
Perl version 5.10.1 documentation - Archive::Tar

Page 1http://perldoc.perl.org

NAME
Archive::Tar - module for manipulations of tar archives

SYNOPSIS
 use Archive::Tar;
 my $tar = Archive::Tar->new;

 $tar->read('origin.tgz');
 $tar->extract();

 $tar->add_files('file/foo.pl', 'docs/README');
 $tar->add_data('file/baz.txt', 'This is the contents now');

 $tar->rename('oldname', 'new/file/name');

 $tar->write('files.tar'); # plain tar
 $tar->write('files.tgz', COMPRESS_GZIP); # gzip compressed
 $tar->write('files.tbz', COMPRESS_BZIP); # bzip2 compressed

DESCRIPTION
Archive::Tar provides an object oriented mechanism for handling tar
 files. It provides class methods
for quick and easy files handling
 while also allowing for the creation of tar file objects for custom

manipulation. If you have the IO::Zlib module installed,
 Archive::Tar will also support compressed or
gzipped tar files.

An object of class Archive::Tar represents a .tar(.gz) archive full
 of files and things.

Object Methods
Archive::Tar->new([$file, $compressed])

Returns a new Tar object. If given any arguments, new() calls the read() method automatically,
passing on the arguments provided to
 the read() method.

If new() is invoked with arguments and the read() method fails
 for any reason, new() returns
undef.

$tar->read ($filename|$handle, [$compressed, {opt => 'val'}])
Read the given tar file into memory.
 The first argument can either be the name of a file or a reference
to
 an already open filehandle (or an IO::Zlib object if it's compressed)

The read will replace any previous content in $tar!

The second argument may be considered optional, but remains for
 backwards compatibility.
Archive::Tar now looks at the file
 magic to determine what class should be used to open the file
 and
will transparently Do The Right Thing.

Archive::Tar will warn if you try to pass a bzip2 compressed file and the
 IO::Zlib /
IO::Uncompress::Bunzip2 modules are not available and simply return.

Note that you can currently not pass a gzip compressed
 filehandle, which is not opened with
IO::Zlib, a bzip2 compressed
 filehandle, which is not opened with IO::Uncompress::Bunzip2
, nor a string
 containing the full archive information (either compressed or
 uncompressed). These are
worth while features, but not currently
 implemented. See the TODO section.

The third argument can be a hash reference with options. Note that
 all options are case-sensitive.

limit

Perl version 5.10.1 documentation - Archive::Tar

Page 2http://perldoc.perl.org

Do not read more than limit files. This is useful if you have
 very big archives, and are only
interested in the first few files.

filter

Can be set to a regular expression. Only files with names that match
 the expression will be
read.

extract

If set to true, immediately extract entries when reading them. This
 gives you the same memory
break as the extract_archive function.
 Note however that entries will not be read into
memory, but written
 straight to disk. This means no Archive::Tar::File objects are

created for you to inspect.

All files are stored internally as Archive::Tar::File objects.
 Please consult the Archive::Tar::File
documentation for details.

Returns the number of files read in scalar context, and a list of Archive::Tar::File objects in list
context.

$tar->contains_file($filename)
Check if the archive contains a certain file.
 It will return true if the file is in the archive, false otherwise.

Note however, that this function does an exact match using eq
 on the full path. So it cannot
compensate for case-insensitive file-
 systems or compare 2 paths to see if they would point to the
same
 underlying file.

$tar->extract([@filenames])
Write files whose names are equivalent to any of the names in @filenames to disk, creating
subdirectories as necessary. This
 might not work too well under VMS.
 Under MacPerl, the file's
modification time will be converted to the
 MacOS zero of time, and appropriate conversions will be
done to the
 path. However, the length of each element of the path is not
 inspected to see whether it's
longer than MacOS currently allows (32
 characters).

If extract is called without a list of file names, the entire
 contents of the archive are extracted.

Returns a list of filenames extracted.

$tar->extract_file($file, [$extract_path])
Write an entry, whose name is equivalent to the file name provided to
 disk. Optionally takes a second
parameter, which is the full native
 path (including filename) the entry will be written to.

For example:

 $tar->extract_file('name/in/archive', 'name/i/want/to/give/it');

 $tar->extract_file($at_file_object, 'name/i/want/to/give/it');

Returns true on success, false on failure.

$tar->list_files([\@properties])
Returns a list of the names of all the files in the archive.

If list_files() is passed an array reference as its first argument
 it returns a list of hash references
containing the requested
 properties of each file. The following list of properties is
 supported: name,
size, mtime (last modified date), mode, uid, gid,
 linkname, uname, gname, devmajor, devminor, prefix.

Passing an array reference containing only one element, 'name', is
 special cased to return a list of
names rather than a list of hash
 references, making it equivalent to calling list_files without

Perl version 5.10.1 documentation - Archive::Tar

Page 3http://perldoc.perl.org

arguments.$tar->get_files([@filenames])
Returns the Archive::Tar::File objects matching the filenames
 provided. If no filename list was
passed, all Archive::Tar::File
 objects in the current Tar object are returned.

Please refer to the Archive::Tar::File documentation on how to
 handle these objects.

$tar->get_content($file)
Return the content of the named file.

$tar->replace_content($file, $content)
Make the string $content be the content for the file named $file.

$tar->rename($file, $new_name)
Rename the file of the in-memory archive to $new_name.

Note that you must specify a Unix path for $new_name, since per tar
 standard, all files in the archive
must be Unix paths.

Returns true on success and false on failure.

$tar->remove (@filenamelist)
Removes any entries with names matching any of the given filenames
 from the in-memory archive.
Returns a list of Archive::Tar::File
 objects that remain.

$tar->clear
clear clears the current in-memory archive. This effectively gives
 you a 'blank' object, ready to be
filled again. Note that clear
 only has effect on the object, not the underlying tarfile.

$tar->write ([$file, $compressed, $prefix])
Write the in-memory archive to disk. The first argument can either
 be the name of a file or a reference
to an already open filehandle (a
 GLOB reference).

The second argument is used to indicate compression. You can either
 compress using gzip or
bzip2. If you pass a digit, it's assumed
 to be the gzip compression level (between 1 and 9), but the
use of
 constants is prefered:

 # write a gzip compressed file
 $tar->write('out.tgz', COMPRESS_GZIP);

 # write a bzip compressed file
 $tar->write('out.tbz', COMPRESS_BZIP);

Note that when you pass in a filehandle, the compression argument
 is ignored, as all files are printed
verbatim to your filehandle.
 If you wish to enable compression with filehandles, use an IO::Zlib or
IO::Compress::Bzip2 filehandle instead.

The third argument is an optional prefix. All files will be tucked
 away in the directory you specify as
prefix. So if you have files
 'a' and 'b' in your archive, and you specify 'foo' as prefix, they
 will be written
to the archive as 'foo/a' and 'foo/b'.

If no arguments are given, write returns the entire formatted
 archive as a string, which could be
useful if you'd like to stuff the
 archive into a socket or a pipe to gzip or something.

$tar->add_files(@filenamelist)
Takes a list of filenames and adds them to the in-memory archive.

The path to the file is automatically converted to a Unix like
 equivalent for use in the archive, and, if
on MacOS, the file's
 modification time is converted from the MacOS epoch to the Unix epoch.
 So tar

Perl version 5.10.1 documentation - Archive::Tar

Page 4http://perldoc.perl.org

archives created on MacOS with Archive::Tar can be read
 both with tar on Unix and applications like
suntar or Stuffit Expander on MacOS.

Be aware that the file's type/creator and resource fork will be lost,
 which is usually what you want in
cross-platform archives.

Instead of a filename, you can also pass it an existing Archive::Tar::File
 object from, for
example, another archive. The object will be clone, and
 effectively be a copy of the original, not an
alias.

Returns a list of Archive::Tar::File objects that were just added.

$tar->add_data ($filename, $data, [$opthashref])
Takes a filename, a scalar full of data and optionally a reference to
 a hash with specific options.

Will add a file to the in-memory archive, with name $filename and
 content $data. Specific
properties can be set using $opthashref.
 The following list of properties is supported: name, size,
mtime
 (last modified date), mode, uid, gid, linkname, uname, gname,
 devmajor, devminor, prefix,
type. (On MacOS, the file's path and
 modification times are converted to Unix equivalents.)

Valid values for the file type are the following constants defined in
 Archive::Tar::Constants:

FILE

Regular file.

HARDLINK

SYMLINK

Hard and symbolic ("soft") links; linkname should specify target.

CHARDEV

BLOCKDEV

Character and block devices. devmajor and devminor should specify the major
 and minor
device numbers.

DIR

Directory.

FIFO

FIFO (named pipe).

SOCKET

Socket.

Returns the Archive::Tar::File object that was just added, or undef on failure.

$tar->error([$BOOL])
Returns the current errorstring (usually, the last error reported).
 If a true value was specified, it will
give the Carp::longmess
 equivalent of the error, in effect giving you a stacktrace.

For backwards compatibility, this error is also available as $Archive::Tar::error although it is
much recommended you use the
 method call instead.

$tar->setcwd($cwd);
Archive::Tar needs to know the current directory, and it will run Cwd::cwd() every time it
extracts a relative entry from the
 tarfile and saves it in the file system. (As of version 1.30, however,
Archive::Tar will use the speed optimization described below
 automatically, so it's only relevant if
you're using extract_file()).

Perl version 5.10.1 documentation - Archive::Tar

Page 5http://perldoc.perl.org

Since Archive::Tar doesn't change the current directory internally
 while it is extracting the items in
a tarball, all calls to Cwd::cwd()
 can be avoided if we can guarantee that the current directory
doesn't
 get changed externally.

To use this performance boost, set the current directory via

 use Cwd;
 $tar->setcwd(cwd());

once before calling a function like extract_file and Archive::Tar will use the current directory
setting from then on
 and won't call Cwd::cwd() internally.

To switch back to the default behaviour, use

 $tar->setcwd(undef);

and Archive::Tar will call Cwd::cwd() internally again.

If you're using Archive::Tar's exract() method, setcwd() will
 be called for you.

Class Methods
Archive::Tar->create_archive($file, $compressed, @filelist)

Creates a tar file from the list of files provided. The first
 argument can either be the name of the tar file
to create or a
 reference to an open file handle (e.g. a GLOB reference).

The second argument is used to indicate compression. You can either
 compress using gzip or
bzip2. If you pass a digit, it's assumed
 to be the gzip compression level (between 1 and 9), but the
use of
 constants is prefered:

 # write a gzip compressed file
 Archive::Tar->create_archive('out.tgz', COMPRESS_GZIP, @filelist);

 # write a bzip compressed file
 Archive::Tar->create_archive('out.tbz', COMPRESS_BZIP, @filelist);

Note that when you pass in a filehandle, the compression argument
 is ignored, as all files are printed
verbatim to your filehandle.
 If you wish to enable compression with filehandles, use an IO::Zlib or
IO::Compress::Bzip2 filehandle instead.

The remaining arguments list the files to be included in the tar file.
 These files must all exist. Any files
which don't exist or can't be
 read are silently ignored.

If the archive creation fails for any reason, create_archive will
 return false. Please use the error
method to find the cause of the
 failure.

Note that this method does not write on the fly as it were; it
 still reads all the files into memory
before writing out the archive.
 Consult the FAQ below if this is a problem.

Archive::Tar->iter($filename, [$compressed, {opt => $val}])
Returns an iterator function that reads the tar file without loading
 it all in memory. Each time the
function is called it will return the
 next file in the tarball. The files are returned as
Archive::Tar::File objects. The iterator function returns the
 empty list once it has exhausted the
the files contained.

The second argument can be a hash reference with options, which are
 identical to the arguments
passed to read().

Example usage:

Perl version 5.10.1 documentation - Archive::Tar

Page 6http://perldoc.perl.org

 my $next = Archive::Tar->iter("example.tar.gz", 1, {filter =>
qr/\.pm$/});

 while(my $f = $next->()) {
 print $f->name, "\n";

 $f->extract or warn "Extraction failed";

 #
 }

Archive::Tar->list_archive($file, $compressed, [\@properties])
Returns a list of the names of all the files in the archive. The
 first argument can either be the name of
the tar file to list or a
 reference to an open file handle (e.g. a GLOB reference).

If list_archive() is passed an array reference as its third
 argument it returns a list of hash
references containing the requested
 properties of each file. The following list of properties is

supported: full_path, name, size, mtime (last modified date), mode,
 uid, gid, linkname, uname,
gname, devmajor, devminor, prefix.

See Archive::Tar::File for details about supported properties.

Passing an array reference containing only one element, 'name', is
 special cased to return a list of
names rather than a list of hash
 references.

Archive::Tar->extract_archive($file, $compressed)
Extracts the contents of the tar file. The first argument can either
 be the name of the tar file to create
or a reference to an open file
 handle (e.g. a GLOB reference). All relative paths in the tar file will
 be
created underneath the current working directory.

extract_archive will return a list of files it extracted.
 If the archive extraction fails for any reason,
extract_archive
 will return false. Please use the error method to find the cause
 of the failure.

$bool = Archive::Tar->has_io_string
Returns true if we currently have IO::String support loaded.

Either IO::String or perlio support is needed to support writing
 stringified archives. Currently,
perlio is the preferred method, if
 available.

See the GLOBAL VARIABLES section to see how to change this preference.

$bool = Archive::Tar->has_perlio
Returns true if we currently have perlio support loaded.

This requires perl-5.8 or higher, compiled with perlio

Either IO::String or perlio support is needed to support writing
 stringified archives. Currently,
perlio is the preferred method, if
 available.

See the GLOBAL VARIABLES section to see how to change this preference.

$bool = Archive::Tar->has_zlib_support
Returns true if Archive::Tar can extract zlib compressed archives

$bool = Archive::Tar->has_bzip2_support
Returns true if Archive::Tar can extract bzip2 compressed archives

Perl version 5.10.1 documentation - Archive::Tar

Page 7http://perldoc.perl.org

Archive::Tar->can_handle_compressed_files
A simple checking routine, which will return true if Archive::Tar
 is able to uncompress compressed
archives on the fly with IO::Zlib
 and IO::Compress::Bzip2 or false if not both are installed.

You can use this as a shortcut to determine whether Archive::Tar
 will do what you think before
passing compressed archives to its read method.

GLOBAL VARIABLES
$Archive::Tar::FOLLOW_SYMLINK

Set this variable to 1 to make Archive::Tar effectively make a
 copy of the file when extracting.
Default is 0, which
 means the symlink stays intact. Of course, you will have to pack the
 file linked to
as well.

This option is checked when you write out the tarfile using write
 or create_archive.

This works just like /bin/tar's -h option.

$Archive::Tar::CHOWN
By default, Archive::Tar will try to chown your files if it is
 able to. In some cases, this may not be
desired. In that case, set
 this variable to 0 to disable chown-ing, even if it were
 possible.

The default is 1.

$Archive::Tar::CHMOD
By default, Archive::Tar will try to chmod your files to
 whatever mode was specified for the
particular file in the archive.
 In some cases, this may not be desired. In that case, set this
 variable to 0
to disable chmod-ing.

The default is 1.

$Archive::Tar::SAME_PERMISSIONS
When, $Archive::Tar::CHMOD is enabled, this setting controls whether
 the permissions on files
from the archive are used without modification
 of if they are filtered by removing any setid bits and
applying the
 current umask.

The default is 1 for the root user and 0 for normal users.

$Archive::Tar::DO_NOT_USE_PREFIX
By default, Archive::Tar will try to put paths that are over
 100 characters in the prefix field of
your tar header, as
 defined per POSIX-standard. However, some (older) tar programs
 do not
implement this spec. To retain compatibility with these older
 or non-POSIX compliant versions, you
can set the $DO_NOT_USE_PREFIX
 variable to a true value, and Archive::Tar will use an
alternate
 way of dealing with paths over 100 characters by using the GNU Extended Header
feature.

Note that clients who do not support the GNU Extended Header
 feature will not be able to read
these archives. Such clients include
 tars on Solaris, Irix and AIX.

The default is 0.

$Archive::Tar::DEBUG
Set this variable to 1 to always get the Carp::longmess output
 of the warnings, instead of the
regular carp. This is the same
 message you would get by doing:

 $tar->error(1);

Defaults to 0.

Perl version 5.10.1 documentation - Archive::Tar

Page 8http://perldoc.perl.org

$Archive::Tar::WARN
Set this variable to 0 if you do not want any warnings printed.
 Personally I recommend against doing
this, but people asked for the
 option. Also, be advised that this is of course not threadsafe.

Defaults to 1.

$Archive::Tar::error
Holds the last reported error. Kept for historical reasons, but its
 use is very much discouraged. Use
the error() method instead:

 warn $tar->error unless $tar->extract;

$Archive::Tar::INSECURE_EXTRACT_MODE
This variable indicates whether Archive::Tar should allow
 files to be extracted outside their current
working directory.

Allowing this could have security implications, as a malicious
 tar archive could alter or replace any file
the extracting user
 has permissions to. Therefor, the default is to not allow
 insecure extractions.

If you trust the archive, or have other reasons to allow the
 archive to write files outside your current
working directory,
 set this variable to true.

Note that this is a backwards incompatible change from version 1.36 and before.

$Archive::Tar::HAS_PERLIO
This variable holds a boolean indicating if we currently have perlio support loaded. This will be
enabled for any perl
 greater than 5.8 compiled with perlio.

If you feel strongly about disabling it, set this variable to false. Note that you will then need
IO::String installed
 to support writing stringified archives.

Don't change this variable unless you really know what you're
 doing.

$Archive::Tar::HAS_IO_STRING
This variable holds a boolean indicating if we currently have IO::String support loaded. This will be
enabled for any perl
 that has a loadable IO::String module.

If you feel strongly about disabling it, set this variable to false. Note that you will then need perlio
support from
 your perl to be able to write stringified archives.

Don't change this variable unless you really know what you're
 doing.

FAQ
What's the minimum perl version required to run Archive::Tar?

You will need perl version 5.005_03 or newer.

Isn't Archive::Tar slow?

Yes it is. It's pure perl, so it's a lot slower then your /bin/tar
 However, it's very portable. If
speed is an issue, consider using /bin/tar instead.

Isn't Archive::Tar heavier on memory than /bin/tar?

Yes it is, see previous answer. Since Compress::Zlib and therefore IO::Zlib doesn't
support seek on their filehandles, there is little
 choice but to read the archive into memory.

This is ok if you want to do in-memory manipulation of the archive.

If you just want to extract, use the extract_archive class method
 instead. It will optimize
and write to disk immediately.

Another option is to use the iter class method to iterate over
 the files in the tarball without

Perl version 5.10.1 documentation - Archive::Tar

Page 9http://perldoc.perl.org

reading them all in memory at once.

Can you lazy-load data instead?

In some cases, yes. You can use the iter class method to iterate
 over the files in the tarball
without reading them all in memory at once.

How much memory will an X kb tar file need?

Probably more than X kb, since it will all be read into memory. If
 this is a problem, and you
don't need to do in memory manipulation
 of the archive, consider using the iter class
method, or /bin/tar
 instead.

What do you do with unsupported filetypes in an archive?

Unix has a few filetypes that aren't supported on other platforms,
 like Win32. If we encounter
a hardlink or symlink we'll just
 try to make a copy of the original file, rather than throwing
an error.

This does require you to read the entire archive in to memory first,
 since otherwise we
wouldn't know what data to fill the copy with.
 (This means that you cannot use the class
methods, including iter
 on archives that have incompatible filetypes and still expect things
 to
work).

For other filetypes, like chardevs and blockdevs we'll warn that
 the extraction of this
particular item didn't work.

I'm using WinZip, or some other non-POSIX client, and files are not being extracted properly!

By default, Archive::Tar is in a completely POSIX-compatible
 mode, which uses the
POSIX-specification of tar to store files.
 For paths greather than 100 characters, this is done
using the POSIX header prefix. Non-POSIX-compatible clients may not support
 this part
of the specification, and may only support the GNU Extended
 Header functionality. To
facilitate those clients, you can set the $Archive::Tar::DO_NOT_USE_PREFIX variable to
true. See the GLOBAL VARIABLES section for details on this variable.

Note that GNU tar earlier than version 1.14 does not cope well with
 the POSIX header
prefix. If you use such a version, consider setting
 the
$Archive::Tar::DO_NOT_USE_PREFIX variable to true.

How do I extract only files that have property X from an archive?

Sometimes, you might not wish to extract a complete archive, just
 the files that are relevant to
you, based on some criteria.

You can do this by filtering a list of Archive::Tar::File objects
 based on your criteria. For
example, to extract only files that have
 the string foo in their title, you would use:

 $tar->extract(
 grep { $_->full_path =~ /foo/ } $tar->get_files
);

This way, you can filter on any attribute of the files in the archive.
 Consult the
Archive::Tar::File documentation on how to use these
 objects.

How do I access .tar.Z files?

The Archive::Tar module can optionally use Compress::Zlib (via
 the IO::Zlib
module) to access tar files that have been compressed
 with gzip. Unfortunately tar files
compressed with the Unix compress
 utility cannot be read by Compress::Zlib and so
cannot be directly
 accesses by Archive::Tar.

If the uncompress or gunzip programs are available, you can use
 one of these workarounds
to read .tar.Z files from Archive::Tar

Firstly with uncompress

Perl version 5.10.1 documentation - Archive::Tar

Page 10http://perldoc.perl.org

 use Archive::Tar;

 open F, "uncompress -c $filename |";
 my $tar = Archive::Tar->new(*F);
 ...

and this with gunzip

 use Archive::Tar;

 open F, "gunzip -c $filename |";
 my $tar = Archive::Tar->new(*F);
 ...

Similarly, if the compress program is available, you can use this to
 write a .tar.Z file

 use Archive::Tar;
 use IO::File;

 my $fh = new IO::File "| compress -c >$filename";
 my $tar = Archive::Tar->new();
 ...
 $tar->write($fh);
 $fh->close ;

How do I handle Unicode strings?

Archive::Tar uses byte semantics for any files it reads from or writes
 to disk. This is not a
problem if you only deal with files and never
 look at their content or work solely with byte
strings. But if you use
 Unicode strings with character semantics, some additional steps need

to be taken.

For example, if you add a Unicode string like

 # Problem
 $tar->add_data('file.txt', "Euro: \x{20AC}");

then there will be a problem later when the tarfile gets written out
 to disk via $tar-write()>:

 Wide character in print at .../Archive/Tar.pm line 1014.

The data was added as a Unicode string and when writing it out to disk,
 the :utf8 line
discipline wasn't set by Archive::Tar, so Perl
 tried to convert the string to ISO-8859 and
failed. The written file
 now contains garbage.

For this reason, Unicode strings need to be converted to UTF-8-encoded
 bytestrings before
they are handed off to add_data():

 use Encode;
 my $data = "Accented character: \x{20AC}";
 $data = encode('utf8', $data);

 $tar->add_data('file.txt', $data);

A opposite problem occurs if you extract a UTF8-encoded file from a
 tarball. Using
get_content() on the Archive::Tar::File object
 will return its content as a bytestring,
not as a Unicode string.

If you want it to be a Unicode string (because you want character
 semantics with operations
like regular expression matching), you need
 to decode the UTF8-encoded content and have
Perl convert it into
 a Unicode string:

Perl version 5.10.1 documentation - Archive::Tar

Page 11http://perldoc.perl.org

 use Encode;
 my $data = $tar->get_content();

 # Make it a Unicode string
 $data = decode('utf8', $data);

There is no easy way to provide this functionality in Archive::Tar,
 because a tarball can
contain many files, and each of which could be
 encoded in a different way.

CAVEATS
The AIX tar does not fill all unused space in the tar archive with 0x00. This sometimes leads to
warning messages from Archive::Tar.

 Invalid header block at offset nnn

A fix for that problem is scheduled to be released in the following levels
 of AIX, all of which should be
coming out in the 4th quarter of 2009:

 AIX 5.3 TL7 SP10
 AIX 5.3 TL8 SP8
 AIX 5.3 TL9 SP5
 AIX 5.3 TL10 SP2

 AIX 6.1 TL0 SP11
 AIX 6.1 TL1 SP7
 AIX 6.1 TL2 SP6
 AIX 6.1 TL3 SP3

The IBM APAR number for this problem is IZ50240 (Reported component ID: 5765G0300 / AIX 5.3).
It is possible to get an ifix for that problem. If you need an ifix please contact your local IBM AIX
support.

TODO
Check if passed in handles are open for read/write

Currently I don't know of any portable pure perl way to do this.
 Suggestions welcome.

Allow archives to be passed in as string

Currently, we only allow opened filehandles or filenames, but
 not strings. The internals would
need some reworking to facilitate
 stringified archives.

Facilitate processing an opened filehandle of a compressed archive

Currently, we only support this if the filehandle is an IO::Zlib object.
 Environments, like
apache, will present you with an opened filehandle
 to an uploaded file, which might be a
compressed archive.

SEE ALSO
The GNU tar specification

http://www.gnu.org/software/tar/manual/tar.html

The PAX format specication

The specifcation which tar derives from;
http://www.opengroup.org/onlinepubs/007904975/utilities/pax.html

A comparison of GNU and POSIX tar standards;
http://www.delorie.com/gnu/docs/tar/tar_114.html

Perl version 5.10.1 documentation - Archive::Tar

Page 12http://perldoc.perl.org

GNU tar intends to switch to POSIX compatibility

GNU Tar authors have expressed their intention to become completely
 POSIX-compatible;
http://www.gnu.org/software/tar/manual/html_node/Formats.html

A Comparison between various tar implementations

Lists known issues and incompatibilities;
http://gd.tuwien.ac.at/utils/archivers/star/README.otherbugs

AUTHOR
This module by Jos Boumans <kane@cpan.org>.

Please reports bugs to <bug-archive-tar@rt.cpan.org>.

ACKNOWLEDGEMENTS
Thanks to Sean Burke, Chris Nandor, Chip Salzenberg, Tim Heaney, Gisle Aas,
 Rainer Tammer and
especially Andrew Savige for their help and suggestions.

COPYRIGHT
This module is copyright (c) 2002 - 2009 Jos Boumans <kane@cpan.org>. All rights reserved.

This library is free software; you may redistribute and/or modify
 it under the same terms as Perl itself.

