Action Sequence will continue on to the next
component in the sequence.

<action-definition>
<component-name>SecureFilterComponent</component-name>
<action-inputs>
<DEPARTMENT type="string"/>
<DEPARTMENT_FILTER type="result-set"/>
</action-inputs>
<action-outputs/>
<component-definition>
<selections>

<DEPARTMENT optional="false" style="select" prompt-if-one-value="true">
<filter value-col-name="Dept" display-col-name="Display">
DEPARTMENT_FILTER
</filter>
<title>Select the Department</title>
</DEPARTMENT>

</selections>
<xsl>CustomReportParameters.xsl</xsl>
<target>Report_Window</target>
</component-definition>
</action-definition>

The optional attribute specifies if the parameter is required or not. If required, the user must fill in the
value before continuing.

The style attribute defines the style of control that will be presented to the user

The prompt-if-one-value attribute if checked still prompt the user, even if there is only one choice

The title attribute defines text description that will be presented to the user

TODO

• Format this page like the others
• Verify completeness

Document generated by Confluence on Jun 13, 2007 09:27 Page 125

Document generated by Confluence on Jun 13, 2007 09:27 Page 126

SQL Execute

This page last changed on Feb 28, 2007 by gmoran.

Performs a data or database modifying SQL query against a JDBC or JNDI data source. The result of
execution is a resultset containing number of rows affected and status, as detailed below. The query may
contain references to parameters by enclosing the parameter in curly braces. For example update
myTable set column = 'newvalue' where department = '{dept}' would replace {dept} with the value of
the parameter named "dept".

Component Name: SQLExecute

Component Definition:

REQUIRED

JNDI Name - Name of the JNDI connection.

or the following JDBC information

JDBC Driver - The JDBC driver to use when connecting to the data source.
JDBC Connection String - The connection string identifying the location of the data source.
JDCB User Name - User name to use when connecting to the data source.
JDBC Password - Password to use when connecting to the data source.

Query Definition - the update, create, alter or drop statement that you wish to execute. This
component will execute more than one statement in a query definition.

OPTIONAL

force single statement (true\false) - if set to true, and there are multiple statements in the query
definition, will force the query to be submitted to the server as one statement.This execution path should
be used if the query has a semi-colon in the text of the SQL statement. This is a legitimate condition if
there is (for example) a statement with a where-clause that has a semi-colon.

e.g.: UPDATE sometable SET somecolumn='val1;val2' WHERE somecolumn='val3;val4'

multi-statement separator (single character value) - defaults to ';". Allows you to change the
statement separator when multiple sql statements are present

continue on exception (true\false) - if set to true, continue to execute following sql statements after
an exception is thrown. This is useful when a database throws an exeception on a DROP TABLE statement
because the table does not exist.

Note: Any parameter may be referenced in the query by enclosing the parameter in curly braces.

Outputs:

Document generated by Confluence on Jun 13, 2007 09:27 Page 127

Result Set Name -- The name of the parameter in which to store the query results. The results of this
query will be a resultset that has two columns: the first for the number of rows affected, and the second
for the status of the query execution, success or failed. If more than one statement is executed
independently, then there will be as many rows in the resultset as were queries executed. For example, if
you defined three update statements in the query definition, then there would be three rows in the
resulting resultset, one for each statement executed.

Document generated by Confluence on Jun 13, 2007 09:27 Page 128

SQL Query

This page last changed on Mar 06, 2007 by wgorman.

Performs a SQL query against a JDBC or JNDI data source. The query results are available as an output
to the action. The query may contain references parameters be enclosing the parameter in curly braces.
For example select * from myTable where department = '{dept}' would replace {dept} with the value of
the parameter named "dept".

Component Name: SQLLookupRule

Inputs:

REQUIRED
JNDI Name - Name of the JNDI connection.

or an SQL Prepared Component object

Prepared Component - A previous SQLLookupRule that defined a prepared component as the output.
The previous SQLLookupRule will share it's connection with the current SQLLookupRule

or the following JDBC information

JDBC Driver - The JDBC driver to use when connecting to the data source.
JDBC Connection String - The connection string identifying the location of the data source.
JDCB User Name - User name to use when connecting to the data source.
JDBC Password - Password to use when connecting to the data source.

OPTIONAL
Keep Connection Open _-- If selected the query results are retrieved from the data source as needed,
otherwise the entire query results are brought over from the data source and cached in memory. It is
recommended that you set this option with larger datasets. Never use this option if you are storing the
resultset in the session.

SQL Query - This is required if no prepared component object is defined. to utilize SQL's prepared
statement functionality.

Use {PREPARE:<paramname>} in the sql query, where <paramname> is an input parameter to the
SQLLookupRule. This parameter is resolved during the execution of the SQLLookupRule.

Use {PREPARELATER:<paramname>} in the sql query when defined as a prepared component (see
outputs below). The <paramname> and value is provided by the executing component.

Note: Any parameter may be referenced in the query by enclosing the parameter in curly braces.

Outputs:

Document generated by Confluence on Jun 13, 2007 09:27 Page 129

Result Set Name-- The name of the parameter in which to store the query results.

or

Prepared Component - The name of the parameter in which to store the prepared component object,
which can be used for shared connections and later processing by other components.

Document generated by Confluence on Jun 13, 2007 09:27 Page 130

	Space Details
	Available Pages
	Creating Pentaho Solutions
	I - Solution Oriented Approach
	II - Building Solutions
	01. Configuring the BI Server and Design Studio
	02. Terminology
	03. Architecture
	04. Action Sequences
	01 - Anatomy of an Action Sequence
	02 - Creating and Editing an Action Sequence
	03 - Executing an Action Sequence
	04 - Action Sequence XML
	1 - Example Action Sequence XML
	2 - Defining Inputs
	3 - Data Types
	content
	long
	propert-map-list
	property-map
	string
	string-list

	5 - Actions
	6 - XML Schema
	file
	solution-file
	url

	05. Integrating Pentaho Reports (JFreeReports)

	III - Actions and Component Reference
	BIRT Reports
	Call External Action Sequence
	Charting
	Charting XAction Reference
	CategoryDatasetComponent
	Chart Component
	Chart Tag Reference
	by-row
	chart
	chart-attributes
	chart-background
	chart-type
	color
	color-palette
	dataset-type
	domain-includes-zero
	domain-label-rotation
	domain-label-rotation-dir
	domain-period-type
	domain-sticky-zero
	domain-title
	domain-title-font
	domain-vertical-tick-labels
	dot-height
	dot-width
	height
	is-3D
	is-stacked
	line-style
	line-width
	markers-visible
	orientation
	paramName
	paramName2
	plot-background
	range-title
	range-title-font
	subtitle
	title
	title-font
	title-position
	url-template
	width

	TimeSeriesCollectionComponent
	XYSeriesCollectionComponent

	Content Repository Cleaner
	Email
	Hello World
	Jasper Reports
	JavaScript
	JFree Reports
	Kettle
	MDX Query
	Prepared Components - Enabling Subreporting and Connection Sharing
	Printing
	Scheduling
	Misfires
	Triggers

	Secure Filter (Prompting)
	SQL Execute
	SQL Query

