
Perl version 5.10.1 documentation - Hash::Util

Page 1http://perldoc.perl.org

NAME
Hash::Util - A selection of general-utility hash subroutines

SYNOPSIS
 # Restricted hashes

 use Hash::Util qw(
 hash_seed all_keys
 lock_keys unlock_keys
 lock_value unlock_value
 lock_hash unlock_hash
 lock_keys_plus hash_locked
 hidden_keys legal_keys
);

 %hash = (foo => 42, bar => 23);
 # Ways to restrict a hash
 lock_keys(%hash);
 lock_keys(%hash, @keyset);
 lock_keys_plus(%hash, @additional_keys);

 # Ways to inspect the properties of a restricted hash
 my @legal = legal_keys(%hash);
 my @hidden = hidden_keys(%hash);
 my $ref = all_keys(%hash,@keys,@hidden);
 my $is_locked = hash_locked(%hash);

 # Remove restrictions on the hash
 unlock_keys(%hash);

 # Lock individual values in a hash
 lock_value (%hash, 'foo');
 unlock_value(%hash, 'foo');

 # Ways to change the restrictions on both keys and values
 lock_hash (%hash);
 unlock_hash(%hash);

 my $hashes_are_randomised = hash_seed() != 0;

DESCRIPTION
Hash::Util and Hash::Util::FieldHash contain special functions
 for manipulating hashes that
don't really warrant a keyword.

Hash::Util contains a set of functions that support restricted hashes. These are described in
 this
document. Hash::Util::FieldHash contains an (unrelated)
 set of functions that support the use
of hashes in inside-out classes, described in Hash::Util::FieldHash.

By default Hash::Util does not export anything.

Restricted hashes
5.8.0 introduces the ability to restrict a hash to a certain set of
 keys. No keys outside of this set can be
added. It also introduces
 the ability to lock an individual key so it cannot be deleted and the
 ability to

Perl version 5.10.1 documentation - Hash::Util

Page 2http://perldoc.perl.org

ensure that an individual value cannot be changed.

This is intended to largely replace the deprecated pseudo-hashes.

lock_keys

unlock_keys

 lock_keys(%hash);
 lock_keys(%hash, @keys);

Restricts the given %hash's set of keys to @keys. If @keys is not
 given it restricts it to its
current keyset. No more keys can be
 added. delete() and exists() will still work, but will not
alter
 the set of allowed keys. Note: the current implementation prevents
 the hash from being
bless()ed while it is in a locked state. Any attempt
 to do so will raise an exception. Of course
you can still bless()
 the hash before you call lock_keys() so this shouldn't be a problem.

 unlock_keys(%hash);

Removes the restriction on the %hash's keyset.

Note that if any of the values of the hash have been locked they will not be unlocked
 after this
sub executes.

Both routines return a reference to the hash operated on.

lock_keys_plus

 lock_keys_plus(%hash,@additional_keys)

Similar to lock_keys(), with the difference being that the optional key list
 specifies keys that
may or may not be already in the hash. Essentially this is
 an easier way to say

 lock_keys(%hash,@additional_keys,keys %hash);

Returns a reference to %hash

lock_value

unlock_value

 lock_value (%hash, $key);
 unlock_value(%hash, $key);

Locks and unlocks the value for an individual key of a hash. The value of a
 locked key cannot
be changed.

Unless %hash has already been locked the key/value could be deleted
 regardless of this
setting.

Returns a reference to the %hash.

lock_hash

unlock_hash

 lock_hash(%hash);

lock_hash() locks an entire hash, making all keys and values read-only.
 No value can be
changed, no keys can be added or deleted.

 unlock_hash(%hash);

unlock_hash() does the opposite of lock_hash(). All keys and values
 are made writable. All
values can be changed and keys can be added
 and deleted.

Returns a reference to the %hash.

Perl version 5.10.1 documentation - Hash::Util

Page 3http://perldoc.perl.org

lock_hash_recurse

unlock_hash_recurse

 lock_hash_recurse(%hash);

lock_hash() locks an entire hash and any hashes it references recursively,
 making all keys
and values read-only. No value can be changed, no keys can
 be added or deleted.

Only recurses into hashes that are referenced by another hash. Thus a
 Hash of Hashes
(HoH) will all be restricted, but a Hash of Arrays of Hashes
 (HoAoH) will only have the top
hash restricted.

 unlock_hash_recurse(%hash);

unlock_hash_recurse() does the opposite of lock_hash_recurse(). All keys and
 values are
made writable. All values can be changed and keys can be added
 and deleted. Identical
recursion restrictions apply as to lock_hash_recurse().

Returns a reference to the %hash.

hash_unlocked

 hash_unlocked(%hash) and print "Hash is unlocked!\n";

Returns true if the hash and its keys are unlocked.

legal_keys

 my @keys = legal_keys(%hash);

Returns the list of the keys that are legal in a restricted hash.
 In the case of an unrestricted
hash this is identical to calling
 keys(%hash).

hidden_keys

 my @keys = hidden_keys(%hash);

Returns the list of the keys that are legal in a restricted hash but
 do not have a value
associated to them. Thus if 'foo' is a
 "hidden" key of the %hash it will return false for both
defined
 and exists tests.

In the case of an unrestricted hash this will return an empty list.

NOTE this is an experimental feature that is heavily dependent
 on the current implementation
of restricted hashes. Should the
 implementation change, this routine may become
meaningless, in which
 case it will return an empty list.

all_keys

 all_keys(%hash,@keys,@hidden);

Populates the arrays @keys with the all the keys that would pass
 an exists tests, and
populates @hidden with the remaining legal
 keys that have not been utilized.

Returns a reference to the hash.

In the case of an unrestricted hash this will be equivalent to

 $ref = do {
 @keys = keys %hash;
 @hidden = ();
 \%hash
 };

NOTE this is an experimental feature that is heavily dependent
 on the current implementation
of restricted hashes. Should the
 implementation change this routine may become meaningless

Perl version 5.10.1 documentation - Hash::Util

Page 4http://perldoc.perl.org

in which
 case it will behave identically to how it would behave on an
 unrestricted hash.

hash_seed

 my $hash_seed = hash_seed();

hash_seed() returns the seed number used to randomise hash ordering.
 Zero means the
"traditional" random hash ordering, non-zero means the
 new even more random hash ordering
introduced in Perl 5.8.1.

Note that the hash seed is sensitive information: by knowing it one
 can craft a
denial-of-service attack against Perl code, even remotely,
 see "Algorithmic Complexity
Attacks" in perlsec for more information. Do not disclose the hash seed to people who don't
need to know it.
 See also "PERL_HASH_SEED_DEBUG" in perlrun.

hv_store

 my $sv = 0;
 hv_store(%hash,$key,$sv) or die "Failed to alias!";
 $hash{$key} = 1;
 print $sv; # prints 1

Stores an alias to a variable in a hash instead of copying the value.

Operating on references to hashes.
Most subroutines documented in this module have equivalent versions
 that operate on references to
hashes instead of native hashes.
 The following is a list of these subs. They are identical except
 in
name and in that instead of taking a %hash they take a $hashref,
 and additionally are not prototyped.

lock_ref_keys

unlock_ref_keys

lock_ref_keys_plus

lock_ref_value

unlock_ref_value

lock_hashref

unlock_hashref

lock_hashref_recurse

unlock_hashref_recurse

hash_ref_unlocked

legal_ref_keys

hidden_ref_keys

CAVEATS
Note that the trapping of the restricted operations is not atomic:
 for example

 eval { %hash = (illegal_key => 1) }

leaves the %hash empty rather than with its original contents.

BUGS
The interface exposed by this module is very close to the current
 implementation of restricted hashes.
Over time it is expected that
 this behavior will be extended and the interface abstracted further.

Perl version 5.10.1 documentation - Hash::Util

Page 5http://perldoc.perl.org

AUTHOR
Michael G Schwern <schwern@pobox.com> on top of code by Nick
 Ing-Simmons and Jeffrey Friedl.

hv_store() is from Array::RefElem, Copyright 2000 Gisle Aas.

Additional code by Yves Orton.

SEE ALSO
Scalar::Util, List::Util and "Algorithmic Complexity Attacks" in perlsec.

Hash::Util::FieldHash.

