
Perl version 5.10.1 documentation - POSIX

Page 1http://perldoc.perl.org

NAME
POSIX - Perl interface to IEEE Std 1003.1

SYNOPSIS
    use POSIX;
    use POSIX qw(setsid);
    use POSIX qw(:errno_h :fcntl_h);

    printf "EINTR is %d\n", EINTR;

    $sess_id = POSIX::setsid();

    $fd = POSIX::open($path, O_CREAT|O_EXCL|O_WRONLY, 0644);
	 # note: that's a filedescriptor, *NOT* a filehandle

DESCRIPTION
The POSIX module permits you to access all (or nearly all) the standard
 POSIX 1003.1 identifiers. 
Many of these identifiers have been given Perl-ish
 interfaces.

Everything is exported by default with the exception of any POSIX
 functions with the same name as a 
built-in Perl function, such as abs, alarm, rmdir, write, etc.., which will be exported
 only if you ask
for them explicitly. This is an unfortunate backwards
 compatibility feature. You can stop the exporting 
by saying use
 POSIX () and then use the fully qualified names (ie. POSIX::SEEK_END).

This document gives a condensed list of the features available in the POSIX
 module. Consult your 
operating system's manpages for general information on
 most features. Consult perlfunc for functions 
which are noted as being
 identical to Perl's builtin functions.

The first section describes POSIX functions from the 1003.1 specification.
 The second section 
describes some classes for signal objects, TTY objects,
 and other miscellaneous objects. The 
remaining sections list various
 constants and macros in an organization which roughly follows IEEE 
Std
 1003.1b-1993.

NOTE
The POSIX module is probably the most complex Perl module supplied with
 the standard distribution. 
It incorporates autoloading, namespace games,
 and dynamic loading of code that's in Perl, C, or both.
It's a great
 source of wisdom.

CAVEATS
A few functions are not implemented because they are C specific. If you
 attempt to call these, they will
print a message telling you that they
 aren't implemented, and suggest using the Perl equivalent 
should one
 exist. For example, trying to access the setjmp() call will elicit the
 message "setjmp() is 
C-specific: use eval {} instead".

Furthermore, some evil vendors will claim 1003.1 compliance, but in fact
 are not so: they will not pass
the PCTS (POSIX Compliance Test Suites).
 For example, one vendor may not define EDEADLK, or 
the semantics of the
 errno values set by open(2) might not be quite right. Perl does not
 attempt to 
verify POSIX compliance. That means you can currently
 successfully say "use POSIX", and then later
in your program you find
 that your vendor has been lax and there's no usable ICANON macro after
 all.
This could be construed to be a bug.

FUNCTIONS
_exit

This is identical to the C function _exit(). It exits the program
 immediately which 
means among other things buffered I/O is not flushed.



Perl version 5.10.1 documentation - POSIX

Page 2http://perldoc.perl.org

Note that when using threads and in Linux this is not a good way to
 exit a thread 
because in Linux processes and threads are kind of the
 same thing (Note: while this is 
the situation in early 2003 there are
 projects under way to have threads with more 
POSIXly semantics in Linux).
 If you want not to return from a thread, detach the 
thread.

abort

This is identical to the C function abort(). It terminates the
 process with a SIGABRT 
signal unless caught by a signal handler or
 if the handler does not return normally (it 
e.g. does a longjmp).

abs

This is identical to Perl's builtin abs() function, returning
 the absolute value of its 
numerical argument.

access

Determines the accessibility of a file.

	 if( POSIX::access( "/", &POSIX::R_OK ) ){
		 print "have read permission\n";
	 }

Returns undef on failure. Note: do not use access() for
 security purposes. Between 
the access() call and the operation
 you are preparing for the permissions might 
change: a classic race condition.

acos

This is identical to the C function acos(), returning
 the arcus cosine of its numerical 
argument. See also Math::Trig.

alarm

This is identical to Perl's builtin alarm() function,
 either for arming or disarming the 
SIGARLM timer.

asctime

This is identical to the C function asctime(). It returns
 a string of the form

	 "Fri Jun  2 18:22:13 2000\n\0"

and it is called thusly

	 $asctime = asctime($sec, $min, $hour, $mday, $mon, $year,
			   $wday, $yday, $isdst);

The $mon is zero-based: January equals 0. The $year is
 1900-based: 2001 equals 
101. $wday and $yday default to zero
 (and are usually ignored anyway), and $isdst
defaults to -1.

asin

This is identical to the C function asin(), returning
 the arcus sine of its numerical 
argument. See also Math::Trig.

assert

Unimplemented, but you can use "die" in perlfunc and the Carp module
 to achieve 
similar things.

atan

This is identical to the C function atan(), returning the
 arcus tangent of its numerical 



Perl version 5.10.1 documentation - POSIX

Page 3http://perldoc.perl.org

argument. See also Math::Trig.

atan2

This is identical to Perl's builtin atan2() function, returning
 the arcus tangent defined 
by its two numerical arguments, the y
 coordinate and the x coordinate. See also 
Math::Trig.

atexit

atexit() is C-specific: use END {} instead, see perlsub.

atof

atof() is C-specific. Perl converts strings to numbers transparently.
 If you need to force 
a scalar to a number, add a zero to it.

atoi

atoi() is C-specific. Perl converts strings to numbers transparently.
 If you need to force 
a scalar to a number, add a zero to it.
 If you need to have just the integer part, see "int"
in perlfunc.

atol

atol() is C-specific. Perl converts strings to numbers transparently.
 If you need to force 
a scalar to a number, add a zero to it.
 If you need to have just the integer part, see "int"
in perlfunc.

bsearch

bsearch() not supplied. For doing binary search on wordlists,
 see Search::Dict.

calloc

calloc() is C-specific. Perl does memory management transparently.

ceil

This is identical to the C function ceil(), returning the smallest
 integer value greater 
than or equal to the given numerical argument.

chdir

This is identical to Perl's builtin chdir() function, allowing
 one to change the working 
(default) directory, see "chdir" in perlfunc.

chmod

This is identical to Perl's builtin chmod() function, allowing
 one to change file and 
directory permissions, see "chmod" in perlfunc.

chown

This is identical to Perl's builtin chown() function, allowing one
 to change file and 
directory owners and groups, see "chown" in perlfunc.

clearerr

Use the method IO::Handle::clearerr() instead, to reset the error
 state (if any) 
and EOF state (if any) of the given stream.

clock

This is identical to the C function clock(), returning the
 amount of spent processor 
time in microseconds.

close

Close the file. This uses file descriptors such as those obtained by calling 



Perl version 5.10.1 documentation - POSIX

Page 4http://perldoc.perl.org

POSIX::open.

	 $fd = POSIX::open( "foo", &POSIX::O_RDONLY );
	 POSIX::close( $fd );

Returns undef on failure.

See also "close" in perlfunc.

closedir

This is identical to Perl's builtin closedir() function for closing
 a directory handle, 
see "closedir" in perlfunc.

cos

This is identical to Perl's builtin cos() function, for returning
 the cosine of its numerical
argument, see "cos" in perlfunc.
 See also Math::Trig.

cosh

This is identical to the C function cosh(), for returning
 the hyperbolic cosine of its 
numeric argument. See also Math::Trig.

creat

Create a new file. This returns a file descriptor like the ones returned by 
POSIX::open. Use POSIX::close to close the file.

	 $fd = POSIX::creat( "foo", 0611 );
	 POSIX::close( $fd );

See also "sysopen" in perlfunc and its O_CREAT flag.

ctermid

Generates the path name for the controlling terminal.

	 $path = POSIX::ctermid();

ctime

This is identical to the C function ctime() and equivalent
 to 
asctime(localtime(...)), see asctime and localtime.

cuserid

Get the login name of the owner of the current process.

	 $name = POSIX::cuserid();

difftime

This is identical to the C function difftime(), for returning
 the time difference (in 
seconds) between two times (as returned
 by time()), see time.

div

div() is C-specific, use "int" in perlfunc on the usual / division and
 the modulus %.

dup

This is similar to the C function dup(), for duplicating a file
 descriptor.

This uses file descriptors such as those obtained by calling POSIX::open.

Returns undef on failure.

dup2



Perl version 5.10.1 documentation - POSIX

Page 5http://perldoc.perl.org

This is similar to the C function dup2(), for duplicating a file
 descriptor to an another 
known file descriptor.

This uses file descriptors such as those obtained by calling POSIX::open.

Returns undef on failure.

errno

Returns the value of errno.

	 $errno = POSIX::errno();

This identical to the numerical values of the $!, see "$ERRNO" in perlvar.

execl

execl() is C-specific, see "exec" in perlfunc.

execle

execle() is C-specific, see "exec" in perlfunc.

execlp

execlp() is C-specific, see "exec" in perlfunc.

execv

execv() is C-specific, see "exec" in perlfunc.

execve

execve() is C-specific, see "exec" in perlfunc.

execvp

execvp() is C-specific, see "exec" in perlfunc.

exit

This is identical to Perl's builtin exit() function for exiting the
 program, see "exit" in 
perlfunc.

exp

This is identical to Perl's builtin exp() function for
 returning the exponent (e-based) of 
the numerical argument,
 see "exp" in perlfunc.

fabs

This is identical to Perl's builtin abs() function for returning
 the absolute value of the 
numerical argument, see "abs" in perlfunc.

fclose

Use method IO::Handle::close() instead, or see "close" in perlfunc.

fcntl

This is identical to Perl's builtin fcntl() function,
 see "fcntl" in perlfunc.

fdopen

Use method IO::Handle::new_from_fd() instead, or see "open" in perlfunc.

feof

Use method IO::Handle::eof() instead, or see "eof" in perlfunc.

ferror

Use method IO::Handle::error() instead.



Perl version 5.10.1 documentation - POSIX

Page 6http://perldoc.perl.org

fflush

Use method IO::Handle::flush() instead.
 See also "$OUTPUT_AUTOFLUSH" in
perlvar.

fgetc

Use method IO::Handle::getc() instead, or see "read" in perlfunc.

fgetpos

Use method IO::Seekable::getpos() instead, or see "seek" in L.

fgets

Use method IO::Handle::gets() instead. Similar to <>, also known
 as "readline" 
in perlfunc.

fileno

Use method IO::Handle::fileno() instead, or see "fileno" in perlfunc.

floor

This is identical to the C function floor(), returning the largest
 integer value less 
than or equal to the numerical argument.

fmod

This is identical to the C function fmod().

	 $r = fmod($x, $y);

It returns the remainder $r = $x - $n*$y, where $n = trunc($x/$y).
 The $r 
has the same sign as $x and magnitude (absolute value)
 less than the magnitude of 
$y.

fopen

Use method IO::File::open() instead, or see "open" in perlfunc.

fork

This is identical to Perl's builtin fork() function
 for duplicating the current process, 
see "fork" in perlfunc 
 and perlfork if you are in Windows.

fpathconf

Retrieves the value of a configurable limit on a file or directory. This
 uses file 
descriptors such as those obtained by calling POSIX::open.

The following will determine the maximum length of the longest allowable
 pathname on
the filesystem which holds /var/foo.

	 $fd = POSIX::open( "/var/foo", &POSIX::O_RDONLY );
	 $path_max = POSIX::fpathconf( $fd, &POSIX::_PC_PATH_MAX );

Returns undef on failure.

fprintf

fprintf() is C-specific, see "printf" in perlfunc instead.

fputc

fputc() is C-specific, see "print" in perlfunc instead.

fputs

fputs() is C-specific, see "print" in perlfunc instead.



Perl version 5.10.1 documentation - POSIX

Page 7http://perldoc.perl.org

fread

fread() is C-specific, see "read" in perlfunc instead.

free

free() is C-specific. Perl does memory management transparently.

freopen

freopen() is C-specific, see "open" in perlfunc instead.

frexp

Return the mantissa and exponent of a floating-point number.

	 ($mantissa, $exponent) = POSIX::frexp( 1.234e56 );

fscanf

fscanf() is C-specific, use <> and regular expressions instead.

fseek

Use method IO::Seekable::seek() instead, or see "seek" in perlfunc.

fsetpos

Use method IO::Seekable::setpos() instead, or seek "seek" in perlfunc.

fstat

Get file status. This uses file descriptors such as those obtained by
 calling 
POSIX::open. The data returned is identical to the data from
 Perl's builtin stat 
function.

	 $fd = POSIX::open( "foo", &POSIX::O_RDONLY );
	 @stats = POSIX::fstat( $fd );

fsync

Use method IO::Handle::sync() instead.

ftell

Use method IO::Seekable::tell() instead, or see "tell" in perlfunc.

fwrite

fwrite() is C-specific, see "print" in perlfunc instead.

getc

This is identical to Perl's builtin getc() function,
 see "getc" in perlfunc.

getchar

Returns one character from STDIN. Identical to Perl's getc(),
 see "getc" in perlfunc.

getcwd

Returns the name of the current working directory.
 See also Cwd.

getegid

Returns the effective group identifier. Similar to Perl' s builtin
 variable $(, see "$EGID" 
in perlvar.

getenv

Returns the value of the specified environment variable.
 The same information is 
available through the %ENV array.



Perl version 5.10.1 documentation - POSIX

Page 8http://perldoc.perl.org

geteuid

Returns the effective user identifier. Identical to Perl's builtin $>
 variable, see "$EUID" 
in perlvar.

getgid

Returns the user's real group identifier. Similar to Perl's builtin
 variable $), see "$GID" 
in perlvar.

getgrgid

This is identical to Perl's builtin getgrgid() function for
 returning group entries by 
group identifiers, see "getgrgid" in perlfunc.

getgrnam

This is identical to Perl's builtin getgrnam() function for
 returning group entries by 
group names, see "getgrnam" in perlfunc.

getgroups

Returns the ids of the user's supplementary groups. Similar to Perl's
 builtin variable $)
, see "$GID" in perlvar.

getlogin

This is identical to Perl's builtin getlogin() function for
 returning the user name 
associated with the current session, see "getlogin" in perlfunc.

getpgrp

This is identical to Perl's builtin getpgrp() function for
 returning the process group 
identifier of the current process, see "getpgrp" in perlfunc.

getpid

Returns the process identifier. Identical to Perl's builtin
 variable $$, see "$PID" in 
perlvar.

getppid

This is identical to Perl's builtin getppid() function for
 returning the process identifier
of the parent process of the current
 process , see "getppid" in perlfunc.

getpwnam

This is identical to Perl's builtin getpwnam() function for
 returning user entries by user
names, see "getpwnam" in perlfunc.

getpwuid

This is identical to Perl's builtin getpwuid() function for
 returning user entries by user
identifiers, see "getpwuid" in perlfunc.

gets

Returns one line from STDIN, similar to <>, also known
 as the readline() function, 
see "readline" in perlfunc.

NOTE: if you have C programs that still use gets(), be very
 afraid. The gets() 
function is a source of endless grief because
 it has no buffer overrun checks. It should 
never be used. The fgets() function should be preferred instead.

getuid

Returns the user's identifier. Identical to Perl's builtin $< variable,
 see "$UID" in perlvar
.

gmtime



Perl version 5.10.1 documentation - POSIX

Page 9http://perldoc.perl.org

This is identical to Perl's builtin gmtime() function for
 converting seconds since the 
epoch to a date in Greenwich Mean Time,
 see "gmtime" in perlfunc.

isalnum

This is identical to the C function, except that it can apply to a
 single character or to a 
whole string. Note that locale settings may
 affect what characters are considered 
isalnum. Does not work on
 Unicode characters code point 256 or higher. Consider 
using regular
 expressions and the /[[:alnum:]]/ construct instead, or possibly
 the 
/\w/ construct.

isalpha

This is identical to the C function, except that it can apply to
 a single character or to a 
whole string. Note that locale settings
 may affect what characters are considered 
isalpha. Does not work
 on Unicode characters code point 256 or higher. Consider 
using regular
 expressions and the /[[:alpha:]]/ construct instead.

isatty

Returns a boolean indicating whether the specified filehandle is connected
 to a tty. 
Similar to the -t operator, see "-X" in perlfunc.

iscntrl

This is identical to the C function, except that it can apply to
 a single character or to a 
whole string. Note that locale settings
 may affect what characters are considered 
iscntrl. Does not work
 on Unicode characters code point 256 or higher. Consider 
using regular
 expressions and the /[[:cntrl:]]/ construct instead.

isdigit

This is identical to the C function, except that it can apply to
 a single character or to a 
whole string. Note that locale settings
 may affect what characters are considered 
isdigit (unlikely, but
 still possible). Does not work on Unicode characters code point
256
 or higher. Consider using regular expressions and the /[[:digit:]]/
 construct 
instead, or the /\d/ construct.

isgraph

This is identical to the C function, except that it can apply to
 a single character or to a 
whole string. Note that locale settings
 may affect what characters are considered 
isgraph. Does not work
 on Unicode characters code point 256 or higher. Consider 
using regular
 expressions and the /[[:graph:]]/ construct instead.

islower

This is identical to the C function, except that it can apply to
 a single character or to a 
whole string. Note that locale settings
 may affect what characters are considered 
islower. Does not work
 on Unicode characters code point 256 or higher. Consider 
using regular
 expressions and the /[[:lower:]]/ construct instead. Do not use 
/[a-z]/.

isprint

This is identical to the C function, except that it can apply to
 a single character or to a 
whole string. Note that locale settings
 may affect what characters are considered 
isprint. Does not work
 on Unicode characters code point 256 or higher. Consider 
using regular
 expressions and the /[[:print:]]/ construct instead.

ispunct

This is identical to the C function, except that it can apply to
 a single character or to a 
whole string. Note that locale settings
 may affect what characters are considered 
ispunct. Does not work
 on Unicode characters code point 256 or higher. Consider 



Perl version 5.10.1 documentation - POSIX

Page 10http://perldoc.perl.org

using regular
 expressions and the /[[:punct:]]/ construct instead.

isspace

This is identical to the C function, except that it can apply to
 a single character or to a 
whole string. Note that locale settings
 may affect what characters are considered 
isspace. Does not work
 on Unicode characters code point 256 or higher. Consider 
using regular
 expressions and the /[[:space:]]/ construct instead, or the /\s/

construct. (Note that /\s/ and /[[:space:]]/ are slightly
 different in that 
/[[:space:]]/ can normally match a vertical tab,
 while /\s/ does not.)

isupper

This is identical to the C function, except that it can apply to
 a single character or to a 
whole string. Note that locale settings
 may affect what characters are considered 
isupper. Does not work
 on Unicode characters code point 256 or higher. Consider 
using regular
 expressions and the /[[:upper:]]/ construct instead. Do not use 
/[A-Z]/.

isxdigit

This is identical to the C function, except that it can apply to a single
 character or to a 
whole string. Note that locale settings may affect what
 characters are considered 
isxdigit (unlikely, but still possible).
 Does not work on Unicode characters code 
point 256 or higher.
 Consider using regular expressions and the /[[:xdigit:]]/

construct instead, or simply /[0-9a-f]/i.

kill

This is identical to Perl's builtin kill() function for sending
 signals to processes 
(often to terminate them), see "kill" in perlfunc.

labs

(For returning absolute values of long integers.)
 labs() is C-specific, see "abs" in 
perlfunc instead.

ldexp

This is identical to the C function ldexp()
 for multiplying floating point numbers with 
powers of two.

	 $x_quadrupled = POSIX::ldexp($x, 2);

ldiv

(For computing dividends of long integers.)
 ldiv() is C-specific, use / and int() 
instead.

link

This is identical to Perl's builtin link() function
 for creating hard links into files, see 
"link" in perlfunc.

localeconv

Get numeric formatting information. Returns a reference to a hash
 containing the 
current locale formatting values.

Here is how to query the database for the de (Deutsch or German) locale.

	 $loc = POSIX::setlocale( &POSIX::LC_ALL, "de" );
	 print "Locale = $loc\n";
	 $lconv = POSIX::localeconv();
	 print "decimal_point	 = ", $lconv->{decimal_point},	 "\n";
	 print "thousands_sep	 = ", $lconv->{thousands_sep},	 "\n";



Perl version 5.10.1 documentation - POSIX

Page 11http://perldoc.perl.org

	 print "grouping	 = ", $lconv->{grouping},	 "\n";
	 print "int_curr_symbol	 = ", $lconv->{int_curr_symbol},	 "\n";
	 print "currency_symbol	 = ", $lconv->{currency_symbol},	 "\n";
	 print "mon_decimal_point = ", $lconv->{mon_decimal_point}, 
"\n";
	 print "mon_thousands_sep = ", $lconv->{mon_thousands_sep}, 
"\n";
	 print "mon_grouping	 = ", $lconv->{mon_grouping},	 "\n";
	 print "positive_sign	 = ", $lconv->{positive_sign},	 "\n";
	 print "negative_sign	 = ", $lconv->{negative_sign},	 "\n";
	 print "int_frac_digits	 = ", $lconv->{int_frac_digits},	 "\n";
	 print "frac_digits	 = ", $lconv->{frac_digits},	 "\n";
	 print "p_cs_precedes	 = ", $lconv->{p_cs_precedes},	 "\n";
	 print "p_sep_by_space	 = ", $lconv->{p_sep_by_space},	 "\n";
	 print "n_cs_precedes	 = ", $lconv->{n_cs_precedes},	 "\n";
	 print "n_sep_by_space	 = ", $lconv->{n_sep_by_space},	 "\n";
	 print "p_sign_posn	 = ", $lconv->{p_sign_posn},	 "\n";
	 print "n_sign_posn	 = ", $lconv->{n_sign_posn},	 "\n";

localtime

This is identical to Perl's builtin localtime() function for
 converting seconds since 
the epoch to a date see "localtime" in perlfunc.

log

This is identical to Perl's builtin log() function,
 returning the natural (e-based) 
logarithm of the numerical argument,
 see "log" in perlfunc.

log10

This is identical to the C function log10(),
 returning the 10-base logarithm of the 
numerical argument.
 You can also use

    sub log10 { log($_[0]) / log(10) }

or

    sub log10 { log($_[0]) / 2.30258509299405 }

or

    sub log10 { log($_[0]) * 0.434294481903252 }

longjmp

longjmp() is C-specific: use "die" in perlfunc instead.

lseek

Move the file's read/write position. This uses file descriptors such as
 those obtained by
calling POSIX::open.

	 $fd = POSIX::open( "foo", &POSIX::O_RDONLY );
	 $off_t = POSIX::lseek( $fd, 0, &POSIX::SEEK_SET );

Returns undef on failure.

malloc

malloc() is C-specific. Perl does memory management transparently.

mblen



Perl version 5.10.1 documentation - POSIX

Page 12http://perldoc.perl.org

This is identical to the C function mblen().
 Perl does not have any support for the 
wide and multibyte
 characters of the C standards, so this might be a rather
 useless 
function.

mbstowcs

This is identical to the C function mbstowcs().
 Perl does not have any support for the
wide and multibyte
 characters of the C standards, so this might be a rather
 useless 
function.

mbtowc

This is identical to the C function mbtowc().
 Perl does not have any support for the 
wide and multibyte
 characters of the C standards, so this might be a rather
 useless 
function.

memchr

memchr() is C-specific, see "index" in perlfunc instead.

memcmp

memcmp() is C-specific, use eq instead, see perlop.

memcpy

memcpy() is C-specific, use =, see perlop, or see "substr" in perlfunc.

memmove

memmove() is C-specific, use =, see perlop, or see "substr" in perlfunc.

memset

memset() is C-specific, use x instead, see perlop.

mkdir

This is identical to Perl's builtin mkdir() function
 for creating directories, see "mkdir" 
in perlfunc.

mkfifo

This is similar to the C function mkfifo() for creating
 FIFO special files.

	 if (mkfifo($path, $mode)) { ....

Returns undef on failure. The $mode is similar to the
 mode of mkdir(), see "mkdir" 
in perlfunc, though for mkfifo
 you must specify the $mode.

mktime

Convert date/time info to a calendar time.

Synopsis:

	 mktime(sec, min, hour, mday, mon, year, wday = 0, yday = 0, 
isdst = -1)

The month (mon), weekday (wday), and yearday (yday) begin at zero.
 I.e. January is 
0, not 1; Sunday is 0, not 1; January 1st is 0, not 1. The
 year (year) is given in years 
since 1900. I.e. The year 1995 is 95; the
 year 2001 is 101. Consult your system's 
mktime() manpage for details
 about these and the other arguments.

Calendar time for December 12, 1995, at 10:30 am.

	 $time_t = POSIX::mktime( 0, 30, 10, 12, 11, 95 );
	 print "Date = ", POSIX::ctime($time_t);



Perl version 5.10.1 documentation - POSIX

Page 13http://perldoc.perl.org

Returns undef on failure.

modf

Return the integral and fractional parts of a floating-point number.

	 ($fractional, $integral) = POSIX::modf( 3.14 );

nice

This is similar to the C function nice(), for changing
 the scheduling preference of the 
current process. Positive
 arguments mean more polite process, negative values more

needy process. Normal user processes can only be more polite.

Returns undef on failure.

offsetof

offsetof() is C-specific, you probably want to see "pack" in perlfunc instead.

open

Open a file for reading for writing. This returns file descriptors, not
 Perl filehandles. 
Use POSIX::close to close the file.

Open a file read-only with mode 0666.

	 $fd = POSIX::open( "foo" );

Open a file for read and write.

	 $fd = POSIX::open( "foo", &POSIX::O_RDWR );

Open a file for write, with truncation.

	 $fd = POSIX::open( "foo", &POSIX::O_WRONLY | &POSIX::O_TRUNC );

Create a new file with mode 0640. Set up the file for writing.

	 $fd = POSIX::open( "foo", &POSIX::O_CREAT | &POSIX::O_WRONLY, 
0640 );

Returns undef on failure.

See also "sysopen" in perlfunc.

opendir

Open a directory for reading.

	 $dir = POSIX::opendir( "/var" );
	 @files = POSIX::readdir( $dir );
	 POSIX::closedir( $dir );

Returns undef on failure.

pathconf

Retrieves the value of a configurable limit on a file or directory.

The following will determine the maximum length of the longest allowable
 pathname on
the filesystem which holds /var.

	 $path_max = POSIX::pathconf( "/var", &POSIX::_PC_PATH_MAX );

Returns undef on failure.

pause

This is similar to the C function pause(), which suspends
 the execution of the current



Perl version 5.10.1 documentation - POSIX

Page 14http://perldoc.perl.org

process until a signal is received.

Returns undef on failure.

perror

This is identical to the C function perror(), which outputs to the
 standard error 
stream the specified message followed by ": " and the
 current error string. Use the 
warn() function and the $!
 variable instead, see "warn" in perlfunc and "$ERRNO" in 
perlvar.

pipe

Create an interprocess channel. This returns file descriptors like those
 returned by 
POSIX::open.

	 my ($read, $write) = POSIX::pipe();
	 POSIX::write( $write, "hello", 5 );
	 POSIX::read( $read, $buf, 5 );

See also "pipe" in perlfunc.

pow

Computes $x raised to the power $exponent.

	 $ret = POSIX::pow( $x, $exponent );

You can also use the ** operator, see perlop.

printf

Formats and prints the specified arguments to STDOUT.
 See also "printf" in perlfunc.

putc

putc() is C-specific, see "print" in perlfunc instead.

putchar

putchar() is C-specific, see "print" in perlfunc instead.

puts

puts() is C-specific, see "print" in perlfunc instead.

qsort

qsort() is C-specific, see "sort" in perlfunc instead.

raise

Sends the specified signal to the current process.
 See also "kill" in perlfunc and the $$ 
in "$PID" in perlvar.

rand

rand() is non-portable, see "rand" in perlfunc instead.

read

Read from a file. This uses file descriptors such as those obtained by
 calling 
POSIX::open. If the buffer $buf is not large enough for the
 read then Perl will extend
it to make room for the request.

	 $fd = POSIX::open( "foo", &POSIX::O_RDONLY );
	 $bytes = POSIX::read( $fd, $buf, 3 );

Returns undef on failure.



Perl version 5.10.1 documentation - POSIX

Page 15http://perldoc.perl.org

See also "sysread" in perlfunc.

readdir

This is identical to Perl's builtin readdir() function
 for reading directory entries, see 
"readdir" in perlfunc.

realloc

realloc() is C-specific. Perl does memory management transparently.

remove

This is identical to Perl's builtin unlink() function
 for removing files, see "unlink" in 
perlfunc.

rename

This is identical to Perl's builtin rename() function
 for renaming files, see "rename" in 
perlfunc.

rewind

Seeks to the beginning of the file.

rewinddir

This is identical to Perl's builtin rewinddir() function for
 rewinding directory entry 
streams, see "rewinddir" in perlfunc.

rmdir

This is identical to Perl's builtin rmdir() function
 for removing (empty) directories, see
"rmdir" in perlfunc.

scanf

scanf() is C-specific, use <> and regular expressions instead,
 see perlre.

setgid

Sets the real group identifier and the effective group identifier for
 this process. Similar 
to assigning a value to the Perl's builtin $) variable, see "$EGID" in perlvar, except 
that the latter
 will change only the real user identifier, and that the setgid()
 uses only a 
single numeric argument, as opposed to a space-separated
 list of numbers.

setjmp

setjmp() is C-specific: use eval {} instead,
 see "eval" in perlfunc.

setlocale

Modifies and queries program's locale. The following examples assume

	 use POSIX qw(setlocale LC_ALL LC_CTYPE);

has been issued.

The following will set the traditional UNIX system locale behavior
 (the second 
argument "C").

	 $loc = setlocale( LC_ALL, "C" );

The following will query the current LC_CTYPE category. (No second
 argument means
'query'.)

	 $loc = setlocale( LC_CTYPE );

The following will set the LC_CTYPE behaviour according to the locale
 environment 
variables (the second argument "").
 Please see your systems setlocale(3) 



Perl version 5.10.1 documentation - POSIX

Page 16http://perldoc.perl.org

documentation for the locale
 environment variables' meaning or consult perllocale.

	 $loc = setlocale( LC_CTYPE, "" );

The following will set the LC_COLLATE behaviour to Argentinian
 Spanish. NOTE: The 
naming and availability of locales depends on
 your operating system. Please consult 
perllocale for how to find
 out which locales are available in your system.

	 $loc = setlocale( LC_ALL, "es_AR.ISO8859-1" );

setpgid

This is similar to the C function setpgid() for
 setting the process group identifier of 
the current process.

Returns undef on failure.

setsid

This is identical to the C function setsid() for
 setting the session identifier of the 
current process.

setuid

Sets the real user identifier and the effective user identifier for
 this process. Similar to 
assigning a value to the Perl's builtin $< variable, see "$UID" in perlvar, except that the
latter
 will change only the real user identifier.

sigaction

Detailed signal management. This uses POSIX::SigAction objects for
 the action 
and oldaction arguments (the oldaction can also be
 just a hash reference). Consult 
your system's sigaction manpage
 for details, see also POSIX::SigRt.

Synopsis:

	 sigaction(signal, action, oldaction = 0)

Returns undef on failure. The signal must be a number (like
 SIGHUP), not a string 
(like "SIGHUP"), though Perl does try hard
 to understand you.

If you use the SA_SIGINFO flag, the signal handler will in addition to
 the first 
argument, the signal name, also receive a second argument, a
 hash reference, inside 
which are the following keys with the following
 semantics, as defined by 
POSIX/SUSv3:

    signo       the signal number
    errno       the error number
    code        if this is zero or less, the signal was sent by
                a user process and the uid and pid make sense,
                otherwise the signal was sent by the kernel

The following are also defined by POSIX/SUSv3, but unfortunately
 not very widely 
implemented:

    pid         the process id generating the signal
    uid         the uid of the process id generating the signal
    status      exit value or signal for SIGCHLD
    band        band event for SIGPOLL

A third argument is also passed to the handler, which contains a copy
 of the raw binary
contents of the siginfo structure: if a system has
 some non-POSIX fields, this third 
argument is where to unpack() them
 from.

Note that not all siginfo values make sense simultaneously (some are
 valid only for 



Perl version 5.10.1 documentation - POSIX

Page 17http://perldoc.perl.org

certain signals, for example), and not all values make
 sense from Perl perspective, you
should to consult your system's sigaction and possibly also siginfo 
documentation.

siglongjmp

siglongjmp() is C-specific: use "die" in perlfunc instead.

sigpending

Examine signals that are blocked and pending. This uses POSIX::SigSet
 objects for
the sigset argument. Consult your system's sigpending
 manpage for details.

Synopsis:

	 sigpending(sigset)

Returns undef on failure.

sigprocmask

Change and/or examine calling process's signal mask. This uses POSIX::SigSet 
objects for the sigset and oldsigset arguments.
 Consult your system's 
sigprocmask manpage for details.

Synopsis:

	 sigprocmask(how, sigset, oldsigset = 0)

Returns undef on failure.

sigsetjmp

sigsetjmp() is C-specific: use eval {} instead,
 see "eval" in perlfunc.

sigsuspend

Install a signal mask and suspend process until signal arrives. This uses 
POSIX::SigSet objects for the signal_mask argument. Consult your
 system's 
sigsuspend manpage for details.

Synopsis:

	 sigsuspend(signal_mask)

Returns undef on failure.

sin

This is identical to Perl's builtin sin() function
 for returning the sine of the numerical 
argument,
 see "sin" in perlfunc. See also Math::Trig.

sinh

This is identical to the C function sinh()
 for returning the hyperbolic sine of the 
numerical argument.
 See also Math::Trig.

sleep

This is functionally identical to Perl's builtin sleep() function
 for suspending the 
execution of the current for process for certain
 number of seconds, see "sleep" in 
perlfunc. There is one significant
 difference, however: POSIX::sleep() returns the 
number of unslept seconds, while the CORE::sleep() returns the
 number of slept 
seconds.

sprintf

This is similar to Perl's builtin sprintf() function
 for returning a string that has the 
arguments formatted as requested,
 see "sprintf" in perlfunc.



Perl version 5.10.1 documentation - POSIX

Page 18http://perldoc.perl.org

sqrt

This is identical to Perl's builtin sqrt() function.
 for returning the square root of the 
numerical argument,
 see "sqrt" in perlfunc.

srand

Give a seed the pseudorandom number generator, see "srand" in perlfunc.

sscanf

sscanf() is C-specific, use regular expressions instead,
 see perlre.

stat

This is identical to Perl's builtin stat() function
 for returning information about files 
and directories.

strcat

strcat() is C-specific, use .= instead, see perlop.

strchr

strchr() is C-specific, see "index" in perlfunc instead.

strcmp

strcmp() is C-specific, use eq or cmp instead, see perlop.

strcoll

This is identical to the C function strcoll()
 for collating (comparing) strings 
transformed using
 the strxfrm() function. Not really needed since
 Perl can do this 
transparently, see perllocale.

strcpy

strcpy() is C-specific, use = instead, see perlop.

strcspn

strcspn() is C-specific, use regular expressions instead,
 see perlre.

strerror

Returns the error string for the specified errno.
 Identical to the string form of the $!, 
see "$ERRNO" in perlvar.

strftime

Convert date and time information to string. Returns the string.

Synopsis:

	 strftime(fmt, sec, min, hour, mday, mon, year, wday = -1, yday 
= -1, isdst = -1)

The month (mon), weekday (wday), and yearday (yday) begin at zero.
 I.e. January is 
0, not 1; Sunday is 0, not 1; January 1st is 0, not 1. The
 year (year) is given in years 
since 1900. I.e., the year 1995 is 95; the
 year 2001 is 101. Consult your system's 
strftime() manpage for details
 about these and the other arguments.

If you want your code to be portable, your format (fmt) argument
 should use only the 
conversion specifiers defined by the ANSI C
 standard (C89, to play safe). These are 
aAbBcdHIjmMpSUwWxXyYZ%.
 But even then, the results of some of the conversion 
specifiers are
 non-portable. For example, the specifiers aAbBcpZ change according
 to
the locale settings of the user, and both how to set locales (the
 locale names) and 
what output to expect are non-standard.
 The specifier c changes according to the 
timezone settings of the
 user and the timezone computation rules of the operating 



Perl version 5.10.1 documentation - POSIX

Page 19http://perldoc.perl.org

system.
 The Z specifier is notoriously unportable since the names of
 timezones are 
non-standard. Sticking to the numeric specifiers is the
 safest route.

The given arguments are made consistent as though by calling mktime() before 
calling your system's strftime() function,
 except that the isdst value is not 
affected.

The string for Tuesday, December 12, 1995.

	 $str = POSIX::strftime( "%A, %B %d, %Y", 0, 0, 0, 12, 11, 95, 2
 );
	 print "$str\n";

strlen

strlen() is C-specific, use length() instead, see "length" in perlfunc.

strncat

strncat() is C-specific, use .= instead, see perlop.

strncmp

strncmp() is C-specific, use eq instead, see perlop.

strncpy

strncpy() is C-specific, use = instead, see perlop.

strpbrk

strpbrk() is C-specific, use regular expressions instead,
 see perlre.

strrchr

strrchr() is C-specific, see "rindex" in perlfunc instead.

strspn

strspn() is C-specific, use regular expressions instead,
 see perlre.

strstr

This is identical to Perl's builtin index() function,
 see "index" in perlfunc.

strtod

String to double translation. Returns the parsed number and the number
 of characters 
in the unparsed portion of the string. Truly
 POSIX-compliant systems set $! ($ERRNO)
to indicate a translation
 error, so clear $! before calling strtod. However, non-POSIX 
systems
 may not check for overflow, and therefore will never set $!.

strtod should respect any POSIX setlocale() settings.

To parse a string $str as a floating point number use

    $! = 0;
    ($num, $n_unparsed) = POSIX::strtod($str);

The second returned item and $! can be used to check for valid input:

    if (($str eq '') || ($n_unparsed != 0) || $!) {
        die "Non-numeric input $str" . ($! ? ": $!\n" : "\n");
    }

When called in a scalar context strtod returns the parsed number.

strtok

strtok() is C-specific, use regular expressions instead, see perlre, or "split" in perlfunc.



Perl version 5.10.1 documentation - POSIX

Page 20http://perldoc.perl.org

strtol

String to (long) integer translation. Returns the parsed number and
 the number of 
characters in the unparsed portion of the string. Truly
 POSIX-compliant systems set $! 
($ERRNO) to indicate a translation
 error, so clear $! before calling strtol. However, 
non-POSIX systems
 may not check for overflow, and therefore will never set $!.

strtol should respect any POSIX setlocale() settings.

To parse a string $str as a number in some base $base use

    $! = 0;
    ($num, $n_unparsed) = POSIX::strtol($str, $base);

The base should be zero or between 2 and 36, inclusive. When the base
 is zero or 
omitted strtol will use the string itself to determine the
 base: a leading "0x" or "0X" 
means hexadecimal; a leading "0" means
 octal; any other leading characters mean 
decimal. Thus, "1234" is
 parsed as a decimal number, "01234" as an octal number, 
and "0x1234"
 as a hexadecimal number.

The second returned item and $! can be used to check for valid input:

    if (($str eq '') || ($n_unparsed != 0) || !$!) {
        die "Non-numeric input $str" . $! ? ": $!\n" : "\n";
    }

When called in a scalar context strtol returns the parsed number.

strtoul

String to unsigned (long) integer translation. strtoul() is identical
 to strtol() except that 
strtoul() only parses unsigned integers. See strtol for details.

Note: Some vendors supply strtod() and strtol() but not strtoul().
 Other vendors that do 
supply strtoul() parse "-1" as a valid value.

strxfrm

String transformation. Returns the transformed string.

	 $dst = POSIX::strxfrm( $src );

Used in conjunction with the strcoll() function, see strcoll.

Not really needed since Perl can do this transparently, see perllocale.

sysconf

Retrieves values of system configurable variables.

The following will get the machine's clock speed.

	 $clock_ticks = POSIX::sysconf( &POSIX::_SC_CLK_TCK );

Returns undef on failure.

system

This is identical to Perl's builtin system() function, see "system" in perlfunc.

tan

This is identical to the C function tan(), returning the
 tangent of the numerical 
argument. See also Math::Trig.

tanh

This is identical to the C function tanh(), returning the
 hyperbolic tangent of the 
numerical argument. See also Math::Trig.



Perl version 5.10.1 documentation - POSIX

Page 21http://perldoc.perl.org

tcdrain

This is similar to the C function tcdrain() for draining
 the output queue of its 
argument stream.

Returns undef on failure.

tcflow

This is similar to the C function tcflow() for controlling
 the flow of its argument 
stream.

Returns undef on failure.

tcflush

This is similar to the C function tcflush() for flushing
 the I/O buffers of its argument 
stream.

Returns undef on failure.

tcgetpgrp

This is identical to the C function tcgetpgrp() for returning the
 process group 
identifier of the foreground process group of the controlling
 terminal.

tcsendbreak

This is similar to the C function tcsendbreak() for sending
 a break on its argument 
stream.

Returns undef on failure.

tcsetpgrp

This is similar to the C function tcsetpgrp() for setting the
 process group identifier 
of the foreground process group of the controlling
 terminal.

Returns undef on failure.

time

This is identical to Perl's builtin time() function
 for returning the number of seconds 
since the epoch
 (whatever it is for the system), see "time" in perlfunc.

times

The times() function returns elapsed realtime since some point in the past
 (such as 
system startup), user and system times for this process, and user
 and system times 
used by child processes. All times are returned in clock
 ticks.

    ($realtime, $user, $system, $cuser, $csystem) = 
POSIX::times();

Note: Perl's builtin times() function returns four values, measured in
 seconds.

tmpfile

Use method IO::File::new_tmpfile() instead, or see File::Temp.

tmpnam

Returns a name for a temporary file.

	 $tmpfile = POSIX::tmpnam();

For security reasons, which are probably detailed in your system's
 documentation for 
the C library tmpnam() function, this interface
 should not be used; instead see 
File::Temp.

tolower



Perl version 5.10.1 documentation - POSIX

Page 22http://perldoc.perl.org

This is identical to the C function, except that it can apply to a single
 character or to a 
whole string. Consider using the lc() function,
 see "lc" in perlfunc, or the equivalent 
\L operator inside doublequotish
 strings.

toupper

This is identical to the C function, except that it can apply to a single
 character or to a 
whole string. Consider using the uc() function,
 see "uc" in perlfunc, or the equivalent 
\U operator inside doublequotish
 strings.

ttyname

This is identical to the C function ttyname() for returning the
 name of the current 
terminal.

tzname

Retrieves the time conversion information from the tzname variable.

	 POSIX::tzset();
	 ($std, $dst) = POSIX::tzname();

tzset

This is identical to the C function tzset() for setting
 the current timezone based on 
the environment variable TZ,
 to be used by ctime(), localtime(), mktime(), and
strftime()
 functions.

umask

This is identical to Perl's builtin umask() function
 for setting (and querying) the file 
creation permission mask,
 see "umask" in perlfunc.

uname

Get name of current operating system.

	 ($sysname, $nodename, $release, $version, $machine) = 
POSIX::uname();

Note that the actual meanings of the various fields are not
 that well standardized, do 
not expect any great portability.
 The $sysname might be the name of the operating 
system,
 the $nodename might be the name of the host, the $release
 might be the 
(major) release number of the operating system,
 the $version might be the (minor) 
release number of the
 operating system, and the $machine might be a hardware 
identifier.
 Maybe.

ungetc

Use method IO::Handle::ungetc() instead.

unlink

This is identical to Perl's builtin unlink() function
 for removing files, see "unlink" in 
perlfunc.

utime

This is identical to Perl's builtin utime() function
 for changing the time stamps of files 
and directories,
 see "utime" in perlfunc.

vfprintf

vfprintf() is C-specific, see "printf" in perlfunc instead.

vprintf

vprintf() is C-specific, see "printf" in perlfunc instead.



Perl version 5.10.1 documentation - POSIX

Page 23http://perldoc.perl.org

vsprintf

vsprintf() is C-specific, see "sprintf" in perlfunc instead.

wait

This is identical to Perl's builtin wait() function,
 see "wait" in perlfunc.

waitpid

Wait for a child process to change state. This is identical to Perl's
 builtin waitpid() 
function, see "waitpid" in perlfunc.

	 $pid = POSIX::waitpid( -1, POSIX::WNOHANG );
	 print "status = ", ($? / 256), "\n";

wcstombs

This is identical to the C function wcstombs().
 Perl does not have any support for the
wide and multibyte
 characters of the C standards, so this might be a rather
 useless 
function.

wctomb

This is identical to the C function wctomb().
 Perl does not have any support for the 
wide and multibyte
 characters of the C standards, so this might be a rather
 useless 
function.

write

Write to a file. This uses file descriptors such as those obtained by
 calling 
POSIX::open.

	 $fd = POSIX::open( "foo", &POSIX::O_WRONLY );
	 $buf = "hello";
	 $bytes = POSIX::write( $fd, $buf, 5 );

Returns undef on failure.

See also "syswrite" in perlfunc.

CLASSES
POSIX::SigAction

new

Creates a new POSIX::SigAction object which corresponds to the C struct 
sigaction. This object will be destroyed automatically when
 it is no longer needed. 
The first parameter is the handler, a sub
 reference. The second parameter is a 
POSIX::SigSet object, it
 defaults to the empty set. The third parameter contains the 
sa_flags, it defaults to 0.

	 $sigset = POSIX::SigSet->new(SIGINT, SIGQUIT);
	 $sigaction = POSIX::SigAction->new( \&handler, $sigset, 
&POSIX::SA_NOCLDSTOP );

This POSIX::SigAction object is intended for use with the POSIX::sigaction()

function.

handler

mask

flags

accessor functions to get/set the values of a SigAction object.

	 $sigset = $sigaction->mask;



Perl version 5.10.1 documentation - POSIX

Page 24http://perldoc.perl.org

	 $sigaction->flags(&POSIX::SA_RESTART);

safe

accessor function for the "safe signals" flag of a SigAction object; see perlipc for 
general information on safe (a.k.a. "deferred") signals. If
 you wish to handle a signal 
safely, use this accessor to set the "safe" flag
 in the POSIX::SigAction object:

	 $sigaction->safe(1);

You may also examine the "safe" flag on the output action object which is
 filled in 
when given as the third parameter to POSIX::sigaction():

	 sigaction(SIGINT, $new_action, $old_action);
	 if ($old_action->safe) {
	    # previous SIGINT handler used safe signals
	 }

POSIX::SigRt
%SIGRT

A hash of the POSIX realtime signal handlers. It is an extension of
 the standard %SIG,
the $POSIX::SIGRT{SIGRTMIN} is roughly equivalent
 to $SIG{SIGRTMIN}, but the 
right POSIX moves (see below) are made with
 the POSIX::SigSet and 
POSIX::sigaction instead of accessing the %SIG.

You can set the %POSIX::SIGRT elements to set the POSIX realtime
 signal handlers, 
use delete and exists on the elements, and use scalar on the %POSIX::SIGRT 
to find out how many POSIX realtime
 signals there are available (SIGRTMAX - 
SIGRTMIN + 1, the SIGRTMAX is
 a valid POSIX realtime signal).

Setting the %SIGRT elements is equivalent to calling this:

  sub new {
    my ($rtsig, $handler, $flags) = @_;
    my $sigset = POSIX::SigSet($rtsig);
    my $sigact = POSIX::SigAction->new($handler, $sigset, 
$flags);
    sigaction($rtsig, $sigact);
  }

The flags default to zero, if you want something different you can
 either use local on 
$POSIX::SigRt::SIGACTION_FLAGS, or you can
 derive from POSIX::SigRt and define
your own new() (the tied hash
 STORE method of the %SIGRT calls new($rtsig, 
$handler, $SIGACTION_FLAGS),
 where the $rtsig ranges from zero to SIGRTMAX
- SIGRTMIN + 1).

Just as with any signal, you can use sigaction($rtsig, undef, $oa) to
 retrieve the 
installed signal handler (or, rather, the signal action).

NOTE: whether POSIX realtime signals really work in your system, or
 whether Perl 
has been compiled so that it works with them, is outside
 of this discussion.

SIGRTMIN

Return the minimum POSIX realtime signal number available, or undef
 if no POSIX 
realtime signals are available.

SIGRTMAX

Return the maximum POSIX realtime signal number available, or undef
 if no POSIX 
realtime signals are available.



Perl version 5.10.1 documentation - POSIX

Page 25http://perldoc.perl.org

POSIX::SigSet
new

Create a new SigSet object. This object will be destroyed automatically
 when it is no 
longer needed. Arguments may be supplied to initialize the
 set.

Create an empty set.

	 $sigset = POSIX::SigSet->new;

Create a set with SIGUSR1.

	 $sigset = POSIX::SigSet->new( &POSIX::SIGUSR1 );

addset

Add a signal to a SigSet object.

	 $sigset->addset( &POSIX::SIGUSR2 );

Returns undef on failure.

delset

Remove a signal from the SigSet object.

	 $sigset->delset( &POSIX::SIGUSR2 );

Returns undef on failure.

emptyset

Initialize the SigSet object to be empty.

	 $sigset->emptyset();

Returns undef on failure.

fillset

Initialize the SigSet object to include all signals.

	 $sigset->fillset();

Returns undef on failure.

ismember

Tests the SigSet object to see if it contains a specific signal.

	 if( $sigset->ismember( &POSIX::SIGUSR1 ) ){
		 print "contains SIGUSR1\n";
	 }

POSIX::Termios
new

Create a new Termios object. This object will be destroyed automatically
 when it is no 
longer needed. A Termios object corresponds to the termios
 C struct. new() mallocs a 
new one, getattr() fills it from a file descriptor,
 and setattr() sets a file descriptor's 
parameters to match Termios' contents.

	 $termios = POSIX::Termios->new;

getattr

Get terminal control attributes.



Perl version 5.10.1 documentation - POSIX

Page 26http://perldoc.perl.org

Obtain the attributes for stdin.

	 $termios->getattr( 0 ) # Recommended for clarity.
	 $termios->getattr()

Obtain the attributes for stdout.

	 $termios->getattr( 1 )

Returns undef on failure.

getcc

Retrieve a value from the c_cc field of a termios object. The c_cc field is
 an array so 
an index must be specified.

	 $c_cc[1] = $termios->getcc(1);

getcflag

Retrieve the c_cflag field of a termios object.

	 $c_cflag = $termios->getcflag;

getiflag

Retrieve the c_iflag field of a termios object.

	 $c_iflag = $termios->getiflag;

getispeed

Retrieve the input baud rate.

	 $ispeed = $termios->getispeed;

getlflag

Retrieve the c_lflag field of a termios object.

	 $c_lflag = $termios->getlflag;

getoflag

Retrieve the c_oflag field of a termios object.

	 $c_oflag = $termios->getoflag;

getospeed

Retrieve the output baud rate.

	 $ospeed = $termios->getospeed;

setattr

Set terminal control attributes.

Set attributes immediately for stdout.

	 $termios->setattr( 1, &POSIX::TCSANOW );

Returns undef on failure.

setcc

Set a value in the c_cc field of a termios object. The c_cc field is an
 array so an index 
must be specified.



Perl version 5.10.1 documentation - POSIX

Page 27http://perldoc.perl.org

	 $termios->setcc( &POSIX::VEOF, 1 );

setcflag

Set the c_cflag field of a termios object.

	 $termios->setcflag( $c_cflag | &POSIX::CLOCAL );

setiflag

Set the c_iflag field of a termios object.

	 $termios->setiflag( $c_iflag | &POSIX::BRKINT );

setispeed

Set the input baud rate.

	 $termios->setispeed( &POSIX::B9600 );

Returns undef on failure.

setlflag

Set the c_lflag field of a termios object.

	 $termios->setlflag( $c_lflag | &POSIX::ECHO );

setoflag

Set the c_oflag field of a termios object.

	 $termios->setoflag( $c_oflag | &POSIX::OPOST );

setospeed

Set the output baud rate.

	 $termios->setospeed( &POSIX::B9600 );

Returns undef on failure.

Baud rate values

B38400 B75 B200 B134 B300 B1800 B150 B0 B19200 B1200 B9600 B600 B4800 
B50 B2400 B110

Terminal interface values

TCSADRAIN TCSANOW TCOON TCIOFLUSH TCOFLUSH TCION TCIFLUSH 
TCSAFLUSH TCIOFF TCOOFF

c_cc field values

VEOF VEOL VERASE VINTR VKILL VQUIT VSUSP VSTART VSTOP VMIN VTIME 
NCCS

c_cflag field values

CLOCAL CREAD CSIZE CS5 CS6 CS7 CS8 CSTOPB HUPCL PARENB PARODD

c_iflag field values

BRKINT ICRNL IGNBRK IGNCR IGNPAR INLCR INPCK ISTRIP IXOFF IXON 
PARMRK

c_lflag field values

ECHO ECHOE ECHOK ECHONL ICANON IEXTEN ISIG NOFLSH TOSTOP



Perl version 5.10.1 documentation - POSIX

Page 28http://perldoc.perl.org

c_oflag field values

OPOST

PATHNAME CONSTANTS
Constants

_PC_CHOWN_RESTRICTED _PC_LINK_MAX _PC_MAX_CANON 
_PC_MAX_INPUT _PC_NAME_MAX _PC_NO_TRUNC _PC_PATH_MAX 
_PC_PIPE_BUF _PC_VDISABLE

POSIX CONSTANTS
Constants

_POSIX_ARG_MAX _POSIX_CHILD_MAX _POSIX_CHOWN_RESTRICTED 
_POSIX_JOB_CONTROL _POSIX_LINK_MAX _POSIX_MAX_CANON 
_POSIX_MAX_INPUT _POSIX_NAME_MAX _POSIX_NGROUPS_MAX 
_POSIX_NO_TRUNC _POSIX_OPEN_MAX _POSIX_PATH_MAX 
_POSIX_PIPE_BUF _POSIX_SAVED_IDS _POSIX_SSIZE_MAX 
_POSIX_STREAM_MAX _POSIX_TZNAME_MAX _POSIX_VDISABLE 
_POSIX_VERSION

SYSTEM CONFIGURATION
Constants

_SC_ARG_MAX _SC_CHILD_MAX _SC_CLK_TCK _SC_JOB_CONTROL 
_SC_NGROUPS_MAX _SC_OPEN_MAX _SC_PAGESIZE _SC_SAVED_IDS 
_SC_STREAM_MAX _SC_TZNAME_MAX _SC_VERSION

ERRNO
Constants

E2BIG EACCES EADDRINUSE EADDRNOTAVAIL EAFNOSUPPORT EAGAIN 
EALREADY EBADF
 EBUSY ECHILD ECONNABORTED ECONNREFUSED 
ECONNRESET EDEADLK EDESTADDRREQ
 EDOM EDQUOT EEXIST EFAULT 
EFBIG EHOSTDOWN EHOSTUNREACH EINPROGRESS EINTR
 EINVAL EIO 
EISCONN EISDIR ELOOP EMFILE EMLINK EMSGSIZE ENAMETOOLONG

ENETDOWN ENETRESET ENETUNREACH ENFILE ENOBUFS ENODEV ENOENT 
ENOEXEC
 ENOLCK ENOMEM ENOPROTOOPT ENOSPC ENOSYS ENOTBLK 
ENOTCONN ENOTDIR
 ENOTEMPTY ENOTSOCK ENOTTY ENXIO EOPNOTSUPP 
EPERM EPFNOSUPPORT EPIPE
 EPROCLIM EPROTONOSUPPORT 
EPROTOTYPE ERANGE EREMOTE ERESTART EROFS
 ESHUTDOWN 
ESOCKTNOSUPPORT ESPIPE ESRCH ESTALE ETIMEDOUT ETOOMANYREFS

ETXTBSY EUSERS EWOULDBLOCK EXDEV

FCNTL
Constants

FD_CLOEXEC F_DUPFD F_GETFD F_GETFL F_GETLK F_OK F_RDLCK F_SETFD
F_SETFL F_SETLK F_SETLKW F_UNLCK F_WRLCK O_ACCMODE O_APPEND 
O_CREAT O_EXCL O_NOCTTY O_NONBLOCK O_RDONLY O_RDWR O_TRUNC 
O_WRONLY

FLOAT
Constants

DBL_DIG DBL_EPSILON DBL_MANT_DIG DBL_MAX DBL_MAX_10_EXP 
DBL_MAX_EXP DBL_MIN DBL_MIN_10_EXP DBL_MIN_EXP FLT_DIG 
FLT_EPSILON FLT_MANT_DIG FLT_MAX FLT_MAX_10_EXP FLT_MAX_EXP 
FLT_MIN FLT_MIN_10_EXP FLT_MIN_EXP FLT_RADIX FLT_ROUNDS LDBL_DIG 
LDBL_EPSILON LDBL_MANT_DIG LDBL_MAX LDBL_MAX_10_EXP 



Perl version 5.10.1 documentation - POSIX

Page 29http://perldoc.perl.org

LDBL_MAX_EXP LDBL_MIN LDBL_MIN_10_EXP LDBL_MIN_EXP

LIMITS
Constants

ARG_MAX CHAR_BIT CHAR_MAX CHAR_MIN CHILD_MAX INT_MAX INT_MIN 
LINK_MAX LONG_MAX LONG_MIN MAX_CANON MAX_INPUT MB_LEN_MAX 
NAME_MAX NGROUPS_MAX OPEN_MAX PATH_MAX PIPE_BUF SCHAR_MAX 
SCHAR_MIN SHRT_MAX SHRT_MIN SSIZE_MAX STREAM_MAX TZNAME_MAX 
UCHAR_MAX UINT_MAX ULONG_MAX USHRT_MAX

LOCALE
Constants

LC_ALL LC_COLLATE LC_CTYPE LC_MONETARY LC_NUMERIC LC_TIME

MATH
Constants

HUGE_VAL

SIGNAL
Constants

SA_NOCLDSTOP SA_NOCLDWAIT SA_NODEFER SA_ONSTACK 
SA_RESETHAND SA_RESTART
 SA_SIGINFO SIGABRT SIGALRM SIGCHLD 
SIGCONT SIGFPE SIGHUP SIGILL SIGINT
 SIGKILL SIGPIPE SIGQUIT SIGSEGV 
SIGSTOP SIGTERM SIGTSTP SIGTTIN SIGTTOU
 SIGUSR1 SIGUSR2 SIG_BLOCK 
SIG_DFL SIG_ERR SIG_IGN SIG_SETMASK
 SIG_UNBLOCK

STAT
Constants

S_IRGRP S_IROTH S_IRUSR S_IRWXG S_IRWXO S_IRWXU S_ISGID S_ISUID 
S_IWGRP S_IWOTH S_IWUSR S_IXGRP S_IXOTH S_IXUSR

Macros

S_ISBLK S_ISCHR S_ISDIR S_ISFIFO S_ISREG

STDLIB
Constants

EXIT_FAILURE EXIT_SUCCESS MB_CUR_MAX RAND_MAX

STDIO
Constants

BUFSIZ EOF FILENAME_MAX L_ctermid L_cuserid L_tmpname TMP_MAX

TIME
Constants

CLK_TCK CLOCKS_PER_SEC

UNISTD
Constants

R_OK SEEK_CUR SEEK_END SEEK_SET STDIN_FILENO STDOUT_FILENO 
STDERR_FILENO W_OK X_OK



Perl version 5.10.1 documentation - POSIX

Page 30http://perldoc.perl.org

WAIT
Constants

WNOHANG WUNTRACED

WNOHANG

Do not suspend the calling process until a child process

changes state but instead return immediately.

WUNTRACED

Catch stopped child processes.

Macros

WIFEXITED WEXITSTATUS WIFSIGNALED WTERMSIG WIFSTOPPED WSTOPSIG

WIFEXITED

WIFEXITED($?) returns true if the child process exited 
normally
 (exit() or by falling off the end of main())

WEXITSTATUS

WEXITSTATUS($?) returns the normal exit status of the
child process
 (only meaningful if WIFEXITED($?) is true)

WIFSIGNALED

WIFSIGNALED($?) returns true if the child process 
terminated because
 of a signal

WTERMSIG

WTERMSIG($?) returns the signal the child process 
terminated for
 (only meaningful if WIFSIGNALED($?) is 
true)

WIFSTOPPED

WIFSTOPPED($?) returns true if the child process is 
currently stopped
 (can happen only if you specified the 
WUNTRACED flag to waitpid())

WSTOPSIG

WSTOPSIG($?) returns the signal the child process was
stopped for
 (only meaningful if WIFSTOPPED($?) is 
true)


