
Perl version 5.10.1 documentation - IO::Compress::Gzip

Page 1http://perldoc.perl.org

NAME
IO::Compress::Gzip - Write RFC 1952 files/buffers

SYNOPSIS
    use IO::Compress::Gzip qw(gzip $GzipError) ;

    my $status = gzip $input => $output [,OPTS]
        or die "gzip failed: $GzipError\n";

    my $z = new IO::Compress::Gzip $output [,OPTS]
        or die "gzip failed: $GzipError\n";

    $z->print($string);
    $z->printf($format, $string);
    $z->write($string);
    $z->syswrite($string [, $length, $offset]);
    $z->flush();
    $z->tell();
    $z->eof();
    $z->seek($position, $whence);
    $z->binmode();
    $z->fileno();
    $z->opened();
    $z->autoflush();
    $z->input_line_number();
    $z->newStream( [OPTS] );

    $z->deflateParams();

    $z->close() ;

    $GzipError ;

    # IO::File mode

    print $z $string;
    printf $z $format, $string;
    tell $z
    eof $z
    seek $z, $position, $whence
    binmode $z
    fileno $z
    close $z ;

DESCRIPTION
This module provides a Perl interface that allows writing compressed
 data to files or buffer as defined 
in RFC 1952.

All the gzip headers defined in RFC 1952 can be created using
 this module.

For reading RFC 1952 files/buffers, see the companion module IO::Uncompress::Gunzip.



Perl version 5.10.1 documentation - IO::Compress::Gzip

Page 2http://perldoc.perl.org

Functional Interface
A top-level function, gzip, is provided to carry out
 "one-shot" compression between buffers and/or 
files. For finer
 control over the compression process, see the OO Interface 
 section.

    use IO::Compress::Gzip qw(gzip $GzipError) ;

    gzip $input => $output [,OPTS]
        or die "gzip failed: $GzipError\n";

The functional interface needs Perl5.005 or better.

gzip $input => $output [, OPTS]
gzip expects at least two parameters, $input and $output.

The $input parameter

The parameter, $input, is used to define the source of
 the uncompressed data.

It can take one of the following forms:

A filename

If the $input parameter is a simple scalar, it is assumed to be a
 filename. This file will be 
opened for reading and the input data
 will be read from it.

A filehandle

If the $input parameter is a filehandle, the input data will be
 read from it.
 The string '-' can 
be used as an alias for standard input.

A scalar reference

If $input is a scalar reference, the input data will be read
 from $$input.

An array reference

If $input is an array reference, each element in the array must be a
 filename.

The input data will be read from each file in turn.

The complete array will be walked to ensure that it only
 contains valid filenames before any 
data is compressed.

An Input FileGlob string

If $input is a string that is delimited by the characters "<" and ">" gzip will assume that it 
is an input fileglob string. The
 input is the list of files that match the fileglob.

If the fileglob does not match any files ...

See File::GlobMapper for more details.

If the $input parameter is any other type, undef will be returned.

In addition, if $input is a simple filename, the default values for
 the Name and Time options will be 
sourced from that file.

If you do not want to use these defaults they can be overridden by
 explicitly setting the Name and 
Time options or by setting the Minimal parameter.

The $output parameter

The parameter $output is used to control the destination of the
 compressed data. This parameter 
can take one of these forms.

A filename



Perl version 5.10.1 documentation - IO::Compress::Gzip

Page 3http://perldoc.perl.org

If the $output parameter is a simple scalar, it is assumed to be a
 filename. This file will be 
opened for writing and the compressed
 data will be written to it.

A filehandle

If the $output parameter is a filehandle, the compressed data
 will be written to it.
 The 
string '-' can be used as an alias for standard output.

A scalar reference

If $output is a scalar reference, the compressed data will be
 stored in $$output.

An Array Reference

If $output is an array reference, the compressed data will be
 pushed onto the array.

An Output FileGlob

If $output is a string that is delimited by the characters "<" and ">" gzip will assume that it
is an output fileglob string. The
 output is the list of files that match the fileglob.

When $output is an fileglob string, $input must also be a fileglob
 string. Anything else is 
an error.

If the $output parameter is any other type, undef will be returned.

Notes
When $input maps to multiple files/buffers and $output is a single
 file/buffer the input files/buffers 
will be stored
 in $output as a concatenated series of compressed data streams.

Optional Parameters
Unless specified below, the optional parameters for gzip, OPTS, are the same as those used with the
OO interface defined in the Constructor Options section below.

AutoClose => 0|1

This option applies to any input or output data streams to gzip that are filehandles.

If AutoClose is specified, and the value is true, it will result in all
 input and/or output 
filehandles being closed once gzip has
 completed.

This parameter defaults to 0.

BinModeIn => 0|1

When reading from a file or filehandle, set binmode before reading.

Defaults to 0.

Append => 0|1

TODO

Examples
To read the contents of the file file1.txt and write the compressed
 data to the file file1.txt.gz
.

    use strict ;
    use warnings ;
    use IO::Compress::Gzip qw(gzip $GzipError) ;

    my $input = "file1.txt";
    gzip $input => "$input.gz"
        or die "gzip failed: $GzipError\n";

To read from an existing Perl filehandle, $input, and write the
 compressed data to a buffer, 



Perl version 5.10.1 documentation - IO::Compress::Gzip

Page 4http://perldoc.perl.org

$buffer.

    use strict ;
    use warnings ;
    use IO::Compress::Gzip qw(gzip $GzipError) ;
    use IO::File ;

    my $input = new IO::File "<file1.txt"
        or die "Cannot open 'file1.txt': $!\n" ;
    my $buffer ;
    gzip $input => \$buffer
        or die "gzip failed: $GzipError\n";

To compress all files in the directory "/my/home" that match "*.txt"
 and store the compressed data in 
the same directory

    use strict ;
    use warnings ;
    use IO::Compress::Gzip qw(gzip $GzipError) ;

    gzip '</my/home/*.txt>' => '<*.gz>'
        or die "gzip failed: $GzipError\n";

and if you want to compress each file one at a time, this will do the trick

    use strict ;
    use warnings ;
    use IO::Compress::Gzip qw(gzip $GzipError) ;

    for my $input ( glob "/my/home/*.txt" )
    {
        my $output = "$input.gz" ;
        gzip $input => $output
            or die "Error compressing '$input': $GzipError\n";
    }

OO Interface
Constructor

The format of the constructor for IO::Compress::Gzip is shown below

    my $z = new IO::Compress::Gzip $output [,OPTS]
        or die "IO::Compress::Gzip failed: $GzipError\n";

It returns an IO::Compress::Gzip object on success and undef on failure. The variable 
$GzipError will contain an error message on failure.

If you are running Perl 5.005 or better the object, $z, returned from IO::Compress::Gzip can be used 
exactly like an IO::File filehandle. This means that all normal output file operations can be carried out 
with $z. For example, to write to a compressed file/buffer you can use either of these forms

    $z->print("hello world\n");
    print $z "hello world\n";

The mandatory parameter $output is used to control the destination
 of the compressed data. This 
parameter can take one of these forms.



Perl version 5.10.1 documentation - IO::Compress::Gzip

Page 5http://perldoc.perl.org

A filename

If the $output parameter is a simple scalar, it is assumed to be a
 filename. This file will be 
opened for writing and the compressed data
 will be written to it.

A filehandle

If the $output parameter is a filehandle, the compressed data will be
 written to it.
 The 
string '-' can be used as an alias for standard output.

A scalar reference

If $output is a scalar reference, the compressed data will be stored
 in $$output.

If the $output parameter is any other type, IO::Compress::Gzip::new will
 return undef.

Constructor Options
OPTS is any combination of the following options:

AutoClose => 0|1

This option is only valid when the $output parameter is a filehandle. If
 specified, and the 
value is true, it will result in the $output being
 closed once either the close method is 
called or the IO::Compress::Gzip
 object is destroyed.

This parameter defaults to 0.

Append => 0|1

Opens $output in append mode.

The behaviour of this option is dependent on the type of $output.

* A Buffer

If $output is a buffer and Append is enabled, all compressed data
 will be append
to the end if $output. Otherwise $output will be
 cleared before any data is 
written to it.

* A Filename

If $output is a filename and Append is enabled, the file will be
 opened in append 
mode. Otherwise the contents of the file, if any, will be
 truncated before any 
compressed data is written to it.

* A Filehandle

If $output is a filehandle, the file pointer will be positioned to the
 end of the file 
via a call to seek before any compressed data is written
 to it. Otherwise the file 
pointer will not be moved.

This parameter defaults to 0.

Merge => 0|1

This option is used to compress input data and append it to an existing
 compressed data 
stream in $output. The end result is a single compressed
 data stream stored in $output.

It is a fatal error to attempt to use this option when $output is not an
 RFC 1952 data 
stream.

There are a number of other limitations with the Merge option:

1 This module needs to have been built with zlib 1.2.1 or better to work. A
 fatal error 
will be thrown if Merge is used with an older version of
 zlib.

2 If $output is a file or a filehandle, it must be seekable.

This parameter defaults to 0.



Perl version 5.10.1 documentation - IO::Compress::Gzip

Page 6http://perldoc.perl.org

-Level

Defines the compression level used by zlib. The value should either be
 a number between 0 
and 9 (0 means no compression and 9 is maximum
 compression), or one of the symbolic 
constants defined below.

   Z_NO_COMPRESSION
   Z_BEST_SPEED
   Z_BEST_COMPRESSION
   Z_DEFAULT_COMPRESSION

The default is Z_DEFAULT_COMPRESSION.

Note, these constants are not imported by IO::Compress::Gzip by default.

    use IO::Compress::Gzip qw(:strategy);
    use IO::Compress::Gzip qw(:constants);
    use IO::Compress::Gzip qw(:all);

-Strategy

Defines the strategy used to tune the compression. Use one of the symbolic
 constants 
defined below.

   Z_FILTERED
   Z_HUFFMAN_ONLY
   Z_RLE
   Z_FIXED
   Z_DEFAULT_STRATEGY

The default is Z_DEFAULT_STRATEGY.

Minimal => 0|1

If specified, this option will force the creation of the smallest possible
 compliant gzip header 
(which is exactly 10 bytes long) as defined in
 RFC 1952.

See the section titled "Compliance" in RFC 1952 for a definition of the values used for the 
fields in the gzip header.

All other parameters that control the content of the gzip header will
 be ignored if this 
parameter is set to 1.

This parameter defaults to 0.

Comment => $comment

Stores the contents of $comment in the COMMENT field in
 the gzip header.
 By default, no 
comment field is written to the gzip file.

If the -Strict option is enabled, the comment can only consist of ISO
 8859-1 characters 
plus line feed.

If the -Strict option is disabled, the comment field can contain any
 character except 
NULL. If any null characters are present, the field
 will be truncated at the first NULL.

Name => $string

Stores the contents of $string in the gzip NAME header field. If Name is not specified, no 
gzip NAME field will be created.

If the -Strict option is enabled, $string can only consist of ISO
 8859-1 characters.

If -Strict is disabled, then $string can contain any character
 except NULL. If any null 
characters are present, the field will be
 truncated at the first NULL.

Time => $number



Perl version 5.10.1 documentation - IO::Compress::Gzip

Page 7http://perldoc.perl.org

Sets the MTIME field in the gzip header to $number.

This field defaults to the time the IO::Compress::Gzip object was created
 if this option is
not specified.

TextFlag => 0|1

This parameter controls the setting of the FLG.FTEXT bit in the gzip
 header. It is used to 
signal that the data stored in the gzip file/buffer
 is probably text.

The default is 0.

HeaderCRC => 0|1

When true this parameter will set the FLG.FHCRC bit to 1 in the gzip header
 and set the 
CRC16 header field to the CRC of the complete gzip header
 except the CRC16 field itself.

Note that gzip files created with the HeaderCRC flag set to 1 cannot
 be read by most, if not 
all, of the the standard gunzip utilities, most
 notably gzip version 1.2.4. You should therefore 
avoid using this option if
 you want to maximize the portability of your gzip files.

This parameter defaults to 0.

OS_Code => $value

Stores $value in the gzip OS header field. A number between 0 and 255 is
 valid.

If not specified, this parameter defaults to the OS code of the Operating
 System this module 
was built on. The value 3 is used as a catch-all for all
 Unix variants and unknown Operating 
Systems.

ExtraField => $data

This parameter allows additional metadata to be stored in the ExtraField in
 the gzip header. 
An RFC 1952 compliant ExtraField consists of zero or more
 subfields. Each subfield 
consists of a two byte header followed by the
 subfield data.

The list of subfields can be supplied in any of the following formats

    -ExtraField => [$id1, $data1,
                    $id2, $data2,
                     ...
                   ]
    -ExtraField => [ [$id1 => $data1],
                     [$id2 => $data2],
                     ...
                   ]
    -ExtraField => { $id1 => $data1,
                     $id2 => $data2,
                     ...
                   }

Where $id1, $id2 are two byte subfield ID's. The second byte of
 the ID cannot be 0, 
unless the Strict option has been disabled.

If you use the hash syntax, you have no control over the order in which
 the ExtraSubFields 
are stored, plus you cannot have SubFields with
 duplicate ID.

Alternatively the list of subfields can by supplied as a scalar, thus

    -ExtraField => $rawdata

If you use the raw format, and the Strict option is enabled, IO::Compress::Gzip will 
check that $rawdata consists of zero or more
 conformant sub-fields. When Strict is 
disabled, $rawdata can
 consist of any arbitrary byte stream.

The maximum size of the Extra Field 65535 bytes.



Perl version 5.10.1 documentation - IO::Compress::Gzip

Page 8http://perldoc.perl.org

ExtraFlags => $value

Sets the XFL byte in the gzip header to $value.

If this option is not present, the value stored in XFL field will be
 determined by the setting of 
the Level option.

If Level => Z_BEST_SPEED has been specified then XFL is set to 2.
 If Level => 
Z_BEST_COMPRESSION has been specified then XFL is set to 4.
 Otherwise XFL is set to 0.

Strict => 0|1

Strict will optionally police the values supplied with other options
 to ensure they are 
compliant with RFC1952.

This option is enabled by default.

If Strict is enabled the following behaviour will be policed:

The value supplied with the Name option can only contain ISO 8859-1
 characters.

The value supplied with the Comment option can only contain ISO 8859-1

characters plus line-feed.

The values supplied with the -Name and -Comment options cannot
 contain 
multiple embedded nulls.

If an ExtraField option is specified and it is a simple scalar,
 it must conform to 
the sub-field structure as defined in RFC 1952.

If an ExtraField option is specified the second byte of the ID will be
 checked in 
each subfield to ensure that it does not contain the reserved
 value 0x00.

When Strict is disabled the following behaviour will be policed:

The value supplied with -Name option can contain
 any character except NULL.

The value supplied with -Comment option can contain any character
 except NULL.

The values supplied with the -Name and -Comment options can contain
 multiple 
embedded nulls. The string written to the gzip header will
 consist of the characters 
up to, but not including, the first embedded
 NULL.

If an ExtraField option is specified and it is a simple scalar, the
 structure will not
be checked. The only error is if the length is too big.

The ID header in an ExtraField sub-field can consist of any two bytes.

Examples
TODO

Methods
print

Usage is

    $z->print($data)
    print $z $data

Compresses and outputs the contents of the $data parameter. This
 has the same behaviour as the 
print built-in.

Returns true if successful.



Perl version 5.10.1 documentation - IO::Compress::Gzip

Page 9http://perldoc.perl.org

printf
Usage is

    $z->printf($format, $data)
    printf $z $format, $data

Compresses and outputs the contents of the $data parameter.

Returns true if successful.

syswrite
Usage is

    $z->syswrite $data
    $z->syswrite $data, $length
    $z->syswrite $data, $length, $offset

Compresses and outputs the contents of the $data parameter.

Returns the number of uncompressed bytes written, or undef if
 unsuccessful.

write
Usage is

    $z->write $data
    $z->write $data, $length
    $z->write $data, $length, $offset

Compresses and outputs the contents of the $data parameter.

Returns the number of uncompressed bytes written, or undef if
 unsuccessful.

flush
Usage is

    $z->flush;
    $z->flush($flush_type);

Flushes any pending compressed data to the output file/buffer.

This method takes an optional parameter, $flush_type, that controls
 how the flushing will be 
carried out. By default the $flush_type 
 used is Z_FINISH. Other valid values for $flush_type 
are Z_NO_FLUSH, Z_SYNC_FLUSH, Z_FULL_FLUSH and Z_BLOCK. It is
 strongly recommended that 
you only set the flush_type parameter if
 you fully understand the implications of what it does - 
overuse of flush
 can seriously degrade the level of compression achieved. See the zlib

documentation for details.

Returns true on success.

tell
Usage is

    $z->tell()
    tell $z

Returns the uncompressed file offset.



Perl version 5.10.1 documentation - IO::Compress::Gzip

Page 10http://perldoc.perl.org

eof
Usage is

    $z->eof();
    eof($z);

Returns true if the close method has been called.

seek
    $z->seek($position, $whence);
    seek($z, $position, $whence);

Provides a sub-set of the seek functionality, with the restriction
 that it is only legal to seek forward in 
the output file/buffer.
 It is a fatal error to attempt to seek backward.

Empty parts of the file/buffer will have NULL (0x00) bytes written to them.

The $whence parameter takes one the usual values, namely SEEK_SET,
 SEEK_CUR or 
SEEK_END.

Returns 1 on success, 0 on failure.

binmode
Usage is

    $z->binmode
    binmode $z ;

This is a noop provided for completeness.

opened
    $z->opened()

Returns true if the object currently refers to a opened file/buffer.

autoflush
    my $prev = $z->autoflush()
    my $prev = $z->autoflush(EXPR)

If the $z object is associated with a file or a filehandle, this method
 returns the current autoflush 
setting for the underlying filehandle. If EXPR is present, and is non-zero, it will enable flushing after 
every
 write/print operation.

If $z is associated with a buffer, this method has no effect and always
 returns undef.

Note that the special variable $| cannot be used to set or
 retrieve the autoflush setting.

input_line_number
    $z->input_line_number()
    $z->input_line_number(EXPR)

This method always returns undef when compressing.

fileno
    $z->fileno()
    fileno($z)



Perl version 5.10.1 documentation - IO::Compress::Gzip

Page 11http://perldoc.perl.org

If the $z object is associated with a file or a filehandle, fileno
 will return the underlying file 
descriptor. Once the close method is
 called fileno will return undef.

If the $z object is is associated with a buffer, this method will return undef.

close
    $z->close() ;
    close $z ;

Flushes any pending compressed data and then closes the output file/buffer.

For most versions of Perl this method will be automatically invoked if
 the IO::Compress::Gzip object is
destroyed (either explicitly or by the
 variable with the reference to the object going out of scope). The

exceptions are Perl versions 5.005 through 5.00504 and 5.8.0. In
 these cases, the close method will
be called automatically, but
 not until global destruction of all live objects when the program is

terminating.

Therefore, if you want your scripts to be able to run on all versions
 of Perl, you should call close 
explicitly and not rely on automatic
 closing.

Returns true on success, otherwise 0.

If the AutoClose option has been enabled when the IO::Compress::Gzip
 object was created, and the
object is associated with a file, the
 underlying file will also be closed.

newStream([OPTS])
Usage is

    $z->newStream( [OPTS] )

Closes the current compressed data stream and starts a new one.

OPTS consists of any of the the options that are available when creating
 the $z object.

See the Constructor Options section for more details.

deflateParams
Usage is

    $z->deflateParams

TODO

Importing
A number of symbolic constants are required by some methods in IO::Compress::Gzip. None are 
imported by default.

:all

Imports gzip, $GzipError and all symbolic
 constants that can be used by 
IO::Compress::Gzip. Same as doing this

    use IO::Compress::Gzip qw(gzip $GzipError :constants) ;

:constants

Import all symbolic constants. Same as doing this

    use IO::Compress::Gzip qw(:flush :level :strategy) ;



Perl version 5.10.1 documentation - IO::Compress::Gzip

Page 12http://perldoc.perl.org

:flush

These symbolic constants are used by the flush method.

    Z_NO_FLUSH
    Z_PARTIAL_FLUSH
    Z_SYNC_FLUSH
    Z_FULL_FLUSH
    Z_FINISH
    Z_BLOCK

:level

These symbolic constants are used by the Level option in the constructor.

    Z_NO_COMPRESSION
    Z_BEST_SPEED
    Z_BEST_COMPRESSION
    Z_DEFAULT_COMPRESSION

:strategy

These symbolic constants are used by the Strategy option in the constructor.

    Z_FILTERED
    Z_HUFFMAN_ONLY
    Z_RLE
    Z_FIXED
    Z_DEFAULT_STRATEGY

EXAMPLES
Apache::GZip Revisited

See IO::Compress::FAQ

Working with Net::FTP
See IO::Compress::FAQ

SEE ALSO
Compress::Zlib, IO::Uncompress::Gunzip, IO::Compress::Deflate, IO::Uncompress::Inflate, 
IO::Compress::RawDeflate, IO::Uncompress::RawInflate, IO::Compress::Bzip2, 
IO::Uncompress::Bunzip2, IO::Compress::Lzop, IO::Uncompress::UnLzop, IO::Compress::Lzf, 
IO::Uncompress::UnLzf, IO::Uncompress::AnyInflate, IO::Uncompress::AnyUncompress

Compress::Zlib::FAQ

File::GlobMapper, Archive::Zip, Archive::Tar, IO::Zlib

For RFC 1950, 1951 and 1952 see http://www.faqs.org/rfcs/rfc1950.html, 
http://www.faqs.org/rfcs/rfc1951.html and http://www.faqs.org/rfcs/rfc1952.html

The zlib compression library was written by Jean-loup Gailly gzip@prep.ai.mit.edu and Mark Adler 
madler@alumni.caltech.edu.

The primary site for the zlib compression library is http://www.zlib.org.

The primary site for gzip is http://www.gzip.org.



Perl version 5.10.1 documentation - IO::Compress::Gzip

Page 13http://perldoc.perl.org

AUTHOR
This module was written by Paul Marquess, pmqs@cpan.org.

MODIFICATION HISTORY
See the Changes file.

COPYRIGHT AND LICENSE
Copyright (c) 2005-2009 Paul Marquess. All rights reserved.

This program is free software; you can redistribute it and/or
 modify it under the same terms as Perl 
itself.


