
Perl version 5.10.1 documentation - Compress::Zlib

Page 1http://perldoc.perl.org

NAME
Compress::Zlib - Interface to zlib compression library

SYNOPSIS
 use Compress::Zlib ;

 ($d, $status) = deflateInit([OPT]) ;
 $status = $d->deflate($input, $output) ;
 $status = $d->flush([$flush_type]) ;
 $d->deflateParams(OPTS) ;
 $d->deflateTune(OPTS) ;
 $d->dict_adler() ;
 $d->crc32() ;
 $d->adler32() ;
 $d->total_in() ;
 $d->total_out() ;
 $d->msg() ;
 $d->get_Strategy();
 $d->get_Level();
 $d->get_BufSize();

 ($i, $status) = inflateInit([OPT]) ;
 $status = $i->inflate($input, $output [, $eof]) ;
 $status = $i->inflateSync($input) ;
 $i->dict_adler() ;
 $d->crc32() ;
 $d->adler32() ;
 $i->total_in() ;
 $i->total_out() ;
 $i->msg() ;
 $d->get_BufSize();

 $dest = compress($source) ;
 $dest = uncompress($source) ;

 $gz = gzopen($filename or filehandle, $mode) ;
 $bytesread = $gz->gzread($buffer [,$size]) ;
 $bytesread = $gz->gzreadline($line) ;
 $byteswritten = $gz->gzwrite($buffer) ;
 $status = $gz->gzflush($flush) ;
 $offset = $gz->gztell() ;
 $status = $gz->gzseek($offset, $whence) ;
 $status = $gz->gzclose() ;
 $status = $gz->gzeof() ;
 $status = $gz->gzsetparams($level, $strategy) ;
 $errstring = $gz->gzerror() ;
 $gzerrno

 $dest = Compress::Zlib::memGzip($buffer) ;
 $dest = Compress::Zlib::memGunzip($buffer) ;

 $crc = adler32($buffer [,$crc]) ;
 $crc = crc32($buffer [,$crc]) ;

Perl version 5.10.1 documentation - Compress::Zlib

Page 2http://perldoc.perl.org

 $crc = adler32_combine($crc1, $crc2, $len2)l
 $crc = crc32_combine($adler1, $adler2, $len2)

 my $version = Compress::Raw::Zlib::zlib_version();

DESCRIPTION
The Compress::Zlib module provides a Perl interface to the zlib
 compression library (see AUTHOR for
details about where to get zlib).

The Compress::Zlib module can be split into two general areas of
 functionality, namely a simple
read/write interface to gzip files
 and a low-level in-memory compression/decompression interface.

Each of these areas will be discussed in the following sections.

Notes for users of Compress::Zlib version 1
The main change in Compress::Zlib version 2.x is that it does not now
 interface directly to the zlib
library. Instead it uses the IO::Compress::Gzip and IO::Uncompress::Gunzip modules for

reading/writing gzip files, and the Compress::Raw::Zlib module for some
 low-level zlib access.

The interface provided by version 2 of this module should be 100% backward
 compatible with version
1. If you find a difference in the expected
 behaviour please contact the author (See AUTHOR). See
GZIP INTERFACE

With the creation of the IO::Compress and IO::Uncompress modules no
 new features are
planned for Compress::Zlib - the new modules do
 everything that Compress::Zlib does and
then some. Development on Compress::Zlib will be limited to bug fixes only.

If you are writing new code, your first port of call should be one of the
 new IO::Compress or
IO::Uncompress modules.

GZIP INTERFACE
A number of functions are supplied in zlib for reading and writing gzip files that conform to RFC 1952.
This module provides an interface
 to most of them.

If you have previously used Compress::Zlib 1.x, the following
 enhancements/changes have been
made to the gzopen interface:

1 If you want to to open either STDIN or STDOUT with gzopen, you can now
 optionally use
the special filename "-" as a synonym for *STDIN and *STDOUT.

2 In Compress::Zlib version 1.x, gzopen used the zlib library to open
 the underlying file.
This made things especially tricky when a Perl
 filehandle was passed to gzopen. Behind the
scenes the numeric C file
 descriptor had to be extracted from the Perl filehandle and this
passed to
 the zlib library.

Apart from being non-portable to some operating systems, this made it
 difficult to use
gzopen in situations where you wanted to extract/create
 a gzip data stream that is
embedded in a larger file, without having to
 resort to opening and closing the file multiple
times.

It also made it impossible to pass a perl filehandle that wasn't associated
 with a real
filesystem file, like, say, an IO::String.

In Compress::Zlib version 2.x, the gzopen interface has been
 completely rewritten to
use the IO::Compress::Gzip
 for writing gzip files and IO::Uncompress::Gunzip
 for reading
gzip files. None of the limitations mentioned above apply.

3 Addition of gzseek to provide a restricted seek interface.

4. Added gztell.

Perl version 5.10.1 documentation - Compress::Zlib

Page 3http://perldoc.perl.org

A more complete and flexible interface for reading/writing gzip
 files/buffers is included with the module
IO-Compress-Zlib. See IO::Compress::Gzip and IO::Uncompress::Gunzip for more details.

$gz = gzopen($filename, $mode)

$gz = gzopen($filehandle, $mode)

This function opens either the gzip file $filename for reading or
 writing or attaches to the
opened filehandle, $filehandle. It returns an object on success and undef on failure.

When writing a gzip file this interface will always create the smallest
 possible gzip header
(exactly 10 bytes). If you want greater control over
 what gets stored in the gzip header (like
the original filename or a
 comment) use IO::Compress::Gzip instead. Similarly if
 you want to
read the contents of the gzip header use IO::Uncompress::Gunzip.

The second parameter, $mode, is used to specify whether the file is
 opened for reading or
writing and to optionally specify a compression
 level and compression strategy when writing.
The format of the $mode
 parameter is similar to the mode parameter to the 'C' function
fopen,
 so "rb" is used to open for reading, "wb" for writing and "ab" for
 appending (writing at
the end of the file).

To specify a compression level when writing, append a digit between 0
 and 9 to the mode
string -- 0 means no compression and 9 means maximum
 compression.
 If no compression
level is specified Z_DEFAULT_COMPRESSION is used.

To specify the compression strategy when writing, append 'f' for filtered
 data, 'h' for Huffman
only compression, or 'R' for run-length encoding.
 If no strategy is specified
Z_DEFAULT_STRATEGY is used.

So, for example, "wb9" means open for writing with the maximum compression
 using the
default strategy and "wb4R" means open for writing with compression
 level 4 and run-length
encoding.

Refer to the zlib documentation for the exact format of the $mode
 parameter.

$bytesread = $gz->gzread($buffer [, $size]) ;

Reads $size bytes from the compressed file into $buffer. If $size is not specified, it will
default to 4096. If the scalar $buffer is not large enough, it will be extended automatically.

Returns the number of bytes actually read. On EOF it returns 0 and in
 the case of an error,
-1.

$bytesread = $gz->gzreadline($line) ;

Reads the next line from the compressed file into $line.

Returns the number of bytes actually read. On EOF it returns 0 and in
 the case of an error,
-1.

It is legal to intermix calls to gzread and gzreadline.

To maintain backward compatibility with version 1.x of this module gzreadline ignores the
$/ variable - it always uses the string "\n" as the line delimiter.

If you want to read a gzip file a line at a time and have it respect the $/ variable (or
$INPUT_RECORD_SEPARATOR, or $RS when English is
 in use) see
IO::Uncompress::Gunzip.

$byteswritten = $gz->gzwrite($buffer) ;

Writes the contents of $buffer to the compressed file. Returns the
 number of bytes
actually written, or 0 on error.

$status = $gz->gzflush($flush_type) ;

Flushes all pending output into the compressed file.

This method takes an optional parameter, $flush_type, that controls
 how the flushing will
be carried out. By default the $flush_type
 used is Z_FINISH. Other valid values for

Perl version 5.10.1 documentation - Compress::Zlib

Page 4http://perldoc.perl.org

$flush_type are Z_NO_FLUSH, Z_SYNC_FLUSH, Z_FULL_FLUSH and Z_BLOCK. It is

strongly recommended that you only set the flush_type parameter if
 you fully understand
the implications of what it does - overuse of flush
 can seriously degrade the level of
compression achieved. See the zlib
 documentation for details.

Returns 0 on success.

$offset = $gz->gztell() ;

Returns the uncompressed file offset.

$status = $gz->gzseek($offset, $whence) ;

Provides a sub-set of the seek functionality, with the restriction
 that it is only legal to seek
forward in the compressed file.
 It is a fatal error to attempt to seek backward.

When opened for writing, empty parts of the file will have NULL (0x00)
 bytes written to them.

The $whence parameter should be one of SEEK_SET, SEEK_CUR or SEEK_END.

Returns 1 on success, 0 on failure.

$gz->gzclose

Closes the compressed file. Any pending data is flushed to the file
 before it is closed.

Returns 0 on success.

$gz->gzsetparams($level, $strategy

Change settings for the deflate stream $gz.

The list of the valid options is shown below. Options not specified
 will remain unchanged.

Note: This method is only available if you are running zlib 1.0.6 or better.

$level

Defines the compression level. Valid values are 0 through 9, Z_NO_COMPRESSION
, Z_BEST_SPEED, Z_BEST_COMPRESSION, and Z_DEFAULT_COMPRESSION.

$strategy

Defines the strategy used to tune the compression. The valid values are
Z_DEFAULT_STRATEGY, Z_FILTERED and Z_HUFFMAN_ONLY.

$gz->gzerror

Returns the zlib error message or number for the last operation
 associated with $gz. The
return value will be the zlib error
 number when used in a numeric context and the zlib error
message
 when used in a string context. The zlib error number constants,
 shown below, are
available for use.

 Z_OK
 Z_STREAM_END
 Z_ERRNO
 Z_STREAM_ERROR
 Z_DATA_ERROR
 Z_MEM_ERROR
 Z_BUF_ERROR

$gzerrno

The $gzerrno scalar holds the error code associated with the most
 recent gzip routine.
Note that unlike gzerror(), the error is not associated with a particular file.

As with gzerror() it returns an error number in numeric context and
 an error message in
string context. Unlike gzerror() though, the
 error message will correspond to the zlib
message when the error is
 associated with zlib itself, or the UNIX error message when it is

Perl version 5.10.1 documentation - Compress::Zlib

Page 5http://perldoc.perl.org

not (i.e. zlib returned Z_ERRORNO).

As there is an overlap between the error numbers used by zlib and
 UNIX, $gzerrno should
only be used to check for the presence of an error in numeric context. Use gzerror() to
check for specific zlib errors. The gzcat example below shows how the variable can
 be used
safely.

Examples
Here is an example script which uses the interface. It implements a gzcat function.

 use strict ;
 use warnings ;

 use Compress::Zlib ;

 # use stdin if no files supplied
 @ARGV = '-' unless @ARGV ;

 foreach my $file (@ARGV) {
 my $buffer ;

 my $gz = gzopen($file, "rb")
 or die "Cannot open $file: $gzerrno\n" ;

 print $buffer while $gz->gzread($buffer) > 0 ;

 die "Error reading from $file: $gzerrno" . ($gzerrno+0) . "\n"
 if $gzerrno != Z_STREAM_END ;

 $gz->gzclose() ;
 }

Below is a script which makes use of gzreadline. It implements a
 very simple grep like script.

 use strict ;
 use warnings ;

 use Compress::Zlib ;

 die "Usage: gzgrep pattern [file...]\n"
 unless @ARGV >= 1;

 my $pattern = shift ;

 # use stdin if no files supplied
 @ARGV = '-' unless @ARGV ;

 foreach my $file (@ARGV) {
 my $gz = gzopen($file, "rb")
 or die "Cannot open $file: $gzerrno\n" ;

 while ($gz->gzreadline($_) > 0) {
 print if /$pattern/ ;

Perl version 5.10.1 documentation - Compress::Zlib

Page 6http://perldoc.perl.org

 }

 die "Error reading from $file: $gzerrno\n"
 if $gzerrno != Z_STREAM_END ;

 $gz->gzclose() ;
 }

This script, gzstream, does the opposite of the gzcat script
 above. It reads from standard input and
writes a gzip data stream to
 standard output.

 use strict ;
 use warnings ;

 use Compress::Zlib ;

 binmode STDOUT; # gzopen only sets it on the fd

 my $gz = gzopen(*STDOUT, "wb")
 or die "Cannot open stdout: $gzerrno\n" ;

 while (<>) {
 $gz->gzwrite($_)
 or die "error writing: $gzerrno\n" ;
 }

 $gz->gzclose ;

Compress::Zlib::memGzip
This function is used to create an in-memory gzip file with the minimum
 possible gzip header (exactly
10 bytes).

 $dest = Compress::Zlib::memGzip($buffer) ;

If successful, it returns the in-memory gzip file, otherwise it returns
 undef.

The $buffer parameter can either be a scalar or a scalar reference.

See IO::Compress::Gzip for an alternative way to
 carry out in-memory gzip compression.

Compress::Zlib::memGunzip
This function is used to uncompress an in-memory gzip file.

 $dest = Compress::Zlib::memGunzip($buffer) ;

If successful, it returns the uncompressed gzip file, otherwise it
 returns undef.

The $buffer parameter can either be a scalar or a scalar reference. The
 contents of the $buffer
parameter are destroyed after calling this function.

See IO::Uncompress::Gunzip for an alternative way
 to carry out in-memory gzip uncompression.

Perl version 5.10.1 documentation - Compress::Zlib

Page 7http://perldoc.perl.org

COMPRESS/UNCOMPRESS
Two functions are provided to perform in-memory compression/uncompression of
 RFC 1950 data
streams. They are called compress and uncompress.

$dest = compress($source [, $level]) ;

Compresses $source. If successful it returns the compressed
 data. Otherwise it returns
undef.

The source buffer, $source, can either be a scalar or a scalar
 reference.

The $level parameter defines the compression level. Valid values are
 0 through 9,
Z_NO_COMPRESSION, Z_BEST_SPEED, Z_BEST_COMPRESSION, and
Z_DEFAULT_COMPRESSION.
 If $level is not specified Z_DEFAULT_COMPRESSION will be
used.

$dest = uncompress($source) ;

Uncompresses $source. If successful it returns the uncompressed
 data. Otherwise it
returns undef.

The source buffer can either be a scalar or a scalar reference.

Please note: the two functions defined above are not compatible with
 the Unix commands of the same
name.

See IO::Deflate and IO::Inflate included with
 this distribution for an alternative interface for
reading/writing RFC 1950
 files/buffers.

Deflate Interface
This section defines an interface that allows in-memory compression using
 the deflate interface
provided by zlib.

Here is a definition of the interface available:

($d, $status) = deflateInit([OPT])
Initialises a deflation stream.

It combines the features of the zlib functions deflateInit, deflateInit2 and
deflateSetDictionary.

If successful, it will return the initialised deflation stream, $d
 and $status of Z_OK in a list context. In
scalar context it
 returns the deflation stream, $d, only.

If not successful, the returned deflation stream ($d) will be undef and $status will hold the exact zlib
error code.

The function optionally takes a number of named options specified as -Name=>value pairs. This
allows individual options to be
 tailored without having to specify them all in the parameter list.

For backward compatibility, it is also possible to pass the parameters
 as a reference to a hash
containing the name=>value pairs.

The function takes one optional parameter, a reference to a hash. The
 contents of the hash allow the
deflation interface to be tailored.

Here is a list of the valid options:

-Level

Defines the compression level. Valid values are 0 through 9, Z_NO_COMPRESSION,
Z_BEST_SPEED, Z_BEST_COMPRESSION, and Z_DEFAULT_COMPRESSION.

The default is Z_DEFAULT_COMPRESSION.

Perl version 5.10.1 documentation - Compress::Zlib

Page 8http://perldoc.perl.org

-Method

Defines the compression method. The only valid value at present (and
 the default) is
Z_DEFLATED.

-WindowBits

To create an RFC 1950 data stream, set WindowBits to a positive number.

To create an RFC 1951 data stream, set WindowBits to -MAX_WBITS.

For a full definition of the meaning and valid values for WindowBits refer
 to the zlib
documentation for deflateInit2.

Defaults to MAX_WBITS.

-MemLevel

For a definition of the meaning and valid values for MemLevel
 refer to the zlib
documentation for deflateInit2.

Defaults to MAX_MEM_LEVEL.

-Strategy

Defines the strategy used to tune the compression. The valid values are
Z_DEFAULT_STRATEGY, Z_FILTERED and Z_HUFFMAN_ONLY.

The default is Z_DEFAULT_STRATEGY.

-Dictionary

When a dictionary is specified Compress::Zlib will automatically
 call
deflateSetDictionary directly after calling deflateInit. The
 Adler32 value for the
dictionary can be obtained by calling the method $d-dict_adler()>.

The default is no dictionary.

-Bufsize

Sets the initial size for the deflation buffer. If the buffer has to be
 reallocated to increase the
size, it will grow in increments of Bufsize.

The default is 4096.

Here is an example of using the deflateInit optional parameter list
 to override the default buffer
size and compression level. All other
 options will take their default values.

 deflateInit(-Bufsize => 300,
 -Level => Z_BEST_SPEED) ;

($out, $status) = $d->deflate($buffer)
Deflates the contents of $buffer. The buffer can either be a scalar
 or a scalar reference. When
finished, $buffer will be
 completely processed (assuming there were no errors). If the deflation
 was
successful it returns the deflated output, $out, and a status
 value, $status, of Z_OK.

On error, $out will be undef and $status will contain the zlib error code.

In a scalar context deflate will return $out only.

As with the deflate function in zlib, it is not necessarily the
 case that any output will be produced by
this method. So don't rely on
 the fact that $out is empty for an error test.

($out, $status) = $d->flush()
 =head2 ($out, $status) = $d->flush($flush_type)
Typically used to finish the deflation. Any pending output will be
 returned via $out. $status will
have a value Z_OK if successful.

In a scalar context flush will return $out only.

Perl version 5.10.1 documentation - Compress::Zlib

Page 9http://perldoc.perl.org

Note that flushing can seriously degrade the compression ratio, so it
 should only be used to terminate
a decompression (using Z_FINISH) or
 when you want to create a full flush point (using
Z_FULL_FLUSH).

By default the flush_type used is Z_FINISH. Other valid values
 for flush_type are
Z_NO_FLUSH, Z_PARTIAL_FLUSH, Z_SYNC_FLUSH
 and Z_FULL_FLUSH. It is strongly
recommended that you only set the flush_type parameter if you fully understand the implications of
what it does. See the zlib documentation for details.

$status = $d->deflateParams([OPT])
Change settings for the deflate stream $d.

The list of the valid options is shown below. Options not specified
 will remain unchanged.

-Level

Defines the compression level. Valid values are 0 through 9, Z_NO_COMPRESSION,
Z_BEST_SPEED, Z_BEST_COMPRESSION, and Z_DEFAULT_COMPRESSION.

-Strategy

Defines the strategy used to tune the compression. The valid values are
Z_DEFAULT_STRATEGY, Z_FILTERED and Z_HUFFMAN_ONLY.

$d->dict_adler()
Returns the adler32 value for the dictionary.

$d->msg()
Returns the last error message generated by zlib.

$d->total_in()
Returns the total number of bytes uncompressed bytes input to deflate.

$d->total_out()
Returns the total number of compressed bytes output from deflate.

Example
Here is a trivial example of using deflate. It simply reads standard
 input, deflates it and writes it to
standard output.

 use strict ;
 use warnings ;

 use Compress::Zlib ;

 binmode STDIN;
 binmode STDOUT;
 my $x = deflateInit()
 or die "Cannot create a deflation stream\n" ;

 my ($output, $status) ;
 while (<>)
 {
 ($output, $status) = $x->deflate($_) ;

 $status == Z_OK
 or die "deflation failed\n" ;

Perl version 5.10.1 documentation - Compress::Zlib

Page 10http://perldoc.perl.org

 print $output ;
 }

 ($output, $status) = $x->flush() ;

 $status == Z_OK
 or die "deflation failed\n" ;

 print $output ;

Inflate Interface
This section defines the interface available that allows in-memory
 uncompression using the deflate
interface provided by zlib.

Here is a definition of the interface:

($i, $status) = inflateInit()
Initialises an inflation stream.

In a list context it returns the inflation stream, $i, and the zlib status code in $status. In a scalar
context it returns the
 inflation stream only.

If successful, $i will hold the inflation stream and $status will
 be Z_OK.

If not successful, $i will be undef and $status will hold the zlib error code.

The function optionally takes a number of named options specified as -Name=>value pairs. This
allows individual options to be
 tailored without having to specify them all in the parameter list.

For backward compatibility, it is also possible to pass the parameters
 as a reference to a hash
containing the name=>value pairs.

The function takes one optional parameter, a reference to a hash. The
 contents of the hash allow the
deflation interface to be tailored.

Here is a list of the valid options:

-WindowBits

To uncompress an RFC 1950 data stream, set WindowBits to a positive number.

To uncompress an RFC 1951 data stream, set WindowBits to -MAX_WBITS.

For a full definition of the meaning and valid values for WindowBits refer
 to the zlib
documentation for inflateInit2.

Defaults to MAX_WBITS.

-Bufsize

Sets the initial size for the inflation buffer. If the buffer has to be
 reallocated to increase the
size, it will grow in increments of Bufsize.

Default is 4096.

-Dictionary

The default is no dictionary.

Here is an example of using the inflateInit optional parameter to
 override the default buffer size.

 inflateInit(-Bufsize => 300) ;

Perl version 5.10.1 documentation - Compress::Zlib

Page 11http://perldoc.perl.org

($out, $status) = $i->inflate($buffer)
Inflates the complete contents of $buffer. The buffer can either be
 a scalar or a scalar reference.

Returns Z_OK if successful and Z_STREAM_END if the end of the
 compressed data has been
successfully reached. If not successful, $out will be undef and $status will hold
 the zlib error code.

The $buffer parameter is modified by inflate. On completion it
 will contain what remains of the
input buffer after inflation. This
 means that $buffer will be an empty string when the return status is
Z_OK. When the return status is Z_STREAM_END the $buffer
 parameter will contains what (if
anything) was stored in the input
 buffer after the deflated data stream.

This feature is useful when processing a file format that encapsulates
 a compressed data stream (e.g.
gzip, zip).

$status = $i->inflateSync($buffer)
Scans $buffer until it reaches either a full flush point or the
 end of the buffer.

If a full flush point is found, Z_OK is returned and $buffer
 will be have all data up to the flush point
removed. This can then be
 passed to the deflate method.

Any other return code means that a flush point was not found. If more
 data is available,
inflateSync can be called repeatedly with more
 compressed data until the flush point is found.

$i->dict_adler()
Returns the adler32 value for the dictionary.

$i->msg()
Returns the last error message generated by zlib.

$i->total_in()
Returns the total number of bytes compressed bytes input to inflate.

$i->total_out()
Returns the total number of uncompressed bytes output from inflate.

Example
Here is an example of using inflate.

 use strict ;
 use warnings ;

 use Compress::Zlib ;

 my $x = inflateInit()
 or die "Cannot create a inflation stream\n" ;

 my $input = '' ;
 binmode STDIN;
 binmode STDOUT;

 my ($output, $status) ;
 while (read(STDIN, $input, 4096))
 {
 ($output, $status) = $x->inflate(\$input) ;

 print $output

Perl version 5.10.1 documentation - Compress::Zlib

Page 12http://perldoc.perl.org

 if $status == Z_OK or $status == Z_STREAM_END ;

 last if $status != Z_OK ;
 }

 die "inflation failed\n"
 unless $status == Z_STREAM_END ;

CHECKSUM FUNCTIONS
Two functions are provided by zlib to calculate checksums. For the
 Perl interface, the order of the two
parameters in both functions has
 been reversed. This allows both running checksums and one off

calculations to be done.

 $crc = adler32($buffer [,$crc]) ;
 $crc = crc32($buffer [,$crc]) ;

The buffer parameters can either be a scalar or a scalar reference.

If the $crc parameters is undef, the crc value will be reset.

If you have built this module with zlib 1.2.3 or better, two more
 CRC-related functions are available.

 $crc = adler32_combine($crc1, $crc2, $len2)l
 $crc = crc32_combine($adler1, $adler2, $len2)

These functions allow checksums to be merged.

Misc
my $version = Compress::Zlib::zlib_version();

Returns the version of the zlib library.

CONSTANTS
All the zlib constants are automatically imported when you make use
 of Compress::Zlib.

SEE ALSO
IO::Compress::Gzip, IO::Uncompress::Gunzip, IO::Compress::Deflate, IO::Uncompress::Inflate,
IO::Compress::RawDeflate, IO::Uncompress::RawInflate, IO::Compress::Bzip2,
IO::Uncompress::Bunzip2, IO::Compress::Lzop, IO::Uncompress::UnLzop, IO::Compress::Lzf,
IO::Uncompress::UnLzf, IO::Uncompress::AnyInflate, IO::Uncompress::AnyUncompress

Compress::Zlib::FAQ

File::GlobMapper, Archive::Zip, Archive::Tar, IO::Zlib

For RFC 1950, 1951 and 1952 see http://www.faqs.org/rfcs/rfc1950.html,
http://www.faqs.org/rfcs/rfc1951.html and http://www.faqs.org/rfcs/rfc1952.html

The zlib compression library was written by Jean-loup Gailly gzip@prep.ai.mit.edu and Mark Adler
madler@alumni.caltech.edu.

The primary site for the zlib compression library is http://www.zlib.org.

The primary site for gzip is http://www.gzip.org.

AUTHOR
This module was written by Paul Marquess, pmqs@cpan.org.

Perl version 5.10.1 documentation - Compress::Zlib

Page 13http://perldoc.perl.org

MODIFICATION HISTORY
See the Changes file.

COPYRIGHT AND LICENSE
Copyright (c) 1995-2009 Paul Marquess. All rights reserved.

This program is free software; you can redistribute it and/or
 modify it under the same terms as Perl
itself.

