
Embedding the Pentaho Reporting Engine

This document is copyright © 2012 Pentaho Corporation. No part may be reprinted without written permission from
Pentaho Corporation. All trademarks are the property of their respective owners.

Help and Support Resources
If you have questions that are not covered in this guide, or if you would like to report errors in the documentation,
please contact your Pentaho technical support representative.

Support-related questions should be submitted through the Pentaho Customer Support Portal at
http://support.pentaho.com.

For information about how to purchase support or enable an additional named support contact, please contact your
sales representative, or send an email to sales@pentaho.com.

For information about instructor-led training on the topics covered in this guide, visit
http://www.pentaho.com/training.

Limits of Liability and Disclaimer of Warranty
The author(s) of this document have used their best efforts in preparing the content and the programs contained
in it. These efforts include the development, research, and testing of the theories and programs to determine their
effectiveness. The author and publisher make no warranty of any kind, express or implied, with regard to these
programs or the documentation contained in this book.

The author(s) and Pentaho shall not be liable in the event of incidental or consequential damages in connection
with, or arising out of, the furnishing, performance, or use of the programs, associated instructions, and/or claims.

Trademarks
Pentaho (TM) and the Pentaho logo are registered trademarks of Pentaho Corporation. All other trademarks are the
property of their respective owners. Trademarked names may appear throughout this document. Rather than list
the names and entities that own the trademarks or insert a trademark symbol with each mention of the trademarked
name, Pentaho states that it is using the names for editorial purposes only and to the benefit of the trademark
owner, with no intention of infringing upon that trademark.

Company Information
Pentaho Corporation
Citadel International, Suite 340
5950 Hazeltine National Drive
Orlando, FL 32822
Phone: +1 407 812-OPEN (6736)
Fax: +1 407 517-4575
http://www.pentaho.com

E-mail: communityconnection@pentaho.com

Sales Inquiries: sales@pentaho.com

Documentation Suggestions: documentation@pentaho.com

Sign-up for our newsletter: http://community.pentaho.com/newsletter/

http://support.pentaho.com
mailto:sales@pentaho.com
http://www.pentaho.com/training
http://www.pentaho.com
mailto:communityconnection@pentaho.com
mailto:sales@pentaho.com
mailto:documentation@pentaho.com
http://community.pentaho.com/newsletter/

 | TOC | 3

Contents

Introduction..4
Required Knowledge and Expertise.. 5
Obtaining the Pentaho Reporting SDK..6
Using the Included Eclipse Project.. 7
Embedding the Reporting Engine Into a Java Application...8

Overview...8
Sample 0: The Base Class... 9
Sample 1: Static Report Definition, JDBC Input, PDF Output.. 14
Sample 2: Static Report Definition, JDBC Input, HTML Output..17

Pentaho Reporting's Capabilities...20
Technological Advantages..20
Input Types...20
Output Types.. 20
Pentaho Report Designer... 21

Other Embedding Scenarios..22
Building a Custom Reporting Tool.. 22
Hacking Pentaho Report Designer... 22
Embedding the Pentaho BI Platform.. 22

License Information... 23
Developer Support...24
Anatomy of the Pentaho Reporting SDK... 25
JAR Reference.. 27
Source Code Links.. 30
More Examples..32

Sample 3: Dynamically Generated, JDBC Input, Swing Output... 32
Sample 4: Dynamically Generated, JDBC Input, Java Servlet Output... 35

 | Introduction | 4

Introduction

The Pentaho Reporting engine is a small set of open source Java classes that enables programmers to retrieve
information from a data source, format and process it according to specified parameters, then generate user-readable
output. This document provides guidance and instructions for using the Pentaho Reporting SDK to embed the Pentaho
Reporting engine into a new or existing Java application.

There are four sample applications in this document, all of which are included in the SDK as .java files. Each adds one
level of complexity or shows a different kind of output.

You should read this guide in order, from this point all the way to the end of the second example. The remaining portion
contains extra information about the Pentaho Reporting engine's capabilities, licensing details, further examples, and
information on where to get help and support.

 | Required Knowledge and Expertise | 5

Required Knowledge and Expertise

This document is strictly for Java software developers. You must be familiar with importing JARs into a project, and be
comfortable reading inline comments in code to figure out advanced functionality on your own. Proficiency in connecting
to data sources is a helpful skill for developing your own application around the Pentaho Reporting engine, but is not
required to follow the examples.

 | Obtaining the Pentaho Reporting SDK | 6

Obtaining the Pentaho Reporting SDK

You can download the latest Pentaho Reporting software development kit (SDK) from http://reporting.pentaho.com.

The SDK is available as both a .tar.gz and a .zip archive; both contain the same files, but the .zip file format is more
Windows-friendly, and .tar.gz is more Mac-, Linux-, and Unix-friendly.

Once downloaded, unpack the Pentaho Reporting SDK archive to a convenient and accessible location. If you use the
Eclipse or IntelliJ IDEA development environments, this directory will also serve as your workspace.

In an effort to reduce the size of the SDK, the source code of its constituent libraries is not included. If you need to see
the source to any of the software distributed with the Pentaho Reporting SDK, see Source Code Links on page 30
for instructions.

 | Using the Included Eclipse Project | 7

Using the Included Eclipse Project

If you use the Eclipse or IntelliJ IDEA development environments, you can use the Eclipse project included with the
Pentaho Reporting SDK to work directly with the example source code. Simply select the unpacked Pentaho Reporting
SDK directory as your workspace.

You can also launch the Sample1.java and Sample2.java example applications directly from the file browser in
Eclipse.

 | Embedding the Reporting Engine Into a Java Application | 8

Embedding the Reporting Engine Into a Java Application

This section shows in detail how to build a simple reporting application around the Pentaho Reporting engine. There are
three classes for the two examples shown in this section:

1. AbstractReportGenerator.java
2. Sample1.java
3. Sample2.java

You can find the full example source code, plus the .prpt report file they use, in the /source/org/pentaho/
reporting/engine/classic/samples/ directory in the Pentaho Reporting SDK.

Overview
In the following samples, the interaction with the Reporting engine follows these basic steps:

1. Boot (initialize)
2. Get the report definition
3. Get the data for the report (if it is created outside of the report definition)
4. Get any report generation parameters (optional)
5. Generate the report output in the requested format

With the samples, this allows us to create an abstract base class for all the samples (AbstractReportGenerator). This
class defines the abstract methods:

• getReportDefinition(): this loads/creates/returns the report definition
• getDataFactory(): this returns the data to be used by the reporting engine (if the report definition does not tell the

engine how to retrieve the data).
• getReportParameters(): this returns the set of parameters the reporting engine will use while generating the report

The generateReport() method tells the reporting engine to generate the report using the above method, and creates
the output in one of the following methods (using the OutputType parameter): HTML, PDF, or XLS (Excel). A full list of
output types is listed later in this guide, but to keep these examples simple, we'll concentrate on these three.

Sample1.java

In this sample, the getReportDefinition() method loads the report definition from a PRPT file created using the
Pentaho Report Designer. This report definition defines the following:

• Data Query (retrieving a list of customers based on a set of customer names)
• Report Title
• Report Header – set of 4 columns (Customer Number, Customer Name, Postal Code, Country)
• Report Data – set of 4 columns (Customer Number, Customer Name, Postal Code, Country)

The getDataFactory() method returns null to indicate that no data factory is required to be provided. In this example,
the source of data is defined in the report definition.

The getReportParameters() method defines three parameters in a HashMap:

Parameter Name Parameter Value Description

Report Title Simple Embedded Report Example
with Parameters

The value of this parameter will be
placed in the Report Title that is
centered on the top of each page in
the report. In the report definition, the
Report Title field is a Text Field whose
value is “Report Title”. This indicates
that the field will use the value of the
parameter “Report Title” when the
report is generated.

Col Headers BG Color yellow The value of this parameter will be
used as the background color of the

 | Embedding the Reporting Engine Into a Java Application | 9

Parameter Name Parameter Value Description

column header fields. In the report
definition, all four of the column
header fields are defined with a
bg-color style of “=[Col Headers
BG Color]”. This indicates that the
value of the “Col Header BG Color”
parameter will be used as that value.

Customer Names
"American Souvenirs Inc",
"Toys4GrownUps.com",
"giftsbymail.co.uk",
"BG&E Collectables",
"Classic Gift Ideas, Inc"

The value of this parameter defines
a set of Customer Names that will be
used in the data query. This allows
the sample to define which customers
will be used in the report at the time
the report is generated.

SELECT

 "CUSTOMERS"."CUSTOMERNAME",

 "CUSTOMERS"."POSTALCODE",
 "CUSTOMERS"."COUNTRY",

 "CUSTOMERS"."CUSTOMERNUMBER"
FROM
 "CUSTOMERS"
WHERE

 "CUSTOMERS"."CUSTOMERNAME"
 IN (${Customer Names})

The main() method creates an output filename in which the report will be generated and then starts the report
generation process.

Sample2.java

In this sample, the getReportDefinition() method creates a blank report and sets the query name to “ReportQuery”. It
then adds a report pre-processor called RelationalAutoGeneratorPreProcessor.

Report pre-processors execute during the report generation process after the data query has been executed
but before the report definition is used to determine the actual layout of the report. The benefit of this is that the
RelationalAutoGeneratorPreProcessor will use the column information retrieved from the data query to add header
fields in the Page Header and data fields in the Item Band of the report definition for each column of data in the result
set.

The getDataFactory() method first defines the “DriverConnectionProvider” which contains all the information
required to connect to the database. It then defines the “DataFactory” which will use the connection provider to connect
to the database. The Data Factory then has the query set which will be used in report generation. The query name
“ReportQuery” must match the query name defined when the report definition was created or else the report will
contain no data.

The getReportParameters() method is not used in this example, so it returns null.

The main() method creates an output filename in which the report will be generated and then starts the report
generation process.

Sample 0: The Base Class
The AbstractReportGenerator class shown below is extended by the two primary example applications. It contains the
basic logic that creates a report, leaving the details of input and output to the classes that extend it:

/*

 | Embedding the Reporting Engine Into a Java Application | 10

 * This program is free software; you can redistribute it and/or modify
 it under the
 * terms of the GNU Lesser General Public License, version 2.1 as
 published by the Free Software
 * Foundation.
 *
 * You should have received a copy of the GNU Lesser General Public
 License along with this
 * program; if not, you can obtain a copy at http://www.gnu.org/
licenses/old-licenses/lgpl-2.1.html
 * or from the Free Software Foundation, Inc.,
 * 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
 *
 * This program is distributed in the hope that it will be useful, but
 WITHOUT ANY WARRANTY;
 * without even the implied warranty of MERCHANTABILITY or FITNESS FOR A
 PARTICULAR PURPOSE.
 * See the GNU Lesser General Public License for more details.
 *
 * Copyright 2009 Pentaho Corporation. All rights reserved.
 *
 * Created July 22, 2009
 * @author dkincade
 */
package org.pentaho.reporting.engine.classic.samples;

import java.io.BufferedOutputStream;
import java.io.File;
import java.io.FileOutputStream;
import java.io.IOException;
import java.io.OutputStream;
import java.util.Map;

import org.pentaho.reporting.engine.classic.core.ClassicEngineBoot;
import org.pentaho.reporting.engine.classic.core.DataFactory;
import org.pentaho.reporting.engine.classic.core.MasterReport;
import
 org.pentaho.reporting.engine.classic.core.ReportProcessingException;
import org.pentaho.reporting.engine.classic.core.layout.output.
AbstractReportProcessor;
import
 org.pentaho.reporting.engine.classic.core.modules.output.pageable.
base.PageableReportProcessor;
import
 org.pentaho.reporting.engine.classic.core.modules.output.pageable.
pdf.PdfOutputProcessor;
import
 org.pentaho.reporting.engine.classic.core.modules.output.table.base
.FlowReportProcessor;
import
 org.pentaho.reporting.engine.classic.core.modules.output.table.base
.StreamReportProcessor;
import
 org.pentaho.reporting.engine.classic.core.modules.output.table.html
.AllItemsHtmlPrinter;
import
 org.pentaho.reporting.engine.classic.core.modules.output.table.html
.FileSystemURLRewriter;
import
 org.pentaho.reporting.engine.classic.core.modules.output.table.html
.HtmlOutputProcessor;
import
 org.pentaho.reporting.engine.classic.core.modules.output.table.html
.HtmlPrinter;
import
 org.pentaho.reporting.engine.classic.core.modules.output.table.html
.StreamHtmlOutputProcessor;

 | Embedding the Reporting Engine Into a Java Application | 11

import
 org.pentaho.reporting.engine.classic.core.modules.output.table.xls.
FlowExcelOutputProcessor;
import org.pentaho.reporting.libraries.repository.ContentLocation;
import org.pentaho.reporting.libraries.repository.DefaultNameGenerator;
import
 org.pentaho.reporting.libraries.repository.stream.StreamRepository;

/**
 * This is the base class used with the report generation examples. It
 contains the actual <code>embedding</code>
 * of the reporting engine and report generation. All example embedded
 implementations will need to extend this class
 * and perform the following:
 *
 * Implement the <code>getReportDefinition()</code> method and
 return the report definition (how the report
 * definition is generated is up to the implementing class).
 * Implement the <code>getTableDataFactory()</code> method and
 return the data factory to be used (how
 * this is created is up to the implementing class).
 * Implement the <code>getReportParameters()</code> method and
 return the set of report parameters to be used.
 * If no report parameters are required, then this method can simply
 return <code>null</code>
 *
 */
public abstract class AbstractReportGenerator
{
 /**
 * The supported output types for this sample
 */
 public static enum OutputType
 {
 PDF, EXCEL, HTML
 }

 /**
 * Performs the basic initialization required to generate a report
 */
 public AbstractReportGenerator()
 {
 // Initialize the reporting engine
 ClassicEngineBoot.getInstance().start();
 }

 /**
 * Returns the report definition used by this report generator. If
 this method returns <code>null</code>,
 * the report generation process will throw a
 <code>NullPointerException</code>.
 *
 * @return the report definition used by thus report generator
 */
 public abstract MasterReport getReportDefinition();

 /**
 * Returns the data factory used by this report generator. If this
 method returns <code>null</code>,
 * the report generation process will use the data factory used in the
 report definition.
 *
 * @return the data factory used by this report generator
 */
 public abstract DataFactory getDataFactory();

 /**
 * Returns the set of parameters that will be passed to the report
 generation process. If there are no parameters

 | Embedding the Reporting Engine Into a Java Application | 12

 * required for report generation, this method may return either an
 empty or a <code>null</code> <code>Map</code>
 *
 * @return the set of report parameters to be used by the report
 generation process, or <code>null</code> if no
 * parameters are required.
 */
 public abstract Map<String, Object> getReportParameters();

 /**
 * Generates the report in the specified <code>outputType</code> and
 writes it into the specified
 * <code>outputFile</code>.
 *
 * @param outputType the output type of the report (HTML, PDF, HTML)
 * @param outputFile the file into which the report will be written
 * @throws IllegalArgumentException indicates the required parameters
 were not provided
 * @throws IOException indicates an error opening the
 file for writing
 * @throws ReportProcessingException indicates an error generating the
 report
 */
 public void generateReport(final OutputType outputType, File
 outputFile)
 throws IllegalArgumentException, IOException,
 ReportProcessingException
 {
 if (outputFile == null)
 {
 throw new IllegalArgumentException("The output file was not
 specified");
 }

 OutputStream outputStream = null;
 try
 {
 // Open the output stream
 outputStream = new BufferedOutputStream(new
 FileOutputStream(outputFile));

 // Generate the report to this output stream
 generateReport(outputType, outputStream);
 }
 finally
 {
 if (outputStream != null)
 {
 outputStream.close();
 }
 }
 }

 /**
 * Generates the report in the specified <code>outputType</code> and
 writes it into the specified
 * <code>outputStream</code>.
 * <p/>
 * It is the responsibility of the caller to close the
 <code>outputStream</code>
 * after this method is executed.
 *
 * @param outputType the output type of the report (HTML, PDF, HTML)
 * @param outputStream the stream into which the report will be
 written
 * @throws IllegalArgumentException indicates the required parameters
 were not provided
 * @throws ReportProcessingException indicates an error generating the
 report

 | Embedding the Reporting Engine Into a Java Application | 13

 */
 public void generateReport(final OutputType outputType, OutputStream
 outputStream)
 throws IllegalArgumentException, ReportProcessingException
 {
 if (outputStream == null)
 {
 throw new IllegalArgumentException("The output stream was not
 specified");
 }

 // Get the report and data factory
 final MasterReport report = getReportDefinition();
 final DataFactory dataFactory = getDataFactory();

 // Set the data factory for the report
 if (dataFactory != null)
 {
 report.setDataFactory(dataFactory);
 }

 // Add any parameters to the report
 final Map<String, Object> reportParameters = getReportParameters();
 if (null != reportParameters)
 {
 for (String key : reportParameters.keySet())
 {
 report.getParameterValues().put(key, reportParameters.get(key));
 }
 }

 // Prepare to generate the report
 AbstractReportProcessor reportProcessor = null;
 try
 {
 // Greate the report processor for the specified output type
 switch (outputType)
 {
 case PDF:
 {
 final PdfOutputProcessor outputProcessor =
 new PdfOutputProcessor(report.getConfiguration(),
 outputStream, report.getResourceManager());
 reportProcessor = new PageableReportProcessor(report,
 outputProcessor);
 break;
 }

 case EXCEL:
 {
 final FlowExcelOutputProcessor target =
 new FlowExcelOutputProcessor(report.getConfiguration(),
 outputStream, report.getResourceManager());
 reportProcessor = new FlowReportProcessor(report, target);
 break;
 }

 case HTML:
 {
 final StreamRepository targetRepository = new
 StreamRepository(outputStream);
 final ContentLocation targetRoot = targetRepository.getRoot();
 final HtmlOutputProcessor outputProcessor = new
 StreamHtmlOutputProcessor(report.getConfiguration());
 final HtmlPrinter printer = new
 AllItemsHtmlPrinter(report.getResourceManager());
 printer.setContentWriter(targetRoot, new
 DefaultNameGenerator(targetRoot, "index", "html"));
 printer.setDataWriter(null, null);

 | Embedding the Reporting Engine Into a Java Application | 14

 printer.setUrlRewriter(new FileSystemURLRewriter());
 outputProcessor.setPrinter(printer);
 reportProcessor = new StreamReportProcessor(report,
 outputProcessor);
 break;
 }
 }

 // Generate the report
 reportProcessor.processReport();
 }
 finally
 {
 if (reportProcessor != null)
 {
 reportProcessor.close();
 }
 }
 }
}

Sample 1: Static Report Definition, JDBC Input, PDF Output
The simplest embedding scenario produces a static report (no user input regarding a data source or query), with JDBC
input from the Pentaho-supplied SampleData HSQLDB database, and produces a PDF on the local filesystem.

/*
 * This program is free software; you can redistribute it and/or modify
 it under the
 * terms of the GNU Lesser General Public License, version 2.1 as
 published by the Free Software
 * Foundation.
 *
 * You should have received a copy of the GNU Lesser General Public
 License along with this
 * program; if not, you can obtain a copy at http://www.gnu.org/
licenses/old-licenses/lgpl-2.1.html
 * or from the Free Software Foundation, Inc.,
 * 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
 *
 * This program is distributed in the hope that it will be useful, but
 WITHOUT ANY WARRANTY;
 * without even the implied warranty of MERCHANTABILITY or FITNESS FOR A
 PARTICULAR PURPOSE.
 * See the GNU Lesser General Public License for more details.
 *
 * Copyright 2009 Pentaho Corporation. All rights reserved.
 *
 * Created July 22, 2009
 * @author dkincade
 */
package org.pentaho.reporting.engine.classic.samples;

import java.io.File;
import java.io.IOException;
import java.net.URL;
import java.util.Map;
import java.util.HashMap;

import org.pentaho.reporting.engine.classic.core.DataFactory;
import org.pentaho.reporting.engine.classic.core.MasterReport;
import
 org.pentaho.reporting.engine.classic.core.ReportProcessingException;
import org.pentaho.reporting.libraries.resourceloader.Resource;

 | Embedding the Reporting Engine Into a Java Application | 15

import org.pentaho.reporting.libraries.resourceloader.ResourceException;
import org.pentaho.reporting.libraries.resourceloader.ResourceManager;

/**
 * Generates a report in the following scenario:
 *
 * The report definition file is a .prpt file which will be loaded
 and parsed
 * The data factory is a simple JDBC data factory using HSQLDB
 * There are no runtime report parameters used
 *
 */
public class Sample1 extends AbstractReportGenerator
{
 /**
 * Default constructor for this sample report generator
 */
 public Sample1()
 {
 }

 /**
 * Returns the report definition which will be used to generate the
 report. In this case, the report will be
 * loaded and parsed from a file contained in this package.
 *
 * @return the loaded and parsed report definition to be used in
 report generation.
 */
 public MasterReport getReportDefinition()
 {
 try
 {
 // Using the classloader, get the URL to the reportDefinition file
 final ClassLoader classloader = this.getClass().getClassLoader();
 final URL reportDefinitionURL = classloader.getResource("org/
pentaho/reporting/engine/classic/samples/Sample1.prpt");

 // Parse the report file
 final ResourceManager resourceManager = new ResourceManager();
 resourceManager.registerDefaults();
 final Resource directly =
 resourceManager.createDirectly(reportDefinitionURL,
 MasterReport.class);
 return (MasterReport) directly.getResource();
 }
 catch (ResourceException e)
 {
 e.printStackTrace();
 }
 return null;
 }

 /**
 * Returns the data factory which will be used to generate the data
 used during report generation. In this example,
 * we will return null since the data factory has been defined in the
 report definition.
 *
 * @return the data factory used with the report generator
 */
 public DataFactory getDataFactory()
 {
 return null;
 }

 /**
 * Returns the set of runtime report parameters. This sample report
 uses the following three parameters:

 | Embedding the Reporting Engine Into a Java Application | 16

 *
 * Report Title - The title text on the top of the report</
li>
 * Customer Names - an array of customer names to show in
 the report
 * Col Headers BG Color - the background color for the
 column headers
 *
 *
 * @return <code>null</code> indicating the report generator does not
 use any report parameters
 */
 public Map<String, Object> getReportParameters()
 {
 final Map parameters = new HashMap<String, Object>();
 parameters.put("Report Title", "Simple Embedded Report Example with
 Parameters");
 parameters.put("Col Headers BG Color", "yellow");
 parameters.put("Customer Names",
 new String [] {
 "American Souvenirs Inc",
 "Toys4GrownUps.com",
 "giftsbymail.co.uk",
 "BG&E Collectables",
 "Classic Gift Ideas, Inc",
 });
 return parameters;
 }

 /**
 * Simple command line application that will generate a PDF version of
 the report. In this report,
 * the report definition has already been created with the Pentaho
 Report Designer application and
 * it located in the same package as this class. The data query is
 located in that report definition
 * as well, and there are a few report-modifying parameters that will
 be passed to the engine at runtime.
 * <p/>
 * The output of this report will be a PDF file located in the current
 directory and will be named
 * <code>SimpleReportGeneratorExample.pdf</code>.
 *
 * @param args none
 * @throws IOException indicates an error writing to the filesystem
 * @throws ReportProcessingException indicates an error generating the
 report
 */
 public static void main(String[] args) throws IOException,
 ReportProcessingException
 {
 // Create an output filename
 final File outputFilename = new File(Sample1.class.getSimpleName() +
 ".pdf");

 // Generate the report
 new Sample1().generateReport(AbstractReportGenerator.OutputType.PDF,
 outputFilename);

 // Output the location of the file
 System.err.println("Generated the report [" +
 outputFilename.getAbsolutePath() + "]");
 }
}

 | Embedding the Reporting Engine Into a Java Application | 17

Sample 2: Static Report Definition, JDBC Input, HTML Output
This example produces a static report (no user input regarding a data source or query), with JDBC input from the
Pentaho-supplied SampleData HSQLDB database, and produces an HTML file on the local filesystem.

/*
 * This program is free software; you can redistribute it and/or modify
 it under the
 * terms of the GNU Lesser General Public License, version 2.1 as
 published by the Free Software
 * Foundation.
 *
 * You should have received a copy of the GNU Lesser General Public
 License along with this
 * program; if not, you can obtain a copy at http://www.gnu.org/
licenses/old-licenses/lgpl-2.1.html
 * or from the Free Software Foundation, Inc.,
 * 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
 *
 * This program is distributed in the hope that it will be useful, but
 WITHOUT ANY WARRANTY;
 * without even the implied warranty of MERCHANTABILITY or FITNESS FOR A
 PARTICULAR PURPOSE.
 * See the GNU Lesser General Public License for more details.
 *
 * Copyright 2009 Pentaho Corporation. All rights reserved.
 *
 * Created July 22, 2009
 * @author dkincade
 */
package org.pentaho.reporting.engine.classic.samples;

import java.io.File;
import java.io.IOException;
import java.util.Map;

import org.pentaho.reporting.engine.classic.core.DataFactory;
import org.pentaho.reporting.engine.classic.core.MasterReport;
import
 org.pentaho.reporting.engine.classic.core.ReportProcessingException;
import org.pentaho.reporting.engine.classic.core.PageDefinition;
import org.pentaho.reporting.engine.classic.core.wizard.
RelationalAutoGeneratorPreProcessor;
import org.pentaho.reporting.engine.classic.core.modules.
misc.datafactory.sql.SQLReportDataFactory;
import org.pentaho.reporting.engine.classic.core.modules.
misc.datafactory.sql.DriverConnectionProvider;

/**
 * Generates a report in the following scenario:
 *
 * The report definition file is a .prpt file which will be loaded
 and parsed
 * The data factory is a simple JDBC data factory using HSQLDB
 * There are no runtime report parameters used
 *
 */
public class Sample2 extends AbstractReportGenerator
{
 private static final String QUERY_NAME = "ReportQuery";

 /**
 * Default constructor for this sample report generator
 */
 public Sample2()

 | Embedding the Reporting Engine Into a Java Application | 18

 {
 }

 /**
 * Returns the report definition which will be used to generate the
 report. In this case, the report will be
 * loaded and parsed from a file contained in this package.
 *
 * @return the loaded and parsed report definition to be used in
 report generation.
 */
 public MasterReport getReportDefinition()
 {
 final MasterReport report = new MasterReport();
 report.setQuery(QUERY_NAME);
 report.addPreProcessor(new RelationalAutoGeneratorPreProcessor());
 return report;
 }

 /**
 * Returns the data factory which will be used to generate the data
 used during report generation. In this example,
 * we will return null since the data factory has been defined in the
 report definition.
 *
 * @return the data factory used with the report generator
 */
 public DataFactory getDataFactory()
 {
 final DriverConnectionProvider sampleDriverConnectionProvider = new
 DriverConnectionProvider();
 sampleDriverConnectionProvider.setDriver("org.hsqldb.jdbcDriver");
 sampleDriverConnectionProvider.setUrl("jdbc:hsqldb:./sql/
sampledata");
 sampleDriverConnectionProvider.setProperty("user", "sa");
 sampleDriverConnectionProvider.setProperty("password", "");

 final SQLReportDataFactory dataFactory = new
 SQLReportDataFactory(sampleDriverConnectionProvider);
 dataFactory.setQuery(QUERY_NAME,
 "select CUSTOMERNAME, CITY, STATE, POSTALCODE, COUNTRY from
 CUSTOMERS order by UPPER(CUSTOMERNAME)");

 return dataFactory;
 }

 /**
 * Returns the set of runtime report parameters. This sample report
 does not use report parameters, so the
 * method will return <code>null</code>
 *
 * @return <code>null</code> indicating the report generator does not
 use any report parameters
 */
 public Map<String, Object> getReportParameters()
 {
 return null;
 }

 public static void main(String[] args) throws IOException,
 ReportProcessingException
 {
 // Create an output filename
 final File outputFilename = new File(Sample2.class.getSimpleName() +
 ".html");

 // Generate the report

 | Embedding the Reporting Engine Into a Java Application | 19

 new
 Sample2().generateReport(AbstractReportGenerator.OutputType.HTML,
 outputFilename);

 // Output the location of the file
 System.err.println("Generated the report [" +
 outputFilename.getAbsolutePath() + "]");
 }
}

 | Pentaho Reporting's Capabilities | 20

Pentaho Reporting's Capabilities

Now that you are familiar with the basic functions of the Pentaho Reporting engine, you're prepared to learn more about
its advanced features, explained in the subsections below.

Technological Advantages
The Pentaho Reporting engine offers unique functionality not found in competing embeddable solutions:

• Does not require a JDK at runtime. While you do need a Java Development Kit installed on your development
machine, you do not need a JDK to run a program that embeds the Pentaho Reporting engine -- just a standard Sun
Java Runtime Environment.

• All processing is done in memory. No temporary files are created by the Reporting engine. A program that relies
on the Pentaho Reporting engine for report generation can run on a diskless system.

• Potentially backwards-compatible to JDK 1.2. The Pentaho Reporting architect has given special consideration to
users and developers on legacy systems. While Pentaho focuses its in-house development and QA efforts on JRE
1.6.0, it is possible to use the Reporting engine in older JREs by adding JDBC and JNDI libraries.

• Dynamically and automatically adjustable components. The Pentaho Reporting engine detects JARs that add
functionality at runtime, so you can add new JARs to expand the engine's capabilities, or remove unnecessary JARs
to reduce your application's memory and disk space footprint.

• Low memory footprint. A Pentaho Reporting-based application can run with as little as 64MB of memory (though
128MB would dramatically increase report processing speed).

• Totally configurable through runtime parameterization. Every style, function, query, and report element is fully
customizable by passing parameters to the Reporting engine when you render a report.

• OpenFormula integration. OpenFormula is an open standard for mathematical formulas. You can easily create
your own custom formulas, or you can customize the ones built into the Pentaho Reporting engine with this clearly
and freely documented standard.

• Simple resource management. Using the OpenDocument Format (ODF), the Pentaho Reporting engine bundles
all report resources, including the data source connection information, query, and even binary resources like images
into one canonical file. This simplifies physical resource management and eliminates relative path problems.

Input Types
The Pentaho Reporting engine can connect to virtually any data source:

• JDBC
• JNDI
• Kettle (Pentaho Data Integration)
• Simple SQL (JDBC Custom)
• Pentaho Metadata
• Mondrian MDX
• OLAP4J
• XML
• Simple table
• Scripting data sources (JavaScript, Python, TCL, Groovy, BeanShell)
• Java method invocation
• Hibernate

If your data source is not directly supported, you can use Pentaho Data Integration to transform it into a more report-
friendly format, or you can design your own custom data source interface.

Output Types
The Pentaho Reporting engine can create reports in a variety of relevant file formats:

• PDF

 | Pentaho Reporting's Capabilities | 21

• HTML
• Excel
• CSV
• RTF
• XML
• Plain text

All of the output types listed above are highly customizable in terms of style, formatting, and pagination. You can also
specify your own output type if none of the standard choices are sufficient.

Pentaho Report Designer
The examples in this guide accept data source input and create user-readable output, which is essentially what the
Pentaho Report Designer does with its graphical user interface. In addition to being a powerful report creation and
design tool, Report Designer is also an extraordinary example of a Java application that embeds the Pentaho Reporting
engine.

You can also create report definition files with Report Designer, then use your custom Reporting engine-based
application to render them at a later time.

 | Other Embedding Scenarios | 22

Other Embedding Scenarios

Pentaho offers many embeddable structures -- not just the Reporting engine. You can also embed or extend the
Pentaho Analysis engine (Mondrian), the Pentaho BI Platform, part or all of Pentaho Data Integration (Kettle), and
the Weka data mining engine. This guide is focused on reporting, however, so the below scenarios only involve the
reporting components of Pentaho Business Analytics.

Building a Custom Reporting Tool
The examples in this guide have covered simple scenarios that don't involve a high degree of user interactivity. It's easy
to imagine how far you can expand the example code, even to the point of building your own client tools. On a slightly
smaller scale, you could build a report-generation program that merely takes some parameters from a user, then silently
emails the report to designated recipients via the Java mail component. You could also design a reporting daemon or
service that listens for incoming requests and outputs reports to a Web server.

Pentaho Report Designer is built on the Pentaho Reporting engine, as is the ad hoc reporting functionality built into
the Pentaho User Console in the BI Platform. If you need a graphical report creation tool, it would be easier to modify
Report Designer than it would be to rewrite it from scratch. For Web-based ad hoc reporting, you will have an easier
time embedding the entire BI Platform than trying to isolate and embed just the ad hoc component.

Hacking Pentaho Report Designer
Perhaps you do not need to create a whole new content creation program around the Pentaho Reporting engine;
instead, you can enhance or reduce the functionality of Pentaho Report Designer to match your needs.

Report Designer is both modular and extensible, so you can remove or disable large portions of it, or create your own
custom data sources, output formats, formulas, and functions. You can also customize Report Designer with your own
background images, icons, language, and splash screen.

Embedding the Pentaho BI Platform
If your Web-based reporting application needs scripting, scheduling, and security functionality, it makes more sense
to embed the slightly larger Pentaho BI Platform instead of writing a large amount of your own code to add to the
Reporting engine. The BI Platform contains powerful scripting and automation capabilities, an email component, report
bursting functionality, user authorization and authentication features, and a cron-compatible scheduling framework.

The BI Platform is the heart of the larger Pentaho BI Server, which is a complete J2EE Web application that provides
engines for Pentaho Reporting, Data Integration, and Analysis, as well as a fully customizable Web-based user
interface that offers ad hoc reporting, real-time analysis views, and interactive dashboard creation.

The BI Server is fully customizable, so your options range from simple rebranding to removing entire components or
developing your own plugins to add major user-facing functionality.

 | License Information | 23

License Information

The entire Pentaho Reporting SDK is freely redistributable. Most of it is open source software, but its constituent JARs
are under a few different licenses. If you intend to embed and distribute any part of this SDK, you must be familiar with
the licensing requirements of the pieces you use.

You can read all of the relevant licenses in text files in the licenses subdirectory in the Pentaho Reporting SDK.

 | Developer Support | 24

Developer Support

The examples in this guide are simple and easy to follow, but with more complex requirements come more advanced
programs. While reading the source code comments can help quite a bit, you may still need help to develop an
application within a reasonable timeframe. Should you need personal assistance, you can have direct access to the
most knowledgeable support resources through a Pentaho Enterprise Edition software vendor annual subscription:

ISV/OEM support options

If phone and email support are not enough, Pentaho can also arrange for an on-site consulting engagement:

Consultative support options

http://www.pentaho.com/services/isv_oem_support/
http://www.pentaho.com/services/consulting/

 | Anatomy of the Pentaho Reporting SDK | 25

Anatomy of the Pentaho Reporting SDK

SDK Directory Structure

/
/documentation
/licenses
/samples
/WebContent
/../META-INF
/../WEB-INF
/../../lib
/lib
/source
/../org
/../../pentaho
/../../../reporting
/../../../../engine
/../../../../../classic
/../../../../../../samples
/sql

Directory Content Description

Documentation Where the Embedding the Pentaho
Reporting Engine PDF is located

Licenses Contains text files with licensing
information

Samples The eclipse project directory, which
contains the samples shown in this
guide

Samples/WebContent WebContent information used with
Sample 4 (mainly the WEB-INF/
web.xml)

Samples/lib The lib directory which makes up the
Reporting Engine SDK

Samples/source The source files used to make up the
four reporting samples

Samples/sql The file-based HSQLDB instance
used with the samples

Content of the Samples Directory

File Purpose

build.properties Ant properties used with the build
script

build.xml Ant build script

common_build.xml Ant Build Script

ivysettings.xml Settings for Ivy (used with build)

ivy.xml Dependencies for project (used with
Ivy – used with build)

.project Eclipse project file

.classpath Eclipse classpath file

 | Anatomy of the Pentaho Reporting SDK | 26

File Purpose

samples.iml IntelliJ project file

Sample*.bat Runs the sample (1/2/3) program on
Windows

Sample *.launch Runs the sample (1/2/3) program from
within Eclipse

Sample*.sh Runs the sample (1/2/3) project on
linux

Sample4.war The WAR that can be dropped in
a Servlet Container (Tomcat) and
executed

 | JAR Reference | 27

JAR Reference

The Pentaho Reporting SDK consists of the following Pentaho-authored JARs:

JAR File Name Purpose

libbase The root project for all reporting
projects. Provides base services like
controlled boot-up, modularization,
configuration. Also contains some
commonly used helper classes.

libdocbundle Support for ODF-document-bundle
handling. Provides the engine with
the report-bundle capabilities and
manages the bundle-metadata,
parsing and writing.

libfonts Font-handling library. Performs the
mapping between physical font files
and logical font names. Also provides
performance optimized font-metadata
and font-metrics.

libformat A performance optimized replacement
for JDK TextFormat classes. Accepts
the same patterns as the JDK
classes, but skips the parsing.
Therefore they are less expensive to
use in terms of CPU and memory.

libformula Our OpenFormula implementation.
Provides a implementation of the
OpenFormula specification. Basically
a way to have Excel-style formulas
without the nonsense Excel does.

libloader Resourceloading and caching
framework. Used heavily in the engine
to load reports and other resources in
the most efficient way.

libpixie Support for rendering WMF (windows-
meta-files).

librepository Abstraction-layer for content-
repositories. Heavily used by
LibDocbundle and our HTML export.

libserializer Helper classes for serialization
of Java-objects. A factory based
approach to locate serializers based
on the class of the object we want to
serialize. needed as major parts of the
JDK are not serializable on their own.

libxml Advanced SAX-parsing framework
and namespace aware XML writing
framework used in the engine and
libdocbundle.

pentaho-reporting-engine-classic-core The Pentaho Reporting engine core,
which itself consists of modular sub-
projects.

 | JAR Reference | 28

Included third-party JARs

JAR File Name Purpose

activation The JavaBeans Activation
Framework, which determines the
type of the given data, encapsulates
it, discovers the operations available
on it, and to instantiates the
appropriate bean to execute those
operations.

backport-util-concurrent A library which implements
concurrency capabilities found in Java
5.0 and 6.0, which allows building
fully-portable concurrent applications
for older JREs.

batik-awt-util, batik-bridge, batik-css,
batik-dom, batik-ext, batik-gui-util,
batik-gvt, batik-parser, batik-script,
batik-svg-dom, batik-util, batik-xml

The core Batik SVG toolkit, which
adds scalable vector graphics support
to a Java application.

bsf The Apache Jakarta Bean Scripting
Framework, which provides scripting
language support within Java
applications, and access to Java
objects and methods from scripting
languages.

bsh The Bean Shell, which dynamically
executes standard Java syntax and
extends it with common scripting
conveniences such as loose types,
commands, and method closures like
those in Perl and JavaScript.

commons-logging-api The Apache Commons Logging
library, which allows writing to a
variety of different logging services in
a common format.

itext Enables dynamic PDF generation.

jsr107cache A Java cache API specification.

ehcache A distributed cache library that uses
the jsr107cache API.

mail The Java Mail API, which allows you
to send email from a Java application
without requiring a separate mail
server.

poi A Java API that allows you to read
from and write to Microsoft file
formats.

xml-apis The Apache Commons XML DOM
library, which allows you to read from,
write to, and validate XML files.

 | JAR Reference | 29

JARs exclusive to the embedding samples

JAR File Name Purpose

hsqldb HSQLDB database engine and JDBC
driver.

pentaho-reporting-engine-classic-
samples

The sample applications explained in
this guide.

 | Source Code Links | 30

Source Code Links

Pentaho maintains a Subversion repository for Pentaho Reporting. It consists of many individual, modular projects,
all of which are listed below. You can also traverse the repository with a Web browser by replacing the svn:// with an
http:// . As is customary with Subversion repositories, the trunk is where active development happens; tags represent
snapshots of official releases; and branches are separate codelines generally established for new releases.

JAR File Name Source Code Repository

libbase svn://source.pentaho.org/pentaho-
reporting/libraries/libbase

libdocbundle svn://source.pentaho.org/pentaho-
reporting/libraries/libdocbundle

libfonts svn://source.pentaho.org/pentaho-
reporting/libraries/libfonts

libformat svn://source.pentaho.org/pentaho-
reporting/libraries/libformat

libformula svn://source.pentaho.org/pentaho-
reporting/libraries/libformula

libloader svn://source.pentaho.org/pentaho-
reporting/libraries/libloader

libpixie svn://source.pentaho.org/pentaho-
reporting/libraries/pixie

librepository svn://source.pentaho.org/pentaho-
reporting/libraries/librepository

libserializer svn://source.pentaho.org/pentaho-
reporting/libraries/libserializer

libxml svn://source.pentaho.org/pentaho-
reporting/libraries/libxml

pentaho-reporting-engine-classic-core svn://source.pentaho.org/pentaho-
reporting/engines/classic/trunk/core

Included third-party JARs

Below are URLs for the source code for the third-party JARs included in the SDK:

JAR File Name Source Code Repository

batik-awt-util-1.7.jar, batik-
bridge-1.7.jar, batik-css-1.7.jar, batik-
dom-1.7.jar, batik-ext-1.7.jar, batik-
gui-util-1.7.jar, batik-gvt-1.7.jar, batik-
parser-1.7.jar, batik-script-1.7.jar,
batik-svg-dom-1.7.jar, batik-
util-1.7.jar, batik-xml-1.7.jar

http://archive.apache.org/dist/
xmlgraphics/batik/batik-src-1.7.zip

bcmail-jdk14-1.38.jar, bcmail-
jdk14-138.jar, bcprov-jdk14-1.38.jar,
bcprov-jdk14-138.jar, bctsp-
jdk14-1.38.jar

http://www.bouncycastle.org/
latest_releases.html

bsf-2.4.5.jar http://mirror.its.uidaho.edu/pub/
apache/jakarta/bsf/source/bsf-
src-2.4.5.tar.gz

bsh-1.3.0.jar svn://ikayzo.org/svn/beanshell

 | Source Code Links | 31

JAR File Name Source Code Repository

commons-logging-api-1.1.jar http://www.gossipcheck.com/mirrors/
apache/commons/logging/source/
commons-logging-1.1.1-src.tar.gz

ehcache-core-2.0.1.jar svn://ehcache.svn.sourceforge.net/
viewvc/ehcache/branches/
ehcache-2.0.1/

itext-2.1.7.jar, itext-rtf-2.1.7.jar svn://itext.svn.sourceforge.net/
svnroot/itext/tags/iText_2_1_7/

js-1.7R1.jar http://www.mozilla.org/rhino/
download.html

mail-1.4.5.jar http://kenai.com/projects/javamail/
downloads/download//javamail-1.4.2-
src.zip

poi-3.0.1-jdk122-final-20071014.jar http://www.uniontransit.com/apache/
poi/release/src/poi-src-3.0.1-
FINAL-20070705.tar.gz

xml-apis-1.0.b2.jar http://svn.apache.org/repos/asf/xml/
commons/tags/xml-commons-1_0_b2/

JARs exclusive to the embedding samples

JAR File Name Source Code Repository

hsqldb svn://hsqldb.svn.sourceforge.net/
svnroot/hsqldb

pentaho-reporting-engine-classic-
samples

svn://source.pentaho.org/pentaho-
reporting/engines/classic/trunk/
samples

SDK assembly project svn://source.pentaho.org/pentaho-
reporting/engines/classic/trunk/sdk

 | More Examples | 32

More Examples

If you have successfully worked with the first two sample applications and want to see a Pentaho report render in a
more realistic user-facing application scenario, then continue on to samples 3 and 4 below. They use the same basic
report logic as before, but render interactive reports in a Swing window and a Java servlet that you can deploy into a
Web application server like Tomcat or JBoss.

Sample 3: Dynamically Generated, JDBC Input, Swing Output
Sample3.java generates the same report as created in Sample1.java (using the PRPT file generated with Report
Designer, connecting to the file-based HSQLDB database, and using a few parameters), but it uses a Swing helper
class defined in the Reporting engine to render the report in a Swing preview window. This basic functionality allows for:

• Runtime dynamic changing of report input parameters (in the Swing window, changes to the parameters can be
submitted by clicking on the Update button)

• Pagination of the report (showing one page at a time)
• Exporting the report in different formats (PDF, HTML, XLS, etc.)

The details of how to use Swing to preview the report are contained in the following engine classes (see the source files
included with the SDK for more information):

• org.pentaho.reporting.engine.classic.core.modules.gui.base.PreviewDialog: The dialog window that contains
the preview pane and handles basic menu functionality

• org.pentaho.reporting.engine.classic.core.modules.gui.base.PreviewPane: The pane that handles the report
generation, page switching, printing, and report export functionality

/*
 * This program is free software; you can redistribute it and/or modify
 it under the
 * terms of the GNU Lesser General Public License, version 2.1 as
 published by the Free Software
 * Foundation.
 *
 * You should have received a copy of the GNU Lesser General Public
 License along with this
 * program; if not, you can obtain a copy at http://www.gnu.org/
licenses/old-licenses/lgpl-2.1.html
 * or from the Free Software Foundation, Inc.,
 * 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
 *
 * This program is distributed in the hope that it will be useful, but
 WITHOUT ANY WARRANTY;
 * without even the implied warranty of MERCHANTABILITY or FITNESS FOR A
 PARTICULAR PURPOSE.
 * See the GNU Lesser General Public License for more details.
 *
 * Copyright 2009 Pentaho Corporation. All rights reserved.
 *
 * Created July 22, 2009
 * @author dkincade
 */
package org.pentaho.reporting.engine.classic.samples;

import java.net.URL;
import java.util.HashMap;
import java.util.Map;

import org.pentaho.reporting.engine.classic.core.ClassicEngineBoot;
import org.pentaho.reporting.engine.classic.core.DataFactory;
import org.pentaho.reporting.engine.classic.core.MasterReport;
import
 org.pentaho.reporting.engine.classic.core.modules.gui.base.PreviewDialog;
import org.pentaho.reporting.libraries.resourceloader.Resource;

 | More Examples | 33

import org.pentaho.reporting.libraries.resourceloader.ResourceException;
import org.pentaho.reporting.libraries.resourceloader.ResourceManager;

/**
 * Generates a report using a paginated Swing Preview Dialog. The
 parameters for this report
 * can be modified while previewing the dialog and the changes can be
 seen instantly.
 * <p/>
 * The report generated in this scenario will be the same as created in
 Sample1:
 *
 * The report definition file is a .prpt file which will be loaded
 and parsed
 * The data factory is a simple JDBC data factory using HSQLDB
 * There are no runtime report parameters used
 *
 */
public class Sample3 {

 /**
 * @param args
 */
 public static void main(String[] args) {
 // initialize the Reporting Engine
 ClassicEngineBoot.getInstance().start();

 // Get the complete report definition (the report definition with
 the data factory and
 // parameters already applied)
 Sample3 sample = new Sample3();
 final MasterReport report = sample.getCompleteReportDefinition();

 // Generate the swing preview dialog
 final PreviewDialog dialog = new PreviewDialog();
 dialog.setReportJob(report);
 dialog.setSize(500, 500);
 dialog.setModal(true);
 dialog.setVisible(true);
 System.exit(0);
 }

 /**
 * Generates the report definition that has the data factory and
 * parameters already applied.
 * @return the completed report definition
 */
 public MasterReport getCompleteReportDefinition() {
 final MasterReport report = getReportDefinition();

 // Add any parameters to the report
 final Map<String, Object> reportParameters = getReportParameters();
 if (null != reportParameters) {
 for (String key : reportParameters.keySet()) {
 report.getParameterValues().put(key, reportParameters.get(key));
 }
 }

 // Set the data factory for the report
 final DataFactory dataFactory = getDataFactory();
 if (dataFactory != null) {
 report.setDataFactory(dataFactory);
 }

 // Return the completed report
 return report;
 }

 /**

 | More Examples | 34

 * Returns the report definition which will be used to generate the
 report. In this case, the report will be
 * loaded and parsed from a file contained in this package.
 *
 * @return the loaded and parsed report definition to be used in
 report generation.
 */
 private MasterReport getReportDefinition() {
 try {
 // Using the classloader, get the URL to the reportDefinition file
 // NOTE: We will re-use the report definition from SAMPLE1
 final ClassLoader classloader = this.getClass().getClassLoader();
 final URL reportDefinitionURL = classloader
 .getResource("org/pentaho/reporting/engine/classic/samples/
Sample1.prpt");

 // Parse the report file
 final ResourceManager resourceManager = new ResourceManager();
 resourceManager.registerDefaults();
 final Resource directly =
 resourceManager.createDirectly(reportDefinitionURL,
 MasterReport.class);
 return (MasterReport) directly.getResource();
 } catch (ResourceException e) {
 e.printStackTrace();
 }
 return null;
 }

 /**
 * Returns the set of runtime report parameters. This sample report
 uses the following three parameters:
 *
 * Report Title - The title text on the top of the report</
li>
 * Customer Names - an array of customer names to show in
 the report
 * Col Headers BG Color - the background color for the
 column headers
 *
 *
 * @return <code>null</code> indicating the report generator does not
 use any report parameters
 */
 private Map<String, Object> getReportParameters() {
 final Map parameters = new HashMap<String, Object>();
 parameters.put("Report Title", "Simple Embedded Report Example with
 Parameters");
 parameters.put("Col Headers BG Color", "yellow");
 parameters.put("Customer Names", new String[] { "American Souvenirs
 Inc", "Toys4GrownUps.com", "giftsbymail.co.uk",
 "BG&E Collectables", "Classic Gift Ideas, Inc", });
 return parameters;
 }

 /**
 * Returns the data factory which will be used to generate the data
 used during report generation. In this example,
 * we will return null since the data factory has been defined in the
 report definition.
 *
 * @return the data factory used with the report generator
 */
 private DataFactory getDataFactory() {
 return null;
 }
}

 | More Examples | 35

Sample 4: Dynamically Generated, JDBC Input, Java Servlet Output
Note: This example assumes you have a Java application server, such as Tomcat or JBoss, installed,
configured, running, and accessible to you.

Sample4.java is an HttpServlet which generates an HTML report similar to Sample2 (dynamically created report
definition based on the data set, a static data set, and no parameters). In the generateReport(…) method, the report
is generates as HTML into an output stream which is routed directly to the browser. As noted in the comments of this
method, a small simple change can be made to generate PDF output instead of HTML output.

Directions for Running Sample4

To execute Sample4, the following steps will deploy and run it using Tomcat 5.5:

1. Copy Sample4.war into the webapps directory of a working Tomcat instance
2. Start the Tomcat server (bin/startup.sh or bin\startup.bat)
3. In a browser, navigate to the following URL: http://localhost:8080/Sample4/

/*
 * This program is free software; you can redistribute it and/or modify
 it under the
 * terms of the GNU Lesser General Public License, version 2.1 as
 published by the Free Software
 * Foundation.
 *
 * You should have received a copy of the GNU Lesser General Public
 License along with this
 * program; if not, you can obtain a copy at http://www.gnu.org/
licenses/old-licenses/lgpl-2.1.html
 * or from the Free Software Foundation, Inc.,
 * 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
 *
 * This program is distributed in the hope that it will be useful, but
 WITHOUT ANY WARRANTY;
 * without even the implied warranty of MERCHANTABILITY or FITNESS FOR A
 PARTICULAR PURPOSE.
 * See the GNU Lesser General Public License for more details.
 *
 * Copyright 2009 Pentaho Corporation. All rights reserved.
 *
 * Created July 22, 2009
 * @author dkincade
 */
package org.pentaho.reporting.engine.classic.samples;

import java.io.IOException;
import java.io.OutputStream;

import javax.servlet.ServletException;
import javax.servlet.http.HttpServlet;
import javax.servlet.http.HttpServletRequest;
import javax.servlet.http.HttpServletResponse;
import javax.swing.table.AbstractTableModel;

import org.pentaho.reporting.engine.classic.core.ClassicEngineBoot;
import org.pentaho.reporting.engine.classic.core.MasterReport;
import org.pentaho.reporting.engine.classic.core.PageDefinition;
import
 org.pentaho.reporting.engine.classic.core.ReportProcessingException;
import org.pentaho.reporting.engine.classic.core.TableDataFactory;
import org.pentaho.reporting.engine.classic.core.modules.
output.table.html.HtmlReportUtil;
import org.pentaho.reporting.engine.classic.core.wizard.
RelationalAutoGeneratorPreProcessor;

 | More Examples | 36

/**
 * Servlet implementation which generates a report and returns the
 report as an HTML
 * stream back to the browser.
 */
public class Sample4 extends HttpServlet
{
 /**
 * Default constructor for this sample servlet
 */
 public Sample4()
 {
 }

 /**
 * Initializes the servlet - we need to make sure the reporting engine
 has been initialized
 */
 public void init()
 {
 // Initialize the reporting engine
 ClassicEngineBoot.getInstance().start();
 }

 /**
 * Handles the GET request. We will handle both the GET request and
 POST request the same way.
 */
 protected void doGet(final HttpServletRequest req, final
 HttpServletResponse resp) throws ServletException, IOException
 {
 generateReport(req, resp);
 }

 /**
 * Handles the POST request. We will handle both the GET request and
 POST request the same way.
 */
 protected void doPost(final HttpServletRequest req, final
 HttpServletResponse resp) throws ServletException, IOException
 {
 generateReport(req, resp);
 }

 /**
 * Generates a simple HTML report and returns the HTML output back to
 the browser
 */
 private void generateReport(final HttpServletRequest req, final
 HttpServletResponse resp) throws ServletException, IOException
 {
 // Generate the report definition
 final MasterReport report = createReportDefinition();

 // Run the report and save the HTML output to a byte stream
 resp.setContentType("text/html"); // Change to "application/pdf" for
 PDF output
 OutputStream out = resp.getOutputStream();
 try
 {
 // Use the HtmlReportUtil to generate the report to a Stream HTML
 HtmlReportUtil.createStreamHTML(report, out);

 //NOTE: Changing this to use PDF is simple:
 // 1. Change the above setContent call to use "application/pdf"
 // 2. Instead of HtmlReportUtil, use the following line:
 // PdfReportUtil.createPDF(report, out)
 }

 | More Examples | 37

 catch (ReportProcessingException rpe)
 {
 rpe.printStackTrace();
 }
 finally
 {
 out.close();
 }
 }

 private MasterReport createReportDefinition()
 {
 // Create a report using the autogenerated fields
 final MasterReport report = new MasterReport();
 report.addPreProcessor(new RelationalAutoGeneratorPreProcessor());

 // Add the data factory to the report
 report.setDataFactory(new TableDataFactory("Sample4Query", new
 Sample4TableModel()));
 report.setQuery("Sample4Query");

 // return
 return report;
 }

 /**
 * The table model used for this sample.
 *

 * In a real situation, this would never happen (a JNDI datasource
 connected up to
 * customer data would be more normal). But for a sample, some hard
 coded
 * data is to be expected.
 */
 private static class Sample4TableModel extends AbstractTableModel
 {
 /**
 * The sample data
 */
 private static final Object[][] data = new Object[][]
 {
 new Object[] { "Acme Industries", 2500, 18.75 },
 new Object[] { "Brookstone Warehouses", 5000, 36.1245 },
 new Object[] { "Cartwell Restaurants", 18460, 12.9 },
 new Object[] { "Domino Builders", 20625, 45.52 },
 new Object[] { "Elephant Zoo Enclosures", 750, 19.222 },
 };

 /**
 * Returns the number of columns of data in the sample dataset
 */
 public int getColumnCount()
 {
 return data[0].length;
 }

 /**
 * Returns the number of rows in the sample data
 */
 public int getRowCount()
 {
 return data.length;
 }

 /**
 * Returns the data value at the specific row and column index
 */
 public Object getValueAt(int rowIndex, int columnIndex)
 {

 | More Examples | 38

 if (rowIndex >= 0 && rowIndex < data.length && columnIndex >= 0 &&
 columnIndex < data[rowIndex].length)
 {
 return data[rowIndex][columnIndex];
 }
 return null;
 }

 }
}

	Contents
	Introduction
	Required Knowledge and Expertise
	Obtaining the Pentaho Reporting SDK
	Using the Included Eclipse Project
	Embedding the Reporting Engine Into a Java Application
	Overview
	Sample 0: The Base Class
	Sample 1: Static Report Definition, JDBC Input, PDF Output
	Sample 2: Static Report Definition, JDBC Input, HTML Output

	Pentaho Reporting's Capabilities
	Technological Advantages
	Input Types
	Output Types
	Pentaho Report Designer

	Other Embedding Scenarios
	Building a Custom Reporting Tool
	Hacking Pentaho Report Designer
	Embedding the Pentaho BI Platform

	License Information
	Developer Support
	Anatomy of the Pentaho Reporting SDK
	JAR Reference
	Source Code Links
	More Examples
	Sample 3: Dynamically Generated, JDBC Input, Swing Output
	Sample 4: Dynamically Generated, JDBC Input, Java Servlet Output

