
Perl version 5.10.1 documentation - perlcompile

Page 1http://perldoc.perl.org

NAME
perlcompile - Introduction to the Perl Compiler-Translator

DESCRIPTION
Perl has always had a compiler: your source is compiled into an
 internal form (a parse tree) which is
then optimized before being
 run. Since version 5.005, Perl has shipped with a module
 capable of
inspecting the optimized parse tree (B), and this has
 been used to write many useful utilities, including
a module that lets
 you turn your Perl into C source code that can be compiled into a
 native
executable.

The B module provides access to the parse tree, and other modules
 ("back ends") do things with the
tree. Some write it out as
 semi-human-readable text. Another traverses the parse tree to build a

cross-reference of which subroutines, formats, and variables are used
 where. Another checks your
code for dubious constructs. Yet another back
 end dumps the parse tree back out as Perl source,
acting as a source code
 beautifier or deobfuscator.

Because its original purpose was to be a way to produce C code
 corresponding to a Perl program,
and in turn a native executable, the B module and its associated back ends are known as "the

compiler", even though they don't really compile anything.
 Different parts of the compiler are more
accurately a "translator",
 or an "inspector", but people want Perl to have a "compiler
 option" not an
"inspector gadget". What can you do?

This document covers the use of the Perl compiler: which modules
 it comprises, how to use the most
important of the back end modules,
 what problems there are, and how to work around them.

Layout
The compiler back ends are in the B:: hierarchy, and the front-end
 (the module that you, the user of
the compiler, will sometimes
 interact with) is the O module.

Here are the important back ends to know about, with their status
 expressed as a number from 0
(outline for later implementation) to
 10 (if there's a bug in it, we're very surprised):

B::Lint

Complains if it finds dubious constructs in your source code. Status:
 6 (it works adequately,
but only has a very limited number of areas
 that it checks).

B::Deparse

Recreates the Perl source, making an attempt to format it coherently.
 Status: 8 (it works
nicely, but a few obscure things are missing).

B::Xref

Reports on the declaration and use of subroutines and variables.
 Status: 8 (it works nicely, but
still has a few lingering bugs).

Using The Back Ends
The following sections describe how to use the various compiler back
 ends. They're presented
roughly in order of maturity, so that the
 most stable and proven back ends are described first, and the
most
 experimental and incomplete back ends are described last.

The O module automatically enabled the -c flag to Perl, which
 prevents Perl from executing your code
once it has been compiled.
 This is why all the back ends print:

 myperlprogram syntax OK

before producing any other output.

Perl version 5.10.1 documentation - perlcompile

Page 2http://perldoc.perl.org

The Cross Referencing Back End
The cross referencing back end (B::Xref) produces a report on your program,
 breaking down
declarations and uses of subroutines and variables (and
 formats) by file and subroutine. For instance,
here's part of the
 report from the pod2man program that comes with Perl:

 Subroutine clear_noremap
 Package (lexical)
 $ready_to_print i1069, 1079
 Package main
 $& 1086
 $. 1086
 $0 1086
 $1 1087
 $2 1085, 1085
 $3 1085, 1085
 $ARGV 1086
 %HTML_Escapes 1085, 1085

This shows the variables used in the subroutine clear_noremap. The
 variable $ready_to_print
is a my() (lexical) variable, introduced (first declared with my()) on line 1069, and used on
 line 1079.
The variable $& from the main package is used on 1086,
 and so on.

A line number may be prefixed by a single letter:

i

Lexical variable introduced (declared with my()) for the first time.

&

Subroutine or method call.

s

Subroutine defined.

r

Format defined.

The most useful option the cross referencer has is to save the report
 to a separate file. For instance,
to save the report on myperlprogram to the file report:

 $ perl -MO=Xref,-oreport myperlprogram

The Decompiling Back End
The Deparse back end turns your Perl source back into Perl source. It
 can reformat along the way,
making it useful as a deobfuscator. The
 most basic way to use it is:

 $ perl -MO=Deparse myperlprogram

You'll notice immediately that Perl has no idea of how to paragraph
 your code. You'll have to separate
chunks of code from each other
 with newlines by hand. However, watch what it will do with
 one-liners:

 $ perl -MO=Deparse -e '$op=shift||die "usage: $0
 code [...]";chomp(@ARGV=<>)unless@ARGV; for(@ARGV){$was=$_;eval$op;
 die$@ if$@; rename$was,$_ unless$was eq $_}'
 -e syntax OK
 $op = shift @ARGV || die("usage: $0 code [...]");
 chomp(@ARGV = <ARGV>) unless @ARGV;

Perl version 5.10.1 documentation - perlcompile

Page 3http://perldoc.perl.org

 foreach $_ (@ARGV) {
 $was = $_;
 eval $op;
 die $@ if $@;
 rename $was, $_ unless $was eq $_;
 }

The decompiler has several options for the code it generates. For
 instance, you can set the size of
each indent from 4 (as above) to
 2 with:

 $ perl -MO=Deparse,-si2 myperlprogram

The -p option adds parentheses where normally they are omitted:

 $ perl -MO=Deparse -e 'print "Hello, world\n"'
 -e syntax OK
 print "Hello, world\n";
 $ perl -MO=Deparse,-p -e 'print "Hello, world\n"'
 -e syntax OK
 print("Hello, world\n");

See B::Deparse for more information on the formatting options.

The Lint Back End
The lint back end (B::Lint) inspects programs for poor style. One
 programmer's bad style is another
programmer's useful tool, so options
 let you select what is complained about.

To run the style checker across your source code:

 $ perl -MO=Lint myperlprogram

To disable context checks and undefined subroutines:

 $ perl -MO=Lint,-context,-undefined-subs myperlprogram

See B::Lint for information on the options.

Module List for the Compiler Suite
B

This module is the introspective ("reflective" in Java terms)
 module, which allows a Perl
program to inspect its innards. The
 back end modules all use this module to gain access to
the compiled
 parse tree. You, the user of a back end module, will not need to
 interact with B.

O

This module is the front-end to the compiler's back ends. Normally
 called something like this:

 $ perl -MO=Deparse myperlprogram

This is like saying use O 'Deparse' in your Perl program.

B::Concise

This module prints a concise (but complete) version of the Perl parse
 tree. Its output is more
customizable than the one of B::Terse or
 B::Debug (and it can emulate them). This module
useful for people who
 are writing their own back end, or who are learning about the Perl

internals. It's not useful to the average programmer.

B::Debug

Perl version 5.10.1 documentation - perlcompile

Page 4http://perldoc.perl.org

This module dumps the Perl parse tree in verbose detail to STDOUT.
 It's useful for people
who are writing their own back end, or who
 are learning about the Perl internals. It's not useful
to the
 average programmer.

B::Deparse

This module produces Perl source code from the compiled parse tree.
 It is useful in debugging
and deconstructing other people's code,
 also as a pretty-printer for your own source. See The
Decompiling Back End for details about usage.

B::Lint

This module inspects the compiled form of your source code for things
 which, while some
people frown on them, aren't necessarily bad enough
 to justify a warning. For instance, use of
an array in scalar context
 without explicitly saying scalar(@array) is something that Lint

can identify. See The Lint Back End for details about usage.

B::Showlex

This module prints out the my() variables used in a function or a
 file. To get a list of the my()
variables used in the subroutine
 mysub() defined in the file myperlprogram:

 $ perl -MO=Showlex,mysub myperlprogram

To get a list of the my() variables used in the file myperlprogram:

 $ perl -MO=Showlex myperlprogram

[BROKEN]

B::Terse

This module prints the contents of the parse tree, but without as much
 information as
B::Debug. For comparison, print "Hello, world."
 produced 96 lines of output from
B::Debug, but only 6 from B::Terse.

This module is useful for people who are writing their own back end,
 or who are learning about
the Perl internals. It's not useful to the
 average programmer.

B::Xref

This module prints a report on where the variables, subroutines, and
 formats are defined and
used within a program and the modules it
 loads. See The Cross Referencing Back End for
details about
 usage.

KNOWN PROBLEMS
BEGIN{} blocks are executed while compiling your code. Any external
 state that is initialized in
BEGIN{}, such as opening files, initiating
 database connections etc., do not behave properly. To work
around
 this, Perl has an INIT{} block that corresponds to code being executed
 before your program
begins running but after your program has finished
 being compiled. Execution order: BEGIN{},
(possible save of state
 through compiler back-end), INIT{}, program runs, END{}.

AUTHOR
This document was originally written by Nathan Torkington, and is now
 maintained by the
perl5-porters mailing list perl5-porters@perl.org.

