
Perl version 5.10.1 documentation - perlrepository

Page 1http://perldoc.perl.org

NAME
perlrepository - Using the Perl source repository

SYNOPSIS
All of Perl's source code is kept centrally in a Git repository at perl5.git.perl.org. The repository
contains many Perl revisions from
 Perl 1 onwards and all the revisions from Perforce, the version
control
 system we were using previously. This repository is accessible in
 different ways.

The full repository takes up about 80MB of disk space. A check out of
 the blead branch (that is, the
main development branch, which contains
 bleadperl, the development version of perl 5) takes up
about 160MB of
 disk space (including the repository). A build of bleadperl takes up
 about 200MB
(including the repository and the check out).

GETTING ACCESS TO THE REPOSITORY
READ ACCESS VIA THE WEB

You may access the repository over the web. This allows you to browse
 the tree, see recent commits,
subscribe to RSS feeds for the changes,
 search for particular commits and more. You may access it
at:

 http://perl5.git.perl.org/perl.git

A mirror of the repository is found at:

 http://github.com/github/perl

READ ACCESS VIA GIT
You will need a copy of Git for your computer. You can fetch a copy of
 the repository using the Git
protocol (which uses port 9418):

 git clone git://perl5.git.perl.org/perl.git perl-git

This clones the repository and makes a local copy in the perl-git
 directory.

If your local network does not allow you to use port 9418, then you can
 fetch a copy of the repository
over HTTP (this is slower):

 git clone http://perl5.git.perl.org/perl.git perl-http

This clones the repository and makes a local copy in the perl-http
 directory.

WRITE ACCESS TO THE REPOSITORY
If you are a committer, then you can fetch a copy of the repository
 that you can push back on with:

 git clone ssh://perl5.git.perl.org/gitroot/perl.git perl-ssh

This clones the repository and makes a local copy in the perl-ssh
 directory.

If you cloned using the git protocol, which is faster than ssh, then
 you will need to modify your config
in order to enable pushing. Edit .git/config where you will see something like:

 [remote "origin"]
 url = git://perl5.git.perl.org/perl.git

change that to something like this:

 [remote "origin"]

Perl version 5.10.1 documentation - perlrepository

Page 2http://perldoc.perl.org

 url = ssh://perl5.git.perl.org/gitroot/perl.git

NOTE: there are symlinks set up so that the /gitroot is optional and
 since SSH is the default protocol
you can actually shorten the "url" to perl5.git.perl.org:/perl.git.

You can also set up your user name and e-mail address. For example

 % git config user.name "Leon Brocard"
 % git config user.email acme@astray.com

It is also possible to keep origin as a git remote, and add a new
 remote for ssh access:

 % git remote add camel perl5.git.perl.org:/perl.git

This allows you to update your local repository by pulling from origin, which is faster and doesn't
require you to authenticate, and
 to push your changes back with the camel remote:

 % git fetch camel
 % git push camel

The fetch command just updates the camel refs, as the objects
 themselves should have been
fetched when pulling from origin.

The committers have access to 2 servers that serve perl5.git.perl.org.
 One is camel.booking.com,
which is the 'master' repository. The
 perl5.git.perl.org IP address also lives on this machine. The
second
 one is dromedary.booking.com, which can be used for general testing and
 development.
Dromedary syncs the git tree from camel every few minutes,
 you should not push there. Both
machines also have a full CPAN mirror.
 To share files with the general public, dromedary serves your

~/public_html/ as http://users.perl5.git.perl.org/~yourlogin/

OVERVIEW OF THE REPOSITORY
Once you have changed into the repository directory, you can inspect
 it.

After a clone the repository will contain a single local branch, which
 will be the current branch as well,
as indicated by the asterisk.

 % git branch
 * blead

Using the -a switch to branch will also show the remote tracking
 branches in the repository:

 % git branch -a
 * blead
 origin/HEAD
 origin/blead
 ...

The branches that begin with "origin" correspond to the "git remote"
 that you cloned from (which is
named "origin"). Each branch on the
 remote will be exactly tracked by theses branches. You should
NEVER do
 work on these remote tracking branches. You only ever do work in a
 local branch. Local
branches can be configured to automerge (on pull)
 from a designated remote tracking branch. This is
the case with the
 default branch blead which will be configured to merge from the
 remote tracking
branch origin/blead.

You can see recent commits:

 % git log

Perl version 5.10.1 documentation - perlrepository

Page 3http://perldoc.perl.org

And pull new changes from the repository, and update your local
 repository (must be clean first)

 % git pull

Assuming we are on the branch blead immediately after a pull, this
 command would be more or less
equivalent to:

 % git fetch
 % git merge origin/blead

In fact if you want to update your local repository without touching
 your working directory you do:

 % git fetch

And if you want to update your remote-tracking branches for all defined
 remotes simultaneously you
can do

 % git remote update

Neither of these last two commands will update your working directory,
 however both will update the
remote-tracking branches in your
 repository.

To switch to another branch:

 % git checkout origin/maint-5.8-dor

To make a local branch of a remote branch:

 % git checkout -b maint-5.10 origin/maint-5.10

To switch back to blead:

 % git checkout blead

FINDING OUT YOUR STATUS
The most common git command you will use will probably be

 % git status

This command will produce as output a description of the current state
 of the repository, including
modified files and unignored untracked
 files, and in addition it will show things like what files have
been
 staged for the next commit, and usually some useful information about
 how to change things.
For instance the following:

 $ git status
 # On branch blead
 # Your branch is ahead of 'origin/blead' by 1 commit.
 #
 # Changes to be committed:
 # (use "git reset HEAD <file>..." to unstage)
 #
 # modified: pod/perlrepository.pod
 #
 # Changed but not updated:
 # (use "git add <file>..." to update what will be committed)
 #

Perl version 5.10.1 documentation - perlrepository

Page 4http://perldoc.perl.org

 # modified: pod/perlrepository.pod
 #
 # Untracked files:
 # (use "git add <file>..." to include in what will be committed)
 #
 # deliberate.untracked

This shows that there were changes to this document staged for commit,
 and that there were further
changes in the working directory not yet
 staged. It also shows that there was an untracked file in the
working
 directory, and as you can see shows how to change all of this. It also
 shows that there is one
commit on the working branch blead which has
 not been pushed to the origin remote yet. NOTE:
that this output
 is also what you see as a template if you do not provide a message to git commit.

Assuming we commit all the mentioned changes above:

 % git commit -a -m'explain git status and stuff about remotes'
 Created commit daf8e63: explain git status and stuff about remotes
 1 files changed, 83 insertions(+), 3 deletions(-)

We can re-run git status and see something like this:

 % git status
 # On branch blead
 # Your branch is ahead of 'origin/blead' by 2 commits.
 #
 # Untracked files:
 # (use "git add <file>..." to include in what will be committed)
 #
 # deliberate.untracked
 nothing added to commit but untracked files present (use "git add" to
track)

When in doubt, before you do anything else, check your status and read
 it carefully, many questions
are answered directly by the git status
 output.

SUBMITTING A PATCH
If you have a patch in mind for Perl, you should first get a copy of
 the repository:

 % git clone git://perl5.git.perl.org/perl.git perl-git

Then change into the directory:

 % cd perl-git

Alternatively, if you already have a Perl repository, you should ensure
 that you're on the blead branch,
and your repository is up to date:

 % git checkout blead
 % git pull

It's preferable to patch against the latest blead version, since this
 is where new development occurs
for all changes other than critical bug
 fixes. Critical bug fix patches should be made against the
relevant
 maint branches, or should be submitted with a note indicating all the
 branches where the fix
should be applied.

Now that we have everything up to date, we need to create a temporary
 new branch for these

Perl version 5.10.1 documentation - perlrepository

Page 5http://perldoc.perl.org

changes and switch into it:

 % git checkout -b orange

which is the short form of

 % git branch orange
 % git checkout orange

Then make your changes. For example, if Leon Brocard changes his name
 to Orange Brocard, we
should change his name in the AUTHORS file:

 % perl -pi -e 's{Leon Brocard}{Orange Brocard}' AUTHORS

You can see what files are changed:

 % git status
 # On branch orange
 # Changes to be committed:
 # (use "git reset HEAD <file>..." to unstage)
 #
 #	 modified: AUTHORS
 #

And you can see the changes:

 % git diff
 diff --git a/AUTHORS b/AUTHORS
 index 293dd70..722c93e 100644
 --- a/AUTHORS
 +++ b/AUTHORS
 @@ -541,7 +541,7 @@ Lars Hecking
<lhecking@nmrc.ucc.ie>
 Laszlo Molnar <laszlo.molnar@eth.ericsson.se>
 Leif Huhn <leif@hale.dkstat.com>
 Len Johnson <lenjay@ibm.net>
 -Leon Brocard <acme@astray.com>
 +Orange Brocard <acme@astray.com>
 Les Peters <lpeters@aol.net>
 Lesley Binks <lesley.binks@gmail.com>
 Lincoln D. Stein <lstein@cshl.org>

Now commit your change locally:

 % git commit -a -m 'Rename Leon Brocard to Orange Brocard'
 Created commit 6196c1d: Rename Leon Brocard to Orange Brocard
 1 files changed, 1 insertions(+), 1 deletions(-)

You can examine your last commit with:

 % git show HEAD

and if you are not happy with either the description or the patch
 itself you can fix it up by editing the
files once more and then issue:

 % git commit -a --amend

Perl version 5.10.1 documentation - perlrepository

Page 6http://perldoc.perl.org

Now you should create a patch file for all your local changes:

 % git format-patch origin
 0001-Rename-Leon-Brocard-to-Orange-Brocard.patch

You should now send an email to perl5-porters@perl.org with a
 description of your changes, and
include this patch file as an
 attachment.

If you want to delete your temporary branch, you may do so with:

 % git checkout blead
 % git branch -d orange
 error: The branch 'orange' is not an ancestor of your current HEAD.
 If you are sure you want to delete it, run 'git branch -D orange'.
 % git branch -D orange
 Deleted branch orange.

A note on derived files
Be aware that many files in the distribution are derivative--avoid
 patching them, because git won't see
the changes to them, and the build
 process will overwrite them. Patch the originals instead. Most

utilities (like perldoc) are in this category, i.e. patch
 utils/perldoc.PL rather than utils/perldoc. Similarly,
don't create
 patches for files under $src_root/ext from their copies found in
 $install_root/lib. If you are
unsure about the proper location of a
 file that may have gotten copied while building the source

distribution, consult the MANIFEST.

A note on binary files
Since the patch(1) utility cannot deal with binary files, it's
 important that you either avoid the use of
binary files in your patch,
 generate the files dynamically, or that you encode any binary files
 using the
uupacktool.pl utility.

Assuming you needed to include a gzip-encoded file for a module's test
 suite, you might do this as
follows using the uupacktool.pl utility:

 $ perl uupacktool.pl -v -p -D lib/Some/Module/t/src/t.gz
 Writing lib/Some/Module/t/src/t.gz into
lib/Some/Module/t/src/t.gz.packed

This will replace the t.gz file with an encoded counterpart. During make test, before any tests are
run, perl's Makefile will restore
 all the .packed files mentioned in the MANIFEST to their original

name. This means that the test suite does not need to be aware of this
 packing scheme and will not
need to be altered.

Getting your patch accepted
The first thing you should include with your patch is a description of
 the problem that the patch
corrects. If it is a code patch (rather
 than a documentation patch) you should also include a small test
case
 that illustrates the bug (a patch to an existing test file is
 preferred).

If you are submitting a code patch there are several other things that
 you need to do.

Comments, Comments, Comments

Be sure to adequately comment your code. While commenting every line
 is unnecessary,
anything that takes advantage of side effects of
 operators, that creates changes that will be
felt outside of the
 function being patched, or that others may find confusing should be

documented. If you are going to err, it is better to err on the side
 of adding too many
comments than too few.

Style

Perl version 5.10.1 documentation - perlrepository

Page 7http://perldoc.perl.org

In general, please follow the particular style of the code you are
 patching.

In particular, follow these general guidelines for patching Perl
 sources:

 8-wide tabs (no exceptions!)
 4-wide indents for code, 2-wide indents for nested CPP #defines
 try hard not to exceed 79-columns
 ANSI C prototypes
 uncuddled elses and "K&R" style for indenting control constructs
 no C++ style (//) comments
 mark places that need to be revisited with XXX (and revisit
often!)
 opening brace lines up with "if" when conditional spans multiple
 lines; should be at end-of-line otherwise
 in function definitions, name starts in column 0 (return value is
 on
 previous line)
 single space after keywords that are followed by parens, no space
 between function name and following paren
 avoid assignments in conditionals, but if they're unavoidable,
use
 extra paren, e.g. "if (a && (b = c)) ..."
 "return foo;" rather than "return(foo);"
 "if (!foo) ..." rather than "if (foo == FALSE) ..." etc.

Testsuite

When submitting a patch you should make every effort to also include an
 addition to perl's
regression tests to properly exercise your patch. Your testsuite additions should generally
follow these guidelines
 (courtesy of Gurusamy Sarathy <gsar@activestate.com>):

 Know what you're testing. Read the docs, and the source.
 Tend to fail, not succeed.
 Interpret results strictly.
 Use unrelated features (this will flush out bizarre
interactions).
 Use non-standard idioms (otherwise you are not testing
TIMTOWTDI).
 Avoid using hardcoded test numbers whenever possible (the
 EXPECTED/GOT found in t/op/tie.t is much more maintainable,
 and gives better failure reports).
 Give meaningful error messages when a test fails.
 Avoid using qx// and system() unless you are testing for them.
If you
 do use them, make sure that you cover _all_ perl platforms.
 Unlink any temporary files you create.
 Promote unforeseen warnings to errors with $SIG{__WARN__}.
 Be sure to use the libraries and modules shipped with the version
 being tested, not those that were already installed.
 Add comments to the code explaining what you are testing for.
 Make updating the '1..42' string unnecessary. Or make sure that
 you update it.
 Test _all_ behaviors of a given operator, library, or function:
 - All optional arguments
 - Return values in various contexts (boolean, scalar, list,
lvalue)
 - Use both global and lexical variables
 - Don't forget the exceptional, pathological cases.

Perl version 5.10.1 documentation - perlrepository

Page 8http://perldoc.perl.org

ACCEPTING A PATCH
If you have received a patch file generated using the above section,
 you should try out the patch.

First we need to create a temporary new branch for these changes and
 switch into it:

 % git checkout -b experimental

Patches that were formatted by git format-patch are applied with git am:

 % git am 0001-Rename-Leon-Brocard-to-Orange-Brocard.patch
 Applying Rename Leon Brocard to Orange Brocard

If just a raw diff is provided, it is also possible use this two-step
 process:

 % git apply bugfix.diff
 % git commit -a -m "Some fixing" --author="That Guy
<that.guy@internets.com>"

Now we can inspect the change:

 % git show HEAD
 commit b1b3dab48344cff6de4087efca3dbd63548ab5e2
 Author: Leon Brocard <acme@astray.com>
 Date: Fri Dec 19 17:02:59 2008 +0000

 Rename Leon Brocard to Orange Brocard

 diff --git a/AUTHORS b/AUTHORS
 index 293dd70..722c93e 100644
 --- a/AUTHORS
 +++ b/AUTHORS
 @@ -541,7 +541,7 @@ Lars Hecking
<lhecking@nmrc.ucc.ie>
 Laszlo Molnar <laszlo.molnar@eth.ericsson.se>
 Leif Huhn <leif@hale.dkstat.com>
 Len Johnson <lenjay@ibm.net>
 -Leon Brocard <acme@astray.com>
 +Orange Brocard <acme@astray.com>
 Les Peters <lpeters@aol.net>
 Lesley Binks <lesley.binks@gmail.com>
 Lincoln D. Stein <lstein@cshl.org>

If you are a committer to Perl and you think the patch is good, you can
 then merge it into blead then
push it out to the main repository:

 % git checkout blead
 % git merge experimental
 % git push

If you want to delete your temporary branch, you may do so with:

 % git checkout blead
 % git branch -d experimental
 error: The branch 'experimental' is not an ancestor of your current HEAD.
 If you are sure you want to delete it, run 'git branch -D experimental'.
 % git branch -D experimental

Perl version 5.10.1 documentation - perlrepository

Page 9http://perldoc.perl.org

 Deleted branch experimental.

CLEANING A WORKING DIRECTORY
The command git clean can with varying arguments be used as a
 replacement for make clean.

To reset your working directory to a pristine condition you can do:

 git clean -dxf

However, be aware this will delete ALL untracked content. You can use

 git clean -Xf

to remove all ignored untracked files, such as build and test
 byproduct, but leave any manually
created files alone.

If you only want to cancel some uncommitted edits, you can use git
 checkout and give it a list of
files to be reverted, or git checkout
 -f to revert them all.

If you want to cancel one or several commits, you can use git reset.

BISECTING
git provides a built-in way to determine, with a binary search in
 the history, which commit should be
blamed for introducing a given bug.

Suppose that we have a script ~/testcase.pl that exits with 0
 when some behaviour is correct, and
with 1 when it's faulty. We need
 an helper script that automates building perl and running the

testcase:

 % cat ~/run
 #!/bin/sh
 git clean -dxf
 # If you can use ccache, add -Dcc=ccache\ gcc -Dld=gcc to the Configure
line
 sh Configure -des -Dusedevel -Doptimize="-g"
 test -f config.sh || exit 125
 # Correct makefile for newer GNU gcc
 perl -ni -we 'print unless /<(?:built-in|command)/' makefile x2p/makefile
 # if you just need miniperl, replace test_prep with miniperl
 make -j4 test_prep
 -x ./perl || exit 125
 ./perl -Ilib ~/testcase.pl
 ret=$?
 git clean -dxf
 exit $ret

This script may return 125 to indicate that the corresponding commit
 should be skipped. Otherwise, it
returns the status of ~/testcase.pl.

We first enter in bisect mode with:

 % git bisect start

For example, if the bug is present on HEAD but wasn't in 5.10.0, git will learn about this when you
enter:

 % git bisect bad

Perl version 5.10.1 documentation - perlrepository

Page 10http://perldoc.perl.org

 % git bisect good perl-5.10.0
 Bisecting: 853 revisions left to test after this

This results in checking out the median commit between HEAD and perl-5.10.0. We can then run
the bisecting process with:

 % git bisect run ~/run

When the first bad commit is isolated, git bisect will tell you so:

 ca4cfd28534303b82a216cfe83a1c80cbc3b9dc5 is first bad commit
 commit ca4cfd28534303b82a216cfe83a1c80cbc3b9dc5
 Author: Dave Mitchell <davem@fdisolutions.com>
 Date: Sat Feb 9 14:56:23 2008 +0000

 [perl #49472] Attributes + Unknown Error
 ...

 bisect run success

You can peek into the bisecting process with git bisect log and git bisect visualize. git
 bisect reset will get you out of bisect
 mode.

Please note that the first good state must be an ancestor of the
 first bad state. If you want to search
for the commit that solved
 some bug, you have to negate your test case (i.e. exit with 1 if OK
 and 0 if
not) and still mark the lower bound as good and the
 upper as bad. The "first bad commit" has then to
be understood as
 the "first commit where the bug is solved".

git help bisect has much more information on how you can tweak your
 binary searches.

SUBMITTING A PATCH VIA GITHUB
GitHub is a website that makes it easy to fork and publish projects
 with Git. First you should set up a
GitHub account and log in.

Perl's git repository is mirrored on GitHub at this page:

 http://github.com/github/perl/tree/blead

Visit the page and click the "fork" button. This clones the Perl git
 repository for you and provides you
with "Your Clone URL" from which
 you should clone:

 % git clone git@github.com:USERNAME/perl.git perl-github

We shall make the same patch as above, creating a new branch:

 % cd perl-github
 % git remote add upstream git://github.com/github/perl.git
 % git pull upstream blead
 % git checkout -b orange
 % perl -pi -e 's{Leon Brocard}{Orange Brocard}' AUTHORS
 % git commit -a -m 'Rename Leon Brocard to Orange Brocard'
 % git push origin orange

The orange branch has been pushed to GitHub, so you should now send an
 email to
perl5-porters@perl.org with a description of your changes and
 the following information:

Perl version 5.10.1 documentation - perlrepository

Page 11http://perldoc.perl.org

 http://github.com/USERNAME/perl/tree/orange
 git@github.com:USERNAME/perl.git branch orange

MERGING FROM A BRANCH VIA GITHUB
If someone has provided a branch via GitHub and you are a committer,
 you should use the following
in your perl-ssh directory:

 % git remote add dandv git://github.com/dandv/perl.git
 % git fetch

Now you can see the differences between the branch and blead:

 % git diff dandv/blead

And you can see the commits:

 % git log dandv/blead

If you approve of a specific commit, you can cherry pick it:

 % git cherry-pick 3adac458cb1c1d41af47fc66e67b49c8dec2323f

Or you could just merge the whole branch if you like it all:

 % git merge dandv/blead

And then push back to the repository:

 % git push

COMMITTING TO MAINTENANCE VERSIONS
Maintenance versions should only be altered to add critical bug fixes.

To commit to a maintenance version of perl, you need to create a local
 tracking branch:

 % git checkout --track -b maint-5.005 origin/maint-5.005

This creates a local branch named maint-5.005, which tracks the
 remote branch
origin/maint-5.005. Then you can pull, commit, merge
 and push as before.

You can also cherry-pick commits from blead and another branch, by
 using the git cherry-pick
command. It is recommended to use the -x option to git cherry-pick in order to record the SHA1
of the
 original commit in the new commit message.

SEE ALSO
The git documentation, accessible via git help command.

