® Pentahoe

open source business inte”igencem

Embedding the Pentaho Reporting Engine

® Pentahd

open source business inte”i%ence :
&

This document is copyright © 2011 Pentaho Corporation. No part may be reprinted without written permission from
Pentaho Corporation. All trademarks are the property of their respective owners.

Help and Support Resources

If you have questions that are not covered in this guide, or if you would like to report errors in the documentation,
please contact your Pentaho technical support representative.

Support-related questions should be submitted through the Pentaho Customer Support Portal at
http://support.pentaho.com.

For information about how to purchase support or enable an additional named support contact, please contact your
sales representative, or send an email to sales@pentaho.com.

For information about instructor-led training on the topics covered in this guide, visit
http://www.pentaho.com/training.

Limits of Liability and Disclaimer of Warranty

The author(s) of this document have used their best efforts in preparing the content and the programs contained
in it. These efforts include the development, research, and testing of the theories and programs to determine their
effectiveness. The author and publisher make no warranty of any kind, express or implied, with regard to these
programs or the documentation contained in this book.

The author(s) and Pentaho shall not be liable in the event of incidental or consequential damages in connection
with, or arising out of, the furnishing, performance, or use of the programs, associated instructions, and/or claims.

Trademarks

Pentaho (TM) and the Pentaho logo are registered trademarks of Pentaho Corporation. All other trademarks are the
property of their respective owners. Trademarked names may appear throughout this document. Rather than list
the names and entities that own the trademarks or insert a trademark symbol with each mention of the trademarked
name, Pentaho states that it is using the names for editorial purposes only and to the benefit of the trademark
owner, with no intention of infringing upon that trademark.

Company Information

Pentaho Corporation

Citadel International, Suite 340
5950 Hazeltine National Drive
Orlando, FL 32822

Phone: +1 407 812-OPEN (6736)
Fax: +1 407 517-4575
http://www.pentaho.com

E-mail: communityconnection@pentaho.com

Sales Inquiries: sales@pentaho.com

Documentation Suggestions: documentation@pentaho.com

Sign-up for our newsletter: http://community.pentaho.com/newsletter/

http://support.pentaho.com
mailto:sales@pentaho.com
http://www.pentaho.com/training
http://www.pentaho.com
mailto:communityconnection@pentaho.com
mailto:sales@pentaho.com
mailto:documentation@pentaho.com
http://community.pentaho.com/newsletter/

Contents

T geTo [¥ o3 1 o] o FO OO P PO PPPPUPPTPPPPPPRRN 4
Required Knowledge and EXPertiSE.......uu i ccceiiiiiiiiiiiiiieieeeiiiiiesan s s s e e e eeseeseeesesnssaan s sssasaeas 5
Obtaining the Pentaho RepOrting SDK.... ..o e e e 6
Using the INcluded ECHPSE PrOJECL.....ccuuiiiiiiiiiie et e s 7
Embedding the Reporting Engine Into a Java APPlICAtION..........cevvviieeeiiiiiiieciinee e e e e eeeeeeeeenneens 8
OVBIVIBW. e tteieeee ettt et e e e e e e e s et teeeeeeeaee e s s e anE e e e ee et e eeaees s sa s ssEeeeeeeeeaaese s s nnnEereneeeaeaaassasaannnnrnnneeeeaaannns 8
S T: Tl o Lo O I I (= = T T O = T 9
Sample 1: Static Report Definition, JDBC Input, PDF OULPUL........ciciiiiiiiiieiiiiicicceeeie e e e e esseseeeeeeeeeeeeeeeeeens 14
Sample 2: Static Report Definition, JDBC Input, HTML OULPUL........coooiiiiieeiiee s e e e e 16
Pentaho Reporting's CapabilitieS........uucciiieiiiiieeeeeieerreee e e e e 19
IC=Ted g aTo] (oToTTor= U A 0 V7= T = Vo [19
T 0T A7 1= 19
L T 10T A I/ 1= TSRS 19
LT Y= Lo T =T o o o DT = 2] T = 20
(@1 g 1T gl =¥e] o1=To [0 [aTe RS ot=T o F= Tt (013U 21
[ST0T] (o [T To Jr= @A U 1S3 o] g g1 = L=T oo g 11T TN 1o Lo S 21
Hacking PentaNO REPOI DESIGNETuu e eaeieieie i e e eieeeee e e e e ee e e eeeeeeaee e e reseseeeeeaaeaeaeeeeesereernererersssnsnnnnnnnn 21
Embedding the Pentaho Bl PIatfOrm.........cooo i e e e e e e e e e e e e e e 21
LicenSe INfOIMALION......cceiiiieeiiiiiceeieee e s s s s e e e e e e e e e e e e eesse s saeeseaeeeeeessennennnnnnn 22
(DA (o] o LT SV o] oo f PN U P PP P PPPPPRPPTTTPPPIR 23
Anatomy of the Pentaho Reporting SDK......cuuuiiiiiiiiiiiiriic et 24
JAR REIBIBINCE. .. it e e e e eaa s s e e e e eeeeeseeeaeess s s aaaaaeseaaaaaeassennnnes 25
SOUICE COAE LINKS..uuuiuuueiiiiesieiieiieeiiteeeiiiisssesa s s s e e e e e e eeseeeeesssrasaaasaesaeaeeeeessnnneessssnnannnsaassaeeees 27
MOFE EXAMPIES... ittt s e e s s e e e e e s e e eeeeee b s s e eeaeaaaeseeennnnnnns 29
Sample 3: Dynamically Generated, JDBC Input, SWING OULPUL.........cceeerriiiiiiiiirireeee e e e e e e e 29
Sample 4: Dynamically Generated, JDBC Input, Java Servliet QULPUL..........coovriiiiiiieiiiiiccccreree e e e e 32

| TOC |3

The Pentaho Reporting engine is a small set of open source Java classes that enables programmers to retrieve
information from a data source, format and process it according to specified parameters, then generate user-readable
output. This document provides guidance and instructions for using the Pentaho Reporting SDK to embed the Pentaho
Reporting engine into a hew or existing Java application.

There are four sample applications in this document, all of which are included in the SDK as .java files. Each adds one
level of complexity or shows a different kind of output.

You should read this guide in order, from this point all the way to the end of the second example. The remaining portion
contains extra information about the Pentaho Reporting engine's capabilities, licensing details, further examples, and
information on where to get help and support.

4 | Pentaho BI Suite Official Documentation | Introduction

This document is strictly for Java software developers. You must be familiar with importing JARs into a project, and be
comfortable reading inline comments in code to figure out advanced functionality on your own. Proficiency in connecting

to data sources is a helpful skill for developing your own application around the Pentaho Reporting engine, but is not
required to follow the examples.

Pentaho BI Suite Official Documentation | Required Knowledge and Expertise | 5

You can download the latest Pentaho Reporting software development kit (SDK) from http://reporting.pentaho.com.

The SDK is available as both a .tar.gz and a .zip archive; both contain the same files, but the .zip file format is more
Windows-friendly, and .tar.gz is more Mac-, Linux-, and Unix-friendly.

Once downloaded, unpack the Pentaho Reporting SDK archive to a convenient and accessible location. If you use the
Eclipse or IntelliJ IDEA development environments, this directory will also serve as your workspace.

In an effort to reduce the size of the SDK, the source code of its constituent libraries is not included. If you need to see
the source to any of the software distributed with the Pentaho Reporting SDK, see Source Code Links on page 27
for instructions.

6 | Pentaho BI Suite Official Documentation | Obtaining the Pentaho Reporting SDK

If you use the Eclipse or IntelliJ IDEA development environments, you can use the Eclipse project included with the
Pentaho Reporting SDK to work directly with the example source code. Simply select the unpacked Pentaho Reporting
SDK directory as your workspace.

You can also launch the Samplel.java and Sample2.java example applications directly from the file browser in
Eclipse.

Pentaho BI Suite Official Documentation | Using the Included Eclipse Project | 7

This section shows in detail how to build a simple reporting application around the Pentaho Reporting engine. There are
three classes for the two examples shown in this section:

1. AbstractReportGenerator.java
2. Samplel.java
3. Sample2.java

You can find the full example source code, plus the .prpt report file they use, in the / sour ce/ or g/ pent aho/
reporting/ engi ne/ cl assi c/ sanpl es/ directory in the Pentaho Reporting SDK.

In the following samples, the interaction with the Reporting engine follows these basic steps:

Boot (initialize)

Get the report definition

Get the data for the report (if it is created outside of the report definition)
Get any report generation parameters (optional)

Generate the report output in the requested format

a s wbdE

With the samples, this allows us to create an abstract base class for all the samples (AbstractReportGenerator). This
class defines the abstract methods:

« getReportDefinition(): this loads/creates/returns the report definition

« getDataFactory(): this returns the data to be used by the reporting engine (if the report definition does not tell the
engine how to retrieve the data).

» getReportParameters(): this returns the set of parameters the reporting engine will use while generating the report

The generateReport() method tells the reporting engine to generate the report using the above method, and creates
the output in one of the following methods (using the OutputType parameter): HTML, PDF, or XLS (Excel). A full list of
output types is listed later in this guide, but to keep these examples simple, we'll concentrate on these three.

Samplel.java

In this sample, the getReportDefinition() method loads the report definition from a PRPT file created using the
Pentaho Report Designer. This report definition defines the following:

» Data Query (retrieving a list of customers based on a set of customer names)

* Report Title

* Report Header — set of 4 columns (Customer Number, Customer Name, Postal Code, Country)
» Report Data — set of 4 columns (Customer Number, Customer Name, Postal Code, Country)

The getDataFactory() method returns null to indicate that no data factory is required to be provided. In this example,
the source of data is defined in the report definition.

The getReportParameters() method defines three parameters in a HashMap:

Parameter Name Parameter Value Description
Report Title Simple Embedded Report Example The value of this parameter will be
with Parameters placed in the Report Title that is

centered on the top of each page in
the report. In the report definition, the
Report Title field is a Text Field whose
value is “Report Title”. This indicates
that the field will use the value of the
parameter “Report Title” when the
report is generated.

Col Headers BG Color yellow The value of this parameter will be
used as the background color of the
column header fields. In the report

8 | Pentaho BI Suite Official Documentation | Embedding the Reporting Engine Into a Java Application

Parameter Name Parameter Value Description

definition, all four of the column header
fields are defined with a bg-color style
of “=[Col Headers BG Color]". This
indicates that the value of the “Col
Header BG Color” parameter will be
used as that value.

Customer Names ["Anerican Souvenirs Inc", The value of this parameter defines
" Toys4G ownUps. cont, a set of Customer Names that will be
gi ft sbymai | . co. uk”, used in the data query. This allows the

"B&E Col | ect abl es",

"Classic Gft |deas |nc" sample to define which customers will

be used in the report at the time the
report is generated.

SELECT

" CUSTOMERS" . " CUSTOMERNAME" ,
" CUSTOMVERS" . " POSTAL CCDE" ,
" CUSTOMVERS" . " COUNTRY" ,

" CUSTOMERS" . " CUSTOVERNUMBER!
FROM
" CUSTOVERS"
\WHERE

" CUSTOVERS" . " CUSTOVERNAME"
I N (${Custoner Nanes})

The main() method creates an output filename in which the report will be generated and then starts the report
generation process.

Sample2.java

In this sample, the getReportDefinition() method creates a blank report and sets the query name to “ReportQuery”. It
then adds a report pre-processor called RelationalAutoGeneratorPreProcessor.

Report pre-processors execute during the report generation process after the data query has been executed

but before the report definition is used to determine the actual layout of the report. The benefit of this is that the
RelationalAutoGeneratorPreProcessor will use the column information retrieved from the data query to add header
fields in the Page Header and data fields in the Item Band of the report definition for each column of data in the result
set.

The getDataFactory() method first defines the “ DriverConnectionProvider” which contains all the information
required to connect to the database. It then defines the “DataFactory” which will use the connection provider to connect
to the database. The Data Factory then has the query set which will be used in report generation. The query name
“ReportQuery” must match the query name defined when the report definition was created or else the report will
contain no data.

The getReportParameters() method is not used in this example, so it returns null.

The main() method creates an output filename in which the report will be generated and then starts the report
generation process.

The AbstractReportGenerator class shown below is extended by the two primary example applications. It contains the
basic logic that creates a report, leaving the details of input and output to the classes that extend it:

/*
* This programis free software; you can redistribute it and/or nodify it
under the

* terns of the GNU Lesser CGeneral Public License, version 2.1 as
publ i shed by the Free Software
* Foundati on.

*

Pentaho Bl Suite Official Documentation | Embedding the Reporting Engine Into a Java Application | 9

* You shoul d have received a copy of the GNU Lesser Ceneral Public

Li cense along with this

* program if not, you can obtain a copy at http://ww.gnu.org/licenses/
ol d-licenses/lgpl-2.1. htn

* or fromthe Free Software Foundation, |nc.,

* 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA

*

* This programis distributed in the hope that it will be useful, but

W THOUT ANY WARRANTY;

* without even the inplied warranty of MERCHANTABI LI TY or FI TNESS FOR A

PARTI CULAR PURPOSE.

* See the GNU Lesser Ceneral Public License for nore details.

Copyri ght 2009 Pentaho Corporation. All rights reserved.

* F Ok ok

Created July 22, 2009
@ut hor dki ncade

*

*/
package org. pent aho. reporting. engi ne. cl assi c. sanpl es;

i mport java.io.BufferedQutput Stream
i mport java.io.File;

i mport java.io.FileCutputStream

i nport java.io.| OExcepti on;

i mport java.io.QutputStream

i mport java.util.Mp;

i mport org. pentaho. reporting. engi ne. cl assic. core. C assi cengi neBoot ;
i mport org. pentaho. reporting. engi ne. cl assi c. core. Dat aFact orvy;
i mport org. pentaho. reporting. engi ne. cl assi c. core. Mast er Report ;
i mport

or g. pent aho. reporti ng. engi ne. cl assi c. core. Report Processi ngExcepti on;
i mport org. pentaho.reporting.engine.classic.core.l|ayout.output.
Abstract Report Processor;
i mport org. pentaho. reporting. engi ne. cl assi c. core. nobdul es. out put . pageabl e.
base. Pageabl eReport Processor;
i mport org. pentaho. reporting. engi ne. cl assi c. core. nodul es. out put . pageabl e.
pdf . Pdf Qut put Pr ocessor ;
i mport org. pentaho.reporting. engine.classic.core. nodul es. out put.tabl e. base
. Fl owReport Processor;
i mport org. pentaho. reporting. engi ne. cl assi c. core. nodul es. out put . t abl e. base
. St reanReport Processor;
i mport org. pentaho. reporting. engi ne. cl assi c. core. nodul es. out put.tabl e. ht m
LAl TtenmsH m Printer;
i mport org. pentaho.reporting. engine.classic.core. nodul es. out put.table.htn
.FileSystemJRLRewriter;
i mport org. pentaho. reporting. engi ne. cl assi c. core. nodul es. out put.tabl e. htnl
. Ht M Qut put Pr ocessor;
i mport org. pentaho. reporting. engi ne. cl assi c. core. nodul es. out put.tabl e. ht m
.H M Printer;
i mport org. pentaho.reporting. engine.cl assic. core. nodul es. out put.table. htn
. St reanHt m Qut put Processor;
i mport org. pentaho. reporting. engi ne. cl assi c. core. nodul es. out put. tabl e. xl s.
FI owExcel Qut put Processor;
i mport org.pentaho.reporting.libraries.repository. ContentlLocation;
i mport org.pentaho.reporting.libraries.repository. Default NameGener at or;
i mport org. pentaho.reporting.libraries.repository.stream StreanRepository;

/**
* This is the base class used with the report generation exanples. It
contai ns the actual <code>enbeddi ng</code>
* of the reporting engine and report generation. Al exanple enbedded
i mpl ementations will need to extend this class
* and performthe foll ow ng:
*
* <|i >l npl enent the <code>get ReportDefinition()</code> nethod and return
the report definition (how the report
* definition is generated is up to the inplenmenting class).

10 | Pentaho BI Suite Official Documentation | Embedding the Reporting Engine Into a Java Application

* <|i >l npl enent the <code>get Tabl eDat aFact ory() </ code> net hod and return
the data factory to be used (how

* this is created is up to the inplenenting class).

* <|i >l npl enent the <code>get Report Paranet ers()</code> nethod and return
the set of report paraneters to be used.

* |f no report paraneters are required, then this nethod can sinply
return <code>nul |l </ code>

*
*/
public abstract class Abstract Report Gener at or
/**
* The supported output types for this sanple
*/

public static enum Qut put Type

PDF, EXCEL, HTML
}
/**
* Performs the basic initialization required to generate a report
*/
publ i c Abstract Report Generat or ()

/1 Initialize the reporting engi ne
Cl assi cEngi neBoot . get | nst ance().start();

}

/**

* Returns the report definition used by this report generator. If this
nmet hod returns <code>nul | </ code>,

* the report generation process will throw a
<code>Nul | Poi nt er Except i on</ code>.

*

* @eturn the report definition used by thus report generator

*/

public abstract MasterReport getReportDefinition();

/**

* Returns the data factory used by this report generator. If this
net hod returns <code>nul | </ code>,

* the report generation process will use the data factory used in the
report definition.

*

* @eturn the data factory used by this report generator
*/
public abstract DataFactory getDataFactory();

/**

* Returns the set of parameters that will be passed to the report
generation process. If there are no paraneters

* required for report generation, this method may return either an
enpty or a <code>nul | </ code> <code>Map</ code>

*

* @eturn the set of report paraneters to be used by the report
generation process, or <code>null</code> if no

* paraneters are required.

*/

public abstract Map<String, Object> getReportParaneters();

/**

* Cenerates the report in the specified <code>out put Type</code> and
wites it into the specified

* <code>out put Fi | e</ code>.

*

* @ar am out put Type the output type of the report (HTM., PDF, HTM)

* @aramoutputFile the file into which the report will be witten

* @hrows |11 egal Argunent Exception indicates the required paraneters
were not provided

Pentaho BI Suite Official Documentation | Embedding the Reporting Engine Into a Java Application | 11

* @hrows | OException i ndi cates an error opening the file
for witing

* @hrows ReportProcessi ngexception indicates an error generating the
report

*/

public void generateReport(final QutputType outputType, File outputFile)
throws |11 egal Argurment Excepti on, | OExcepti on,

Report Processi ngExcepti on

if (outputFile == null)

t hrow new ||| egal Argunment Exception("The output file was not
speci fied");

Qut put St r eam out put St ream = nul | ;
try

/1 Open the output stream
out put St ream = new Buf f er edQut put St r ean{ new
Fi |l eQut put Stream(out putFile));

/'l Generate the report to this output stream
gener at eReport (out put Type, out put Strean);

.
finally
if (outputStream!= null)

out put St ream cl ose() ;

}
}

/**

* Cenerates the report in the specified <code>out put Type</code> and
wites it into the specified

* <code>out put St r eanx/ code>.

* <p/ >

* |t is the responsibility of the caller to close the
<code>out put St r eanx/ code>

* after this method i s executed.

*

* @ar am out put Type the out put type of the report (HTM., PDF, HTM)

* @aram out put Streamthe streaminto which the report will be witten

* @hrows |1 egal Argunent Exception indicates the required paraneters
were not provided

* @hrows ReportProcessi ngException indicates an error generating the
report

*/

public void generateReport(final QutputType output Type, QutputStream
out put St ream

throws |11 egal Argunment Excepti on, ReportProcessi ngExcepti on
if (outputStream == null)
t hrow new ||| egal Argunment Excepti on(" The out put stream was not
speci fied");

/'l Get the report and data factory
final MasterReport report = getReportDefinition();
final DataFactory dataFactory = getDataFactory();

/1l Set the data factory for the report
if (dataFactory != null)

report. set Dat aFact ory(dat aFact ory);
}

12 | Pentaho BI Suite Official Documentation | Embedding the Reporting Engine Into a Java Application

/1 Add any paranmeters to the report
final Map<String, Cbject> reportParaneters = get Report Paraneters();
if (null !'= reportParaneters)

for (String key : reportParaneters. keySet ())
{
report. get Paranet er Val ues() . put (key, reportParaneters. get(key));

}

/! Prepare to generate the report
Abst ract Report Processor reportProcessor = null;

try

/1 Greate the report processor for the specified output type
swi tch (out put Type)

case PDF:

final Pdf Qut put Processor out put Processor =
new Pdf Qut put Processor (report. get Confi guration(),
out put Stream report.get ResourceManager ());
report Processor = new Pageabl eReport Processor (report,
out put Processor);
br eak;
}

case EXCEL.:

final Fl owExcel Qut put Processor target =
new FlI owExcel Qut put Processor (report. get Configuration(),
out put St ream report. get Resour ceManager());
report Processor = new Fl owReport Processor(report, target);
br eak;

}
case HTM.:

final StreanRepository targetRepository = new
St r eanReposi t or y(out put Strean) ;
final ContentlLocation targetRoot = target Repository.getRoot();
final Htm Qutput Processor outputProcessor = new
St reanHt m Qut put Processor (report. get Configuration());
final HHmM Printer printer = new
Al ltensHt m Printer(report.get ResourceManager());
printer.setContentWiter(targetRoot, new
Def aul t NameGener at or (t ar get Root, "index", "htm"));
printer.setDataWiter(null, null);
printer.setU | Rewiter(new FileSystemJRLRewiter());
out put Processor.setPrinter(printer);
report Processor = new StreanReport Processor (report,
out put Processor) ;
br eak;
}

}

/'l Generate the report
report Processor. processReport ();

.
finally
if (reportProcessor != null)

report Processor. cl ose();

}
}
}

Pentaho BI Suite Official Documentation | Embedding the Reporting Engine Into a Java Application | 13

}

The simplest embedding scenario produces a static report (no user input regarding a data source or query), with JDBC
input from the Pentaho-supplied SampleData HSQLDB database, and produces a PDF on the local filesystem.

/*
* This programis free software; you can redistribute it and/or nodify it
under the

* terns of the GNU Lesser General Public License, version 2.1 as

publ i shed by the Free Software

* Foundati on.

*

* You shoul d have received a copy of the GNU Lesser Ceneral Public

Li cense along with this

* program if not, you can obtain a copy at http://ww.gnu.org/licenses/
ol d-licenses/lgpl-2.1. htm

* or fromthe Free Software Foundation, |nc.

* 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA

*

* This programis distributed in the hope that it will be useful, but

W THOUT ANY WARRANTY;

* without even the inplied warranty of MERCHANTABI LI TY or FI TNESS FOR A

PARTI CULAR PURPOSE.

* See the GNU Lesser Ceneral Public License for nore details.

Copyri ght 2009 Pentaho Corporation. All rights reserved.

* X X F

Created July 22, 2009
@ut hor dki ncade

*

*/
package org. pent aho. reporting. engi ne. cl assi c. sanpl es;

i mport java.io.File;

i mport java.io.| OException
i mport java. net. URL;

i mport java.util.Mp;

i mport java.util.HashMap;

i mport org. pentaho. reporting. engi ne. cl assi c. core. Dat aFact ory;
i mport org. pentaho. reporting. engi ne. cl assi c. core. Mast er Report ;
i mport
or g. pent aho. reporti ng. engi ne. cl assi c. core. Report Processi ngExcepti on
i mport org. pentaho.reporting.libraries.resourcel oader. Resource;
i mport org.pentaho.reporting.libraries.resourcel oader. ResourceExcepti on
i mport org. pentaho.reporting.|libraries.resourcel oader. Resour ceManager

/**
* CGenerates a report in the foll owi ng scenario:
*
* <|i>The report definition file is a .prpt file which will be | oaded and
par sed

* <|i>The data factory is a sinple JDBC data factory usi ng HSQ.DB
* <|i>There are no runtine report paraneters used

*
*/
public class Sanpl el extends Abstract Report Gener at or
/**
* Default constructor for this sanple report generator
*/
public Sanpl el()
{
}

14 | Pentaho BI Suite Official Documentation | Embedding the Reporting Engine Into a Java Application

/**

* Returns the report definition which will be used to generate the

report.

* | oaded and parsed froma file contained in this package.

*

* @eturn the | oaded and parsed report definition to be used in report
gener ati on.

*/

publ i c MasterReport getReportDefinition()

{
try

/1 Using the classloader, get the URL to the reportDefinition file

final C assLoader classloader = this.getC ass().getd assLoader();

final URL reportDefinitionURL
pent aho/ r eporti ng/ engi ne/ cl assi c/ sanpl es/ Sanpl el. prpt");

/1 Parse the report file
final ResourceManager resourceManager = new ResourceManager () ;
resour ceManager . regi st er Defaul ts();
final Resource directly =

resour ceManager. createbDi rect!|ly(reportDefinitionURL, MasterReport.class);
return (MasterReport) directly.get Resource();

cat ch (ResourceException e)
e.printStackTrace();

return null;

}

/**

* Returns the data factory which will be used to generate the data used

during report generation. In this exanple,
*we will return null since the data factory has been defined in the

report definition.
*

* @eturn the data factory used with the report generator

*/

publ i c DataFactory get Dat aFactory()

{
}

/**

return null;

* Returns the set of runtinme report paraneters. This sanple report uses
the follow ng three paraneters:

*

* <|i>Report Title - The title text on the top of the report</

li>

* <| i >Cust oner Nanes - an array of custoner nanes to show in the
report</Ili>
* <| i >Col Headers BG Col or - the background color for the colum

headers</1Ii >
* <ful >

*

* @eturn <code>nul | </code> indicating the report generator does not
use any report paraneters

*/

public Map<String, bject> getReport Paraneters()

final Map paraneters = new HashMap<String, Object>();

paraneters. put ("Report Title", "Sinple Enbedded Report Exanple with
Par anet ers") ;

par anet ers. put ("Col Headers BG Col or", "yellow');

par anet ers. put (" Cust omer Nanes",

In this case, the report will be

cl assl oader . get Resour ce("or g/

new String [] {
"Ameri can Souvenirs |Inc",

Pentaho BI Suite Official Documentation | Embedding the Reporting Engine Into a Java Application | 15

"Toys4G ownUps. cont',
"gi ftsbymail.co.uk",
"B&E Col | ect abl es",

"Classic Gft |deas, |Inc",

1),

return paraneters;

}
/**

* Sinple command |ine application that will generate a PDF version of
the report. In this report,

* the report definition has already been created with the Pentaho
Report Designer application and

* it located in the sane package as this class. The data query is
located in that report definition

* as well, and there are a few report-nodi fying paraneters that will be
passed to the engine at runtine.

* <p/>

* The output of this report will be a PDF file |located in the current

directory and will be naned
* <code>Si npl eReport Gener at or Exanpl e. pdf </ code>.

* X X

@ar am ar gs none
@hrows | CException indicates an error witing to the filesystem
* @hrows ReportProcessi ngException indicates an error generating the
report
*/
public static void main(String[] args) throws | OException,
Report Processi ngExcepti on

/1l Create an output filenane
final File outputFilenane = new Fil e(Sanpl el. cl ass. get Si npl eNane() +
" . pdf ll) ;

/1l Generate the report
new Sanpl el(). gener at eReport (Abstract Report Gener at or . Qut put Type. PDF,
out put Fi | enane) ;

/1 Qutput the location of the file
Systemerr.println("Generated the report [" +
out put Fi | enane. get Absol utePath() + "]");
}
}

This example produces a static report (no user input regarding a data source or query), with JDBC input from the
Pentaho-supplied SampleData HSQLDB database, and produces an HTML file on the local filesystem.

/*
* This programis free software; you can redistribute it and/or nodify it
under the

* terns of the GNU Lesser General Public License, version 2.1 as
publ i shed by the Free Software
* Foundati on.

*

* You shoul d have received a copy of the GNU Lesser Ceneral Public
Li cense along with this
* program if not, you can obtain a copy at http://ww. gnu.org/licenses/
ol d-licenses/lgpl-2.1. htm
* or fromthe Free Software Foundation, Inc.,
* 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
*

* This programis distributed in the hope that it will be useful, but
W THOUT ANY WARRANTY;

16 | Pentaho BI Suite Official Documentation | Embedding the Reporting Engine Into a Java Application

* without even the inplied warranty of MERCHANTABI LI TY or FI TNESS FOR A
PARTI CULAR PURPCSE.
* See the GNU Lesser General Public License for nore details.

Copyri ght 2009 Pentaho Corporation. All rights reserved.

* Ok X F

Created July 22, 2009
@ut hor dki ncade

*

*/
package org. pent aho. reporting. engi ne. cl assi c. sanpl es;

i mport java.io.File;
i mport java.io.| OException;
i mport java.util.Mp;

i mport org. pentaho. reporting. engi ne. cl assi c. core. Dat aFact ory;
i mport org. pentaho. reporting. engi ne. cl assi c. core. Mast er Report ;
i mport
or g. pent aho. reporti ng. engi ne. cl assi c. core. Report Processi ngExcept i on;
i mport org. pentaho. reporting. engi ne. cl assi c. core. PageDefinition;
i mport org. pentaho. reporting. engi ne.classic.core.w zard.
Rel ati onal Aut oGener at or PrePr ocessor ;
i mport org. pentaho. reporting. engi ne. cl assi c. core. nodul es.
m sc. dat af act ory. sql . SQLRepor t Dat aFact ory;
i mport org. pentaho. reporting. engi ne. cl assi c. core. nodul es.
nm sc. dat af actory. sql . Dri ver Connecti onProvi der;

/**

* CGenerates a report in the follow ng scenari o:

*

* <|i>The report definition file is a .prpt file which will be | oaded and
par sed

* <|i>The data factory is a sinple JDBC data factory usi ng HSQ.DB
* <|i>There are no runtine report paraneters used

*

*/
public class Sanpl e2 extends Abstract Report Gener at or
{

private static final String QUERY_NAVE = "Report Query";

/**

* Default constructor for this sanple report generator
*/

public Sanpl e2()

{

}
/**

* Returns the report definition which will be used to generate the
report. In this case, the report will be
* | oaded and parsed froma file contained in this package.
*
* @eturn the | oaded and parsed report definition to be used in report
gener ati on.
*/
publ i c MasterReport getReportDefinition()
{
final MasterReport report = new MasterReport();
report. set Query(QUERY_NAME) ;
report . addPreProcessor (new Rel ati onal Aut oGener at or PreProcessor());
return report;

}

/**

* Returns the data factory which will be used to generate the data used
during report generation. In this exanple,

*we will return null since the data factory has been defined in the
report definition.
*

Pentaho BI Suite Official Documentation | Embedding the Reporting Engine Into a Java Application | 17

* @eturn the data factory used with the report generator
*/
publ i c DataFactory get DataFactory()

final DriverConnectionProvider sanpl eDriverConnecti onProvi der = new
Dri ver Connecti onProvi der () ;

sanpl eDri ver Connecti onProvi der.setDriver("org. hsqgl db. j dbcDriver");

sanpl eDri ver Connecti onProvi der.setUrl ("j dbc: hsqgl db:./sqgl / sanpl edata") ;

sanpl eDri ver Connecti onProvi der. set Property("user", "sa");

sanpl eDri ver Connecti onProvi der. set Property("password", "");

final SQ.Report Dat aFact ory dataFactory = new
SQLReport Dat aFact or y(sanpl eDri ver Connect i onProvi der) ;
dat aFact ory. set Quer y(QUERY_NAME,
"sel ect CUSTOVERNAME, CITY, STATE, POSTALCODE, COUNTRY from
CUSTOMERS or der by UPPER(CUSTOVERNAME) ") ;

return dataFactory;

}
/**
* Returns the set of runtinme report paraneters. This sanple report does

not use report paraneters, so the

* method will return <code>null </ code>
*

* @eturn <code>null </code> indicating the report generator does not
use any report paraneters

*/
public Map<String, bject> getReportParaneters()
{
return null;
}

public static void nmain(String[] args) throws | OException,
Report Processi ngExcepti on

/1l Create an output filenane
final File outputFilenane = new Fil e(Sanpl e2. cl ass. get Si npl eNane() +
“.htm");

/1l Generate the report
new Sanpl e2() . gener at eReport (Abst ract Report Gener at or . Qut put Type. HTM_,
out put Fi | enane) ;

/1 Qutput the location of the file
Systemerr.println("Generated the report [" +
out put Fi | enane. get Absol utePath() + "]");

}

18 | Pentaho BI Suite Official Documentation | Embedding the Reporting Engine Into a Java Application

Now that you are familiar with the basic functions of the Pentaho Reporting engine, you're prepared to learn more about
its advanced features, explained in the subsections below.

The Pentaho Reporting engine offers unique functionality not found in competing embeddable solutions:

» Does not require a JDK at runtime. While you do need a Java Development Kit installed on your development
machine, you do not need a JDK to run a program that embeds the Pentaho Reporting engine -- just a standard Sun
Java Runtime Environment.

e All processing is done in memory. No temporary files are created by the Reporting engine. A program that relies
on the Pentaho Reporting engine for report generation can run on a diskless system.

« Potentially backwards-compatible to JDK 1.2. The Pentaho Reporting architect has given special consideration to
users and developers on legacy systems. While Pentaho focuses its in-house development and QA efforts on JRE
1.6.0, it is possible to use the Reporting engine in older JREs by adding JDBC and JNDI libraries.

» Dynamically and automatically adjustable components. The Pentaho Reporting engine detects JARs that add
functionality at runtime, so you can add new JARSs to expand the engine's capabilities, or remove unnecessary JARs
to reduce your application's memory and disk space footprint.

« Low memory footprint. A Pentaho Reporting-based application can run with as little as 64MB of memory (though
128MB would dramatically increase report processing speed).

« Totally configurable through runtime parameterization. Every style, function, query, and report element is fully
customizable by passing parameters to the Reporting engine when you render a report.

* OpenFormula integration. OpenFormula is an open standard for mathematical formulas. You can easily create
your own custom formulas, or you can customize the ones built into the Pentaho Reporting engine with this clearly
and freely documented standard.

« Simple resource management. Using the OpenDocument Format (ODF), the Pentaho Reporting engine bundles
all report resources, including the data source connection information, query, and even binary resources like images
into one canonical file. This simplifies physical resource management and eliminates relative path problems.

The Pentaho Reporting engine can connect to virtually any data source:

« JDBC

« JNDI

» Kettle (Pentaho Data Integration)
» Simple SQL (JDBC Custom)

« Pentaho Metadata

e Mondrian MDX

 OLAP4J

XML

« Simple table

« Scripting data sources (JavaScript, Python, TCL, Groovy, BeanShell)
« Java method invocation

e Hibernate

If your data source is not directly supported, you can use Pentaho Data Integration to transform it into a more report-
friendly format, or you can design your own custom data source interface.

The Pentaho Reporting engine can create reports in a variety of relevant file formats:

- PDF

Pentaho BI Suite Official Documentation | Pentaho Reporting's Capabilities | 19

« HTML

* Excel

« CSV

e RTF

e XML

* Plain text

All of the output types listed above are highly customizable in terms of style, formatting, and pagination. You can also
specify your own output type if none of the standard choices are sufficient.

Pentaho Report Designer

The examples in this guide accept data source input and create user-readable output, which is essentially what the
Pentaho Report Designer does with its graphical user interface. In addition to being a powerful report creation and
design tool, Report Designer is also an extraordinary example of a Java application that embeds the Pentaho Reporting
engine.

File Edit View Format Data dow Help
[o[=[a]e] [e] [» [%[[m] =]
<master-report> [X] Structure | Data
& o Ferr [[-] 81| u] oo [G6)e]0) [8] 4]
200% 6 . 15 . 20 . 25 . 30 . 35 . 406 . 45 . 50 . 55 . 60 . © paasets
o ¢ (3 IDBC SampleData (Hypersonic)
¢ CJquervl
* Fage Header [EMPLOYEENUMEER (EMPLOYEENUME
o [LASTNAME (LASTNAME, String)
Ay [FIRSTNAME (FIRSTNAME, String)
[y EXTENSION (EXTENSION, String)
o | Mot Employee Status Report Qe g, s
" [y OFFICECODE (OFFICECODE, String)
= [y REPORTSTO (REFORTSTO, Integen
@ [y J0BTITLE OBTITLE, String)
i Functions
o o Parameters
] =2
= Details EMPLOYEENUMBER [LASTNAME FIRSTNAME JOBTITLE
m
-2 2
o 5 a
&
) Bal’ Chart 4] 1 [D
B = (St | Atres |
7.5
=
= = o Name | _inhert | Value | Formula
S 5.0 |
= h-align LEFT Q@
© v-align TOP @
" > 25 text-color @
Report Footer | — : bg-color g
bg-ext
0 [Epaddngl | | _ i}
0.0 op 0.0 @ ||
= Cat... Cat.. Cat.. Cat.. Cat.. lbottom 0.0 @
left 0.0 g
right 0.0
Category
o il 7]
o X " fill-color
W First ™ Second Third eran-ou
stroke
o anti-alias [m]
= aspect-r. 5]
il scale =]
| R
height [1900
width [2800
" x [925
Page Footer {2 9 0O 120
visiole
invisible- m]
dynamic m]
o oreferre.
preferre —
lnz-hei. [Vl 32767.0 @ |z
[[essofizeg

You can also create report definition files with Report Designer, then use your custom Reporting engine-based

application to render them at a later time.

20 | Pentaho BI Suite Official Documentation | Pentaho Reporting's Capabilities

Pentaho offers many embeddable structures -- not just the Reporting engine. You can also embed or extend the
Pentaho Analysis engine (Mondrian), the Pentaho BI Platform, part or all of Pentaho Data Integration (Kettle), and
the Weka data mining engine. This guide is focused on reporting, however, so the below scenarios only involve the
reporting components of Pentaho Business Analytics.

The examples in this guide have covered simple scenarios that don't involve a high degree of user interactivity. It's easy
to imagine how far you can expand the example code, even to the point of building your own client tools. On a slightly
smaller scale, you could build a report-generation program that merely takes some parameters from a user, then silently
emails the report to designated recipients via the Java mail component. You could also design a reporting daemon or
service that listens for incoming requests and outputs reports to a Web server.

Pentaho Report Designer is built on the Pentaho Reporting engine, as is the ad hoc reporting functionality built into
the Pentaho User Console in the Bl Platform. If you need a graphical report creation tool, it would be easier to modify
Report Designer than it would be to rewrite it from scratch. For Web-based ad hoc reporting, you will have an easier
time embedding the entire Bl Platform than trying to isolate and embed just the ad hoc component.

Perhaps you do not need to create a whole new content creation program around the Pentaho Reporting engine;
instead, you can enhance or reduce the functionality of Pentaho Report Designer to match your needs.

Report Designer is both modular and extensible, so you can remove or disable large portions of it, or create your own
custom data sources, output formats, formulas, and functions. You can also customize Report Designer with your own
background images, icons, language, and splash screen.

If your Web-based reporting application needs scripting, scheduling, and security functionality, it makes more sense

to embed the slightly larger Pentaho Bl Platform instead of writing a large amount of your own code to add to the
Reporting engine. The BI Platform contains powerful scripting and automation capabilities, an email component, report
bursting functionality, user authorization and authentication features, and a cron-compatible scheduling framework.

The BI Platform is the heart of the larger Pentaho Bl Server, which is a complete J2EE Web application that provides
engines for Pentaho Reporting, Data Integration, and Analysis, as well as a fully customizable Web-based user
interface that offers ad hoc reporting, real-time analysis views, and interactive dashboard creation.

The BI Server is fully customizable, so your options range from simple rebranding to removing entire components or
developing your own plugins to add major user-facing functionality.

Pentaho Bl Suite Official Documentation | Other Embedding Scenarios | 21

The entire Pentaho Reporting SDK is freely redistributable. Most of it is open source software, but its constituent JARs
are under a few different licenses. If you intend to embed and distribute any part of this SDK, you must be familiar with
the licensing requirements of the pieces you use.

You can read all of the relevant licenses in text files in the licenses subdirectory in the Pentaho Reporting SDK.

22 | Pentaho BI Suite Official Documentation | License Information

The examples in this guide are simple and easy to follow, but with more complex requirements come more advanced
programs. While reading the source code comments can help quite a bit, you may still need help to develop an
application within a reasonable timeframe. Should you need personal assistance, you can have direct access to the
most knowledgeable support resources through a Pentaho Enterprise Edition software vendor annual subscription:

ISV/IOEM support options

If phone and email support are not enough, Pentaho can also arrange for an on-site consulting engagement:
Consultative support options

Pentaho Bl Suite Official Documentation | Developer Support | 23

http://www.pentaho.com/services/isv_oem_support/
http://www.pentaho.com/services/consulting/

SDK Directory Structure

/

/ docunent ati on

/'licenses

/ sanpl es

/ WebCont ent

/.. META- | NF

/.. V\EB- | NF

[..]1../lib

/lib

/ sour ce

/..lorg

/..]..lpentaho

/[..l..]../lreporting

[..1..1..]../engine

[..1..1../../..]Iclassic

[.]..]sanpl es

/sql

Directory Content Description

Documentation \Where the Embedding the Pentaho
Reporting Engine PDF is located

Licenses Contains text files with licensing
information

Samples The eclipse project directory, which
contains the samples shown in this
guide

Samples/WebContent \WebContent information used with
Sample 4 (mainly the WEB-INF/
web.xml)

Samples/lib The lib directory which makes up the

Reporting Engine SDK

Samples/source

The source files used to make up the
four reporting samples

Samples/sql

The file-based HSQLDB instance used

with the samples

Content of the Samples Directory

File

Purpose

build.properties

Ant properties used with the build script

build.xml

Ant build script

common_build.xml

Ant Build Script

ivysettings.xml

Settings for vy (used with build)

ivy.xml Dependencies for project (used with vy
— used with build)

.project Eclipse project file

.classpath Eclipse classpath file

samples.iml IntelliJ project file

Sample*.bat Runs the sample (1/2/3) program on

\Windows

Sample *.launch

Runs the sample (1/2/3) program from
within Eclipse

Sample*.sh

Runs the sample (1/2/3) project on
linux

Sample4.war

The WAR that can be dropped in
a Servlet Container (Tomcat) and
executed

24 | Pentaho BI Suite Official Documentation | Anatomy of the Pentaho Reporting SDK

The Pentaho Reporting SDK consists of the following Pentaho-authored JARS:

JAR File Name Purpose
libbase The root project for all reporting
projects. Provides base services like
controlled boot-up, modularization,
configuration. Also contains some
commonly used helper classes.
libdocbundle Support for ODF-document-bundle
handling. Provides the engine with the
report-bundle capabilities and manages
the bundle-metadata, parsing and
writing.
libfonts Font-handling library. Performs the
mapping between physical font files
and logical font names. Also provides
performance optimized font-metadata
and font-metrics.
libformat A performance optimized replacement
for JDK TextFormat classes. Accepts
the same patterns as the JDK classes,
but skips the parsing. Therefore they
are less expensive to use in terms of
CPU and memory.
libformula Our OpenFormula implementation.
Provides a implementation of the
OpenFormula specification. Basically
a way to have Excel-style formulas
without the nonsense Excel does.
libloader Resourceloading and caching
framework. Used heavily in the engine
to load reports and other resources in
the most efficient way.

libpixie Support for rendering WMF (windows-
meta-files).
librepository Abstraction-layer for content-

repositories. Heavily used by
LibDocbundle and our HTML export.
libserializer Helper classes for serialization of Java-
objects. A factory based approach to
locate serializers based on the class
of the object we want to serialize.
needed as major parts of the JDK are
not serializable on their own.

libxml Advanced SAX-parsing framework
and namespace aware XML writing
framework used in the engine and
libdocbundle.
pentaho-reporting-engine-classic-core [The Pentaho Reporting engine core,
which itself consists of modular sub-
projects.

Included third-party JARs

JAR File Name Purpose
activation The JavaBeans Activation Framework,
which determines the type of the

Pentaho BI Suite Official Documentation | JAR Reference | 25

JAR File Name

Purpose

given data, encapsulates it, discovers
the operations available on it, and to
instantiates the appropriate bean to
execute those operations.

backport-util-concurrent

A library which implements concurrency
capabilities found in Java 5.0 and 6.0,
which allows building fully-portable
concurrent applications for older JREs.

batik-awt-util, batik-bridge, batik-css,
batik-dom, batik-ext, batik-gui-util,
batik-gvt, batik-parser, batik-script,
batik-svg-dom, batik-util, batik-xml

The core Batik SVG toolkit, which adds
scalable vector graphics support to a
Java application.

bsf

The Apache Jakarta Bean Scripting
Framework, which provides scripting
language support within Java
applications, and access to Java
objects and methods from scripting
languages.

bsh

The Bean Shell, which dynamically
executes standard Java syntax and
extends it with common scripting
conveniences such as loose types,
commands, and method closures like
those in Perl and JavaScript.

commons-logging-api

The Apache Commons Logging library,
which allows writing to a variety of
different logging services in a common
format.

itext Enables dynamic PDF generation.
isrl07cache A Java cache API specification.
ehcache A distributed cache library that uses the
jsr107cache API.
mail The Java Mail API, which allows you
to send email from a Java application
without requiring a separate mail
server.
poi A Java API that allows you to read from
and write to Microsoft file formats.
xml-apis The Apache Commons XML DOM

library, which allows you to read from,

write to, and validate XML files.

JARs exclusive to the embedding samples

JAR File Name

Purpose

hsqldb

HSQLDB database engine and JDBC
driver.

pentaho-reporting-engine-classic-
samples

The sample applications explained in

this guide.

26 | Pentaho BI Suite Official Documentation | JAR Reference

Pentaho maintains a Subversion repository for Pentaho Reporting. It consists of many individual, modular projects,

all of which are listed below. You can also traverse the repository with a Web browser by replacing the svn:// with an
http:// . As is customary with Subversion repositories, the trunk is where active development happens; tags represent
snapshots of official releases; and branches are separate codelines generally established for new releases.

JAR File Name Source Code Repository
libbase svn://source.pentaho.org/pentaho-
reporting/libraries/libbase
libdocbundle svn://source.pentaho.org/pentaho-
reporting/libraries/libdocbundle
libfonts svn://source.pentaho.org/pentaho-
reporting/libraries/libfonts
libformat svn://source.pentaho.org/pentaho-
reporting/libraries/libformat
libformula svn://source.pentaho.org/pentaho-
reporting/libraries/libformula
libloader svn://source.pentaho.org/pentaho-
reporting/libraries/libloader
libpixie svn://source.pentaho.org/pentaho-
reporting/libraries/pixie
librepository svn://source.pentaho.org/pentaho-
reporting/libraries/librepository
libserializer svn://source.pentaho.org/pentaho-
reporting/libraries/libserializer
libxml svn://source.pentaho.org/pentaho-
reporting/libraries/libxml
pentaho-reporting-engine-classic-core |svn://source.pentaho.org/pentaho-
reporting/engines/classic/trunk/core

Included third-party JARs
Below are URLs for the source code for the third-party JARs included in the SDK:

JAR File Name Source Code Repository
batik-awt-util-1.7.jar, batik- http://archive.apache.org/dist/
bridge-1.7.jar, batik-css-1.7.jar, batik- [xmlgraphics/batik/batik-src-1.7.zip
dom-1.7.jar, batik-ext-1.7.jar, batik-
gui-util-1.7.jar, batik-gvt-1.7 jar, batik-
parser-1.7.jar, batik-script-1.7.jar, batik-
svg-dom-1.7.jar, batik-util-1.7.jar, batik-
xml-1.7 jar
bcmail-jdk14-1.38.jar, bcmail- http://www.bouncycastle.org/
idk14-138.jar, bcprov-jdk14-1.38.jar, |latest releases.html
bcprov-jdk14-138.jar, bctsp-
jdk14-1.38.jar

bsf-2.4.5.jar http://mirror.its.uidaho.edu/pub/apache/
jakarta/bsf/source/bsf-src-2.4.5.tar.gz

bsh-1.3.0.jar svn://ikayzo.org/svn/beanshell

commons-logging-api-1.1.jar http://www.gossipcheck.com/mirrors/

apache/commons/logging/source/
commons-logging-1.1.1-src.tar.gz
ehcache-core-2.0.1.jar svn://ehcache.svn.sourceforge.net/
viewvc/ehcache/branches/
ehcache-2.0.1/

itext-2.1.7 jar, itext-rtf-2.1.7 jar svn://itext.svn.sourceforge.net/svnroot/
itext/tags/iText_ 2_1_7/

Pentaho Bl Suite Official Documentation | Source Code Links | 27

JAR File Name

Source Code Repository

js-1.7R1.jar http://www.mozilla.org/rhino/
download.html
mail-1.4.5.jar http://kenai.com/projects/javamail/

downloads/download//javamail-1.4.2-
src.zip

poi-3.0.1-jdk122-final-20071014.jar

http://www.uniontransit.com/apache/
poi/release/src/poi-src-3.0.1-
FINAL-20070705.tar.gz

xml-apis-1.0.b2.jar

http://svn.apache.org/repos/asf/xml/
commons/tags/xml-commons-1_0_b2/

JARs exclusive to the embedding samples

JAR File Name

Source Code Repository

hsqldb

svn://hsgldb.svn.sourceforge.net/
svnroot/hsgldb

pentaho-reporting-engine-classic-
samples

svn://source.pentaho.org/pentaho-
reporting/engines/classic/trunk/samples

SDK assembly project

svn://source.pentaho.org/pentaho-

reporting/engines/classic/trunk/sdk

28 | Pentaho BI Suite Official Documentation | Source Code Links

If you have successfully worked with the first two sample applications and want to see a Pentaho report render in a
more realistic user-facing application scenario, then continue on to samples 3 and 4 below. They use the same basic
report logic as before, but render interactive reports in a Swing window and a Java servlet that you can deploy into a
Web application server like Tomcat or JBoss.

Sample3.java generates the same report as created in Samplel.java (using the PRPT file generated with Report
Designer, connecting to the file-based HSQLDB database, and using a few parameters), but it uses a Swing helper
class defined in the Reporting engine to render the report in a Swing preview window. This basic functionality allows for:

* Runtime dynamic changing of report input parameters (in the Swing window, changes to the parameters can be
submitted by clicking on the Update button)

« Pagination of the report (showing one page at a time)

« Exporting the report in different formats (PDF, HTML, XLS, etc.)

The details of how to use Swing to preview the report are contained in the following engine classes (see the source files
included with the SDK for more information):

« org.pentaho.reporting.engine.classic.core.modules.gui.base.PreviewDialog: The dialog window that contains
the preview pane and handles basic menu functionality

e org.pentaho.reporting.engine.classic.core.modules.gui.base.PreviewPane: The pane that handles the report
generation, page switching, printing, and report export functionality

/*
* This programis free software; you can redistribute it and/or nodify it
under the

* terms of the GNU Lesser Ceneral Public License, version 2.1 as

publ i shed by the Free Software

* Foundat i on.

*

* You shoul d have received a copy of the GNU Lesser Ceneral Public

Li cense along with this

* program if not, you can obtain a copy at http://ww. gnu.org/licenses/
old-licenses/lgpl-2.1.htm

* or fromthe Free Software Foundation, Inc.,

* 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.

*

* This programis distributed in the hope that it will be useful, but

W THOUT ANY WARRANTY;

* without even the inplied warranty of MERCHANTABI LI TY or FI TNESS FOR A

PARTI CULAR PURPQOSE.

* See the GNU Lesser Ceneral Public License for nore details.

Copyri ght 2009 Pentaho Corporation. All rights reserved.

E I

Created July 22, 2009
@ut hor dki ncade

*

*/
package org. pent aho. reporting. engi ne. cl assi c. sanpl es;

i mport j ava. net. URL;
i mport java.util.HashMap;
i mport java.util.Mp;

i mport org. pentaho. reporting. engi ne. cl assi c. core. Cl assi cengi neBoot ;
i nport org. pentaho. reporting. engi ne. cl assi c. core. Dat aFact ory;
i mport org. pentaho. reporting. engi ne. cl assi c. core. Mast er Report ;
i mport
or g. pent aho. reporting. engi ne. cl assi c. cor e. nodul es. gui . base. Previ ewDi al og
i mport org. pentaho.reporting.libraries.resourcel oader. Resource;
i mport org.pentaho.reporting.libraries.resourcel oader. Resour ceExcepti on

Pentaho Bl Suite Official Documentation | More Examples | 29

i mport org. pentaho.reporting.libraries.resourcel oader. Resour ceManager

/**

* Cenerates a report using a paginated Swing Preview Di al og. The
paraneters for this report

* can be nodified while preview ng the dialog and the changes can be seen
instantly.

* <pl/>

* The report generated in this scenario will be the sane as created in
Sanpl el:

*

* <|i>The report definition file is a .prpt file which will be | oaded and
par sed

* <|i>The data factory is a sinple JDBC data factory usi ng HSQ.DB

* <|i>There are no runtine report paraneters used

*

*/

public class Sanpl e3 {

/**
* @aram args
*/
public static void main(String[] args) {
/] initialize the Reporting Engine
Ol assi cEngi neBoot . get | nstance().start();

/1l Get the conplete report definition (the report definition with the
data factory and

/1 paraneters already applied)

Sanpl e3 sanmpl e = new Sanpl e3();

final MasterReport report = sanpl e.get Conpl et eReport Definition();

/1 Cenerate the swi ng preview dial og
final PreviewDi al og dial og = new Previ ewbhi al og();
di al og. set Report Job(report);
di al og. set Si ze(500, 500);
di al og. set Modal (true);
di al og. set Vi si bl e(true);
System exit(0);
}

/**

* Cenerates the report definition that has the data factory and
* paraneters al ready appli ed.
* @eturn the conpleted report definition
*
/
publ i c MasterReport get Conpl et eReportDefinition() {
final MasterReport report = getReportDefinition();

/1 Add any paranmeters to the report
final Map<String, Cbject> reportParaneters = get Report Paraneters();
if (null !'= reportParaneters) {
for (String key : reportParaneters. keySet ()) {
report. get Paranet er Val ues() . put (key, reportParaneters. get(key));

}

/1l Set the data factory for the report
final DataFactory dataFactory = getDataFactory();
if (dataFactory !'= null) {

report . set Dat aFact or y(dat aFact ory) ;

}

/1 Return the conpl eted report
return report;

}

/**

30 | Pentaho BI Suite Official Documentation | More Examples

* Returns the report definition which will be used to generate the
report. In this case, the report will be
* | oaded and parsed froma file contained in this package.
*
* @eturn the | oaded and parsed report definition to be used in report
gener ati on.
*/
private MasterReport get RReportDefinition() {
try {
/1l Using the cl assloader, get the URL to the reportDefinition file
/1 NOTE: W will re-use the report definition from SAMPLEL
final C assLoader classloader = this.getC ass().getC assLoader ();
final URL reportDefinitionURL = classl oader
. get Resour ce("or g/ pent aho/ r eporti ng/ engi ne/ cl assi c/ sanpl es/

Sanpl el. prpt");

/1l Parse the report file
final ResourceManager resourceManager = new Resour ceManager ();
resour ceManager . regi sterDefaul ts();
final Resource directly =
resour ceManager. createbDi rect!l y(reportDefinitionURL, MasterReport.class);
return (MasterReport) directly.getResource();
} catch (ResourceException e) {
e.printStackTrace();

return null;

}
/**

* Returns the set of runtime report paraneters. This sanple report uses
the follow ng three paraneters:
* <yl >
* <|i>Report Title - The title text on the top of the report</
li>
* <| i >Cust oner Nanes - an array of custoner nanes to show in the
report
* <| i >Col Headers BG Col or - the background color for the columm
headers</1i >
*
*
* @eturn <code>nul | </code> indicating the report generator does not
use any report paraneters
*/
private Map<String, Object> getReportParaneters() ({
final Map paraneters = new HashMap<String, Object>();
paraneters. put ("Report Title", "Sinple Enbedded Report Exanple with
Par anet ers") ;
par anet ers. put ("Col Headers BG Col or", "yellow');
par anmet ers. put (" Cust onmer Nanes", new String[] { "American Souvenirs
Inc", "Toys4G ownUps.com', "giftsbymail.co.uk",
"B&E Coll ectables", "Cassic Gft Ideas, Inc", });
return paraneters;

}

/**

* Returns the data factory which will be used to generate the data used
during report generation. In this exanple,

*we wWill return null since the data factory has been defined in the
report definition.
*

* @eturn the data factory used with the report generator
*/
private DataFactory getDataFactory() ({
return null;
}
}

Pentaho Bl Suite Official Documentation | More Examples | 31

Note: This example assumes you have a Java application server, such as Tomcat or JBoss, installed,

| configured, running, and accessible to you.

Sampled.java is an HttpServlet which generates an HTML report similar to Sample2 (dynamically created report
definition based on the data set, a static data set, and no parameters). In the generateReport(...) method, the report
is generates as HTML into an output stream which is routed directly to the browser. As noted in the comments of this

method, a small simple change can be made to generate PDF output instead of HTML output.

Directions for Running Sample4
To execute Sample4, the following steps will deploy and run it using Tomcat 5.5:

1. Copy Sample4.war into the webapps directory of a working Tomcat instance
2. Start the Tomcat server (bin/startup.sh or bin\startup.bat)
3. In a browser, navigate to the following URL: htt p: / /| ocal host : 8080/ Sanpl e4/

/*
* This programis free software; you can redistribute it and/or nodify it
under the

* terns of the GNU Lesser General Public License, version 2.1 as
publ i shed by the Free Software

* Foundati on.

*

* You shoul d have received a copy of the GNU Lesser Ceneral
Li cense along with this

* program if not,
ol d-licenses/lgpl-2.1. htm

* or fromthe Free Software Foundati on,
* 51 Franklin Street, Fifth Floor, Boston,
*

* This programis distributed in the hope that
W THOUT ANY WARRANTY;

* without even the inplied warranty of MERCHANTABI LI TY or
PARTI CULAR PURPOSE.

Publ i c

I nc.,
MA 02110-1301 USA.
but

it will be useful,

* See the GNU Lesser General Public License for nore details.
* Copyri ght 2009 Pentaho Corporation. All rights reserved.

* Created July 22, 2009

* @ut hor dki ncade

*/

package org. pent aho. reporting. engi ne. cl assi c. sanpl es;

java.io. | CExcepti on;
j ava.i o. Qut put St ream

i mport
i mport

j avax.
j avax.
j avax.
j avax.
j avax.

servl et. Servl et Excepti on;
servlet.http. HtpServlet;
servlet. http. Ht pServl et Request ;
servl et. http. H t pServl et Response;
Swi ng. t abl e. Abst r act Tabl eMbdel ;

i mport
i mport
i mport
i mport
i mport

or g. pent aho. reporting. engi ne. cl assi c. core. d assi cEngi neBoot ;
or g. pent aho. reporti ng. engi ne. cl assi c. core. Mast er Report ;
or g. pent aho. reporti ng. engi ne. cl assi c. core. PageDefi nition;

i mport

i mport

i mport

i mport
or g. pent aho. reporti ng. engi ne. cl assi c. core. Report Processi ngExcept i on;

i mport org. pentaho. reporting. engi ne. cl assi c. core. Tabl eDat aFact orvy;

i mport org. pentaho.reporting. engine.classic.core. nodul es.

output.table. htm .H m Report Uil ;

i mport org. pentaho. reporting. engi ne.cl assic.core.w zard.

Rel at i onal Aut oGener at or PrePr ocessor ;

32 | Pentaho BI Suite Official Documentation | More Examples

you can obtain a copy at http://ww.gnu.org/licenses/

FI TNESS FOR A

/**

* Servlet inplenentation which generates a report and returns the report
as an HTM-
* stream back to the browser.

*/
public class Sanpl e4 extends HttpServl et
{ /**
* Default constructor for this sanple servlet
*
/
publ i c Sanpl e4()
{
}
/**

* |nitializes the serviet - we need to make sure the reporting engi ne
has been initialized

*/

public void init()

/1 Initialize the reporting engine
Ol assi cEngi neBoot . get | nstance().start();

}
/**
* Handles the GET request. We will handl e both the GET request and POST
request the sanme way.
*/
protected void doCGet(final HtpServletRequest req, final
Ht t pSer vl et Response resp) throws Servl et Exception, | OException
{

gener at eReport(req, resp);

/**

* Handl es the POST request. W will handle both the GET request and
POST request the sanme way.

*/

protected voi d doPost (final HttpServletRequest req, final
Ht t pSer vl et Response resp) throws Servl et Exception, | OException

{

gener at eReport (req, resp);

}
/**

* CGenerates a sinple HTM. report and returns the HTM. out put back to
t he browser

*/

private void generateReport(final HttpServletRequest req, final
Ht t pSer vl et Response resp) throws Servl et Exception, | OException

/'l Generate the report definition
final MasterReport report = createReportDefinition();

/1 Run the report and save the HTM. output to a byte stream
resp. set Content Type(“"text/htm "); // Change to "application/pdf" for
PDF out put

Qut put St ream out = resp. get Qut put Strean() ;

try

{
/1l Use the Htm ReportUtil to generate the report to a Stream HTM.
Ht m ReportUtil.createStreanHTM_(report, out);

/I NOTE: Changing this to use PDF is sinple:

/1 1. Change the above setContent call to use "application/pdf"
/1 2. Instead of Htm ReportUil, use the follow ng |ine:

/1 Pdf Report Util.createPDF(report, out)

Pentaho Bl Suite Official Documentation | More Examples | 33

cat ch (Report Processi ngException rpe)
rpe. printStackTrace();

%i nal |y
out . cl ose();

}

private MasterReport createReportDefinition()

{

/'l Create a report using the autogenerated fields
final MasterReport report = new MasterReport ();
report.addPreProcessor (new Rel ati onal Aut oGener at or PreProcessor ());

/1 Add the data factory to the report
report. set Dat aFact or y(new Tabl eDat aFact or y(" Sanpl e4Query", new
Sanpl e4Tabl eMbdel ()));

report.set Query(" Sanpl e4Query");

[/ return
return report;

}
/**
* The tabl e nodel used for this sanple.
*

* |n a real situation, this would never happen (a JNDI datasource

connected up to
* customer data would be nore normal). But for a sanple, sonme hard

coded
* data is to be expected.
*/
private static class Sanpl e4Tabl eMbdel extends Abstract Tabl evbde
{/**
* The sanpl e data
*/
private static final Object[][] data = new Cbject[]][]
{
new Cbject[] { "Acne Industries", 2500, 18.75 },
new Cbject[] { "Brookstone Warehouses", 5000, 36.1245 },
new Cbject[] { "Cartwell Restaurants", 18460, 12.9 },
new Cbject[] { "Donino Builders", 20625, 45.52 },
new Cbject[] { "El ephant Zoo Encl osures", 750, 19.222 },
}
/**
* Returns the nunber of columms of data in the sanple dataset
*/
public int get Col unmCount ()
{
return datafO]. !l ength;
}
/**
* Returns the nunber of rows in the sanple data
*/
public int get RowCount ()
{
return data.l ength;
}
/**
* Returns the data value at the specific row and col umm i ndex
*/
public Object getVal ueAt(int row ndex, int colummlndex)
{

34 | Pentaho BI Suite Official Documentation | More Examples

if (rowmndex >= 0 & rowl ndex < data.length && col uml ndex >= 0 &&
col uml ndex < data[row ndex] .| engt h)

return dataf[row ndex] [col uml ndex] ;

return null;

}

Pentaho Bl Suite Official Documentation | More Examples | 35

	Contents
	Introduction
	Required Knowledge and Expertise
	Obtaining the Pentaho Reporting SDK
	Using the Included Eclipse Project
	Embedding the Reporting Engine Into a Java Application
	Overview
	Sample 0: The Base Class
	Sample 1: Static Report Definition, JDBC Input, PDF Output
	Sample 2: Static Report Definition, JDBC Input, HTML Output

	Pentaho Reporting's Capabilities
	Technological Advantages
	Input Types
	Output Types
	Pentaho Report Designer

	Other Embedding Scenarios
	Building a Custom Reporting Tool
	Hacking Pentaho Report Designer
	Embedding the Pentaho BI Platform

	License Information
	Developer Support
	Anatomy of the Pentaho Reporting SDK
	JAR Reference
	Source Code Links
	More Examples
	Sample 3: Dynamically Generated, JDBC Input, Swing Output
	Sample 4: Dynamically Generated, JDBC Input, Java Servlet Output

