
Perl version 5.10.1 documentation - perlos2

Page 1http://perldoc.perl.org

NAME
perlos2 - Perl under OS/2, DOS, Win0.3*, Win0.95 and WinNT.

SYNOPSIS
One can read this document in the following formats:

	 man perlos2
	 view perl perlos2
	 explorer perlos2.html
	 info perlos2

to list some (not all may be available simultaneously), or it may
 be read as is: either as README.os2,
or pod/perlos2.pod.

To read the .INF version of documentation (very recommended)
 outside of OS/2, one needs an IBM's
reader (may be available on IBM
 ftp sites (?) (URL anyone?)) or shipped with PC DOS 7.0 and IBM's

Visual Age C++ 3.5.

A copy of a Win* viewer is contained in the "Just add OS/2 Warp" package

 ftp://ftp.software.ibm.com/ps/products/os2/tools/jaow/jaow.zip

in ?:\JUST_ADD\view.exe. This gives one an access to EMX's .INF docs as well (text form is
available in /emx/doc in EMX's distribution). There is also a different viewer named xview.

Note that if you have lynx.exe or netscape.exe installed, you can follow WWW links
 from this
document in .INF format. If you have EMX docs installed correctly, you can follow library links (you
need to have view emxbook
 working by setting EMXBOOK environment variable as it is described
 in
EMX docs).

DESCRIPTION
Target

The target is to make OS/2 one of the best supported platform for
 using/building/developing Perl and
Perl applications, as well as
 make Perl the best language to use under OS/2. The secondary target is

to try to make this work under DOS and Win* as well (but not too hard).

The current state is quite close to this target. Known limitations:

Some *nix programs use fork() a lot; with the mostly useful flavors of
 perl for OS/2 (there are
several built simultaneously) this is
 supported; but some flavors do not support this (e.g.,
when Perl is
 called from inside REXX). Using fork() after useing dynamically loading
extensions would not work with very old
 versions of EMX.

You need a separate perl executable perl__.exe (see perl__.exe)
 if you want to use PM
code in your application (as Perl/Tk or OpenGL
 Perl modules do) without having a text-mode
window present.

While using the standard perl.exe from a text-mode window is possible
 too, I have seen
cases when this causes degradation of the system stability.
 Using perl__.exe avoids such a
degradation.

There is no simple way to access WPS objects. The only way I know
 is via OS2::REXX and
SOM extensions (see OS2::REXX, Som).
 However, we do not have access to
 convenience
methods of Object-REXX. (Is it possible at all? I know
 of no Object-REXX API.) The SOM
extension (currently in alpha-text)
 may eventually remove this shortcoming; however, due to
the fact that
 DII is not supported by the SOM module, using SOM is not as
 convenient as one
would like it.

Please keep this list up-to-date by informing me about other items.

Perl version 5.10.1 documentation - perlos2

Page 2http://perldoc.perl.org

Other OSes
Since OS/2 port of perl uses a remarkable EMX environment, it can
 run (and build extensions, and -
possibly - be built itself) under any
 environment which can run EMX. The current list is DOS,

DOS-inside-OS/2, Win0.3*, Win0.95 and WinNT. Out of many perl flavors,
 only one works, see
perl_.exe.

Note that not all features of Perl are available under these
 environments. This depends on the
features the extender - most
 probably RSX - decided to implement.

Cf. Prerequisites.

Prerequisites
EMX

EMX runtime is required (may be substituted by RSX). Note that
 it is possible to make
perl_.exe to run under DOS without any
 external support by binding emx.exe/rsx.exe to it,
see emxbind. Note
 that under DOS for best results one should use RSX runtime, which

has much more functions working (like fork, popen and so on). In
 fact RSX is required if
there is no VCPI present. Note the
 RSX requires DPMI. Many implementations of DPMI
are known to be very
 buggy, beware!

Only the latest runtime is supported, currently 0.9d fix 03. Perl may run
 under earlier
versions of EMX, but this is not tested.

One can get different parts of EMX from, say

 http://www.leo.org/pub/comp/os/os2/leo/gnu/emx+gcc/
 http://powerusersbbs.com/pub/os2/dev/ [EMX+GCC Development]
 http://hobbes.nmsu.edu/pub/os2/dev/emx/v0.9d/

The runtime component should have the name emxrt.zip.

NOTE. When using emx.exe/rsx.exe, it is enough to have them on your path. One
 does
not need to specify them explicitly (though this

 emx perl_.exe -de 0

will work as well.)

RSX

To run Perl on DPMI platforms one needs RSX runtime. This is
 needed under
DOS-inside-OS/2, Win0.3*, Win0.95 and WinNT (see Other OSes). RSX would not work
with VCPI
 only, as EMX would, it requires DMPI.

Having RSX and the latest sh.exe one gets a fully functional *nix-ish environment under
DOS, say, fork, `` and
 pipe-open work. In fact, MakeMaker works (for static build), so
one
 can have Perl development environment under DOS.

One can get RSX from, say

 ftp://ftp.cdrom.com/pub/os2/emx09c/contrib
 ftp://ftp.uni-bielefeld.de/pub/systems/msdos/misc
 ftp://ftp.leo.org/pub/comp/os/os2/leo/devtools/emx+gcc/contrib

Contact the author on rainer@mathematik.uni-bielefeld.de.

The latest sh.exe with DOS hooks is available in

 http://www.ilyaz.org/software/os2/

as sh_dos.zip or under similar names starting with sh, pdksh etc.

HPFS

Perl does not care about file systems, but the perl library contains
 many files with long

Perl version 5.10.1 documentation - perlos2

Page 3http://perldoc.perl.org

names, so to install it intact one needs a file
 system which supports long file names.

Note that if you do not plan to build the perl itself, it may be
 possible to fool EMX to
truncate file names. This is not supported,
 read EMX docs to see how to do it.

pdksh

To start external programs with complicated command lines (like with
 pipes in between,
and/or quoting of arguments), Perl uses an external
 shell. With EMX port such shell should
be named sh.exe, and located
 either in the wired-in-during-compile locations (usually
F:/bin),
 or in configurable location (see PERL_SH_DIR).

For best results use EMX pdksh. The standard binary (5.2.14 or later) runs
 under DOS
(with RSX) as well, see

 http://www.ilyaz.org/software/os2/

Starting Perl programs under OS/2 (and DOS and...)
Start your Perl program foo.pl with arguments arg1 arg2 arg3 the
 same way as on any other
platform, by

	 perl foo.pl arg1 arg2 arg3

If you want to specify perl options -my_opts to the perl itself (as
 opposed to your program), use

	 perl -my_opts foo.pl arg1 arg2 arg3

Alternately, if you use OS/2-ish shell, like CMD or 4os2, put
 the following at the start of your perl
script:

	 extproc perl -S -my_opts

rename your program to foo.cmd, and start it by typing

	 foo arg1 arg2 arg3

Note that because of stupid OS/2 limitations the full path of the perl
 script is not available when you
use extproc, thus you are forced to
 use -S perl switch, and your script should be on the PATH. As a
plus
 side, if you know a full path to your script, you may still start it
 with

	 perl ../../blah/foo.cmd arg1 arg2 arg3

(note that the argument -my_opts is taken care of by the extproc line
 in your script, see extproc
on the first line).

To understand what the above magic does, read perl docs about -S
 switch - see perlrun, and cmdref
about extproc:

	 view perl perlrun
	 man perlrun
	 view cmdref extproc
	 help extproc

or whatever method you prefer.

There are also endless possibilities to use executable extensions of
 4os2, associations of WPS and
so on... However, if you use
 *nixish shell (like sh.exe supplied in the binary distribution),
 you need to
follow the syntax specified in "Switches" in perlrun.

Perl version 5.10.1 documentation - perlos2

Page 4http://perldoc.perl.org

Note that -S switch supports scripts with additional extensions .cmd, .btm, .bat, .pl as well.

Starting OS/2 (and DOS) programs under Perl
This is what system() (see "system" in perlfunc), `` (see "I/O Operators" in perlop), and open pipe
(see "open" in perlfunc)
 are for. (Avoid exec() (see "exec" in perlfunc) unless you know what you
 do).

Note however that to use some of these operators you need to have a
 sh-syntax shell installed (see
Pdksh, Frequently asked questions), and perl should be able to find it
 (see PERL_SH_DIR).

The cases when the shell is used are:

1 One-argument system() (see "system" in perlfunc), exec() (see "exec" in perlfunc)
 with
redirection or shell meta-characters;

2 Pipe-open (see "open" in perlfunc) with the command which contains redirection or shell
meta-characters;

3 Backticks `` (see "I/O Operators" in perlop) with the command which contains
 redirection or
shell meta-characters;

4 If the executable called by system()/exec()/pipe-open()/`` is a script
 with the "magic" #! line
or extproc line which specifies shell;

5 If the executable called by system()/exec()/pipe-open()/`` is a script
 without "magic" line, and
$ENV{EXECSHELL} is set to shell;

6 If the executable called by system()/exec()/pipe-open()/`` is not
 found (is not this remark
obsolete?);

7 For globbing (see "glob" in perlfunc, "I/O Operators" in perlop)
 (obsolete? Perl uses builtin
globbing nowadays...).

For the sake of speed for a common case, in the above algorithms backslashes in the command
name are not considered as shell metacharacters.

Perl starts scripts which begin with cookies extproc or #! directly, without an intervention of shell.
Perl uses the
 same algorithm to find the executable as pdksh: if the path
 on #! line does not work,
and contains /, then the directory
 part of the executable is ignored, and the executable
 is searched in
. and on PATH. To find arguments for these scripts
 Perl uses a different algorithm than pdksh: up to 3
arguments are recognized, and trailing whitespace is stripped.

If a script
 does not contain such a cooky, then to avoid calling sh.exe, Perl uses
 the same algorithm
as pdksh: if $ENV{EXECSHELL} is set, the
 script is given as the first argument to this command, if not
set, then $ENV{COMSPEC} /c is used (or a hardwired guess if $ENV{COMSPEC} is
 not set).

When starting scripts directly, Perl uses exactly the same algorithm as for the search of script given
by -S command-line option: it will look in
 the current directory, then on components of $ENV{PATH}
using the following order of appended extensions: no extension, .cmd, .btm, .bat, .pl.

Note that Perl will start to look for scripts only if OS/2 cannot start the
 specified application, thus
system 'blah' will not look for a script if there is an executable file blah.exe anywhere on PATH. In

other words, PATH is essentially searched twice: once by the OS for
 an executable, then by Perl for
scripts.

Note also that executable files on OS/2 can have an arbitrary extension, but .exe will be automatically
appended if no dot is present in the name. The workaround is as simple as that: since blah. and blah
denote the same file (at list on FAT and HPFS file systems), to start an executable residing in file
n:/bin/blah (no extension) give an argument n:/bin/blah. (dot appended) to system().

Perl will start PM programs from VIO (=text-mode) Perl process in a
 separate PM session;
 the
opposite is not true: when you start a non-PM program from a PM
 Perl process, Perl would not run it

Perl version 5.10.1 documentation - perlos2

Page 5http://perldoc.perl.org

in a separate session. If a separate
 session is desired, either ensure
 that shell will be used, as in
system 'cmd /c myprog', or start it using
 optional arguments to system() documented in
OS2::Process module. This
 is considered to be a feature.

Frequently asked questions
"It does not work"

Perl binary distributions come with a testperl.cmd script which tries
 to detect common problems with
misconfigured installations. There is a
 pretty large chance it will discover which step of the installation
you
 managed to goof. ;-)

I cannot run external programs
Did you run your programs with -w switch? See "2 (and DOS) programs under Perl" in
Starting OS.

Do you try to run internal shell commands, like `copy a b`
 (internal for cmd.exe), or `glob
 a*b` (internal for ksh)? You
 need to specify your shell explicitly, like `cmd /c copy a b`,
since Perl cannot deduce which commands are internal to your shell.

I cannot embed perl into my program, or use perl.dll from my
 program.
Is your program EMX-compiled with -Zmt -Zcrtdll?

Well, nowadays Perl DLL should be usable from a differently compiled
 program too... If you
can run Perl code from REXX scripts (see OS2::REXX), then there are some other aspect of
interaction which
 are overlooked by the current hackish code to support
 differently-compiled
principal programs.

If everything else fails, you need to build a stand-alone DLL for
 perl. Contact me, I did it once.
Sockets would not work, as a lot of
 other stuff.

Did you use ExtUtils::Embed?

Some time ago I had reports it does not work. Nowadays it is checked
 in the Perl test suite, so
grep ./t subdirectory of the build tree
 (as well as *.t files in the ./lib subdirectory) to find how it

should be done "correctly".

`` and pipe-open do not work under DOS.
This may a variant of just I cannot run external programs, or a
 deeper problem. Basically: you need
RSX (see Prerequisites)
 for these commands to work, and you may need a port of sh.exe which

understands command arguments. One of such ports is listed in Prerequisites under RSX. Do not
forget to set variable PERL_SH_DIR as well.

DPMI is required for RSX.

Cannot start find.exe "pattern" file
The whole idea of the "standard C API to start applications" is that
 the forms foo and "foo" of
program arguments are completely
 interchangable. find breaks this paradigm;

 find "pattern" file
 find pattern file

are not equivalent; find cannot be started directly using the above
 API. One needs a way to surround
the doublequotes in some other
 quoting construction, necessarily having an extra non-Unixish shell in
between.

Use one of

 system 'cmd', '/c', 'find "pattern" file';
 `cmd /c 'find "pattern" file'`

Perl version 5.10.1 documentation - perlos2

Page 6http://perldoc.perl.org

This would start find.exe via cmd.exe via sh.exe via perl.exe, but this is a price to pay if you want
to use
 non-conforming program.

INSTALLATION
Automatic binary installation

The most convenient way of installing a binary distribution of perl is via perl installer install.exe. Just
follow the instructions, and 99% of the
 installation blues would go away.

Note however, that you need to have unzip.exe on your path, and
 EMX environment running. The
latter means that if you just
 installed EMX, and made all the needed changes to Config.sys,
 you may
need to reboot in between. Check EMX runtime by running

	 emxrev

Binary installer also creates a folder on your desktop with some useful
 objects. If you need to change
some aspects of the work of the binary
 installer, feel free to edit the file Perl.pkg. This may be useful

e.g., if you need to run the installer many times and do not want to
 make many interactive changes in
the GUI.

Things not taken care of by automatic binary installation:

PERL_BADLANG

may be needed if you change your codepage after perl installation,
 and
the new value is not supported by EMX. See PERL_BADLANG.

PERL_BADFREE

see PERL_BADFREE.

Config.pm

This file resides somewhere deep in the location you installed your
 perl
library, find it out by

 perl -MConfig -le "print $INC{'Config.pm'}"

While most important values in this file are updated by the binary

installer, some of them may need to be hand-edited. I know no such
 data,
please keep me informed if you find one. Moreover, manual
 changes to
the installed version may need to be accompanied by an edit
 of this file.

NOTE. Because of a typo the binary installer of 5.00305
 would install a variable PERL_SHPATH into
Config.sys. Please
 remove this variable and put PERL_SH_DIR instead.

Manual binary installation
As of version 5.00305, OS/2 perl binary distribution comes split
 into 11 components. Unfortunately, to
enable configurable binary
 installation, the file paths in the zip files are not absolute, but
 relative to
some directory.

Note that the extraction with the stored paths is still necessary
 (default with unzip, specify -d to
pkunzip). However, you
 need to know where to extract the files. You need also to manually
 change
entries in Config.sys to reflect where did you put the
 files. Note that if you have some primitive
unzipper (like pkunzip), you may get a lot of warnings/errors during
 unzipping. Upgrade to
(w)unzip.

Below is the sample of what to do to reproduce the configuration on my
 machine. In VIEW.EXE you
can press Ctrl-Insert now, and
 cut-and-paste from the resulting file - created in the directory you

started VIEW.EXE from.

For each component, we mention environment variables related to each
 installation directory. Either

Perl version 5.10.1 documentation - perlos2

Page 7http://perldoc.perl.org

choose directories to match your
 values of the variables, or create/append-to variables to take into

account the directories.

Perl VIO and PM executables (dynamically linked)

 unzip perl_exc.zip *.exe *.ico -d f:/emx.add/bin
 unzip perl_exc.zip *.dll -d f:/emx.add/dll

(have the directories with *.exe on PATH, and *.dll on
 LIBPATH);

Perl_ VIO executable (statically linked)

 unzip perl_aou.zip -d f:/emx.add/bin

(have the directory on PATH);

Executables for Perl utilities

 unzip perl_utl.zip -d f:/emx.add/bin

(have the directory on PATH);

Main Perl library

 unzip perl_mlb.zip -d f:/perllib/lib

If this directory is exactly the same as the prefix which was compiled
 into perl.exe, you do not
need to change
 anything. However, for perl to find the library if you use a different
 path, you
need to set PERLLIB_PREFIX in Config.sys, see PERLLIB_PREFIX.

Additional Perl modules

 unzip perl_ste.zip -d f:/perllib/lib/site_perl/5.10.1/

Same remark as above applies. Additionally, if this directory is not
 one of directories on @INC
(and @INC is influenced by PERLLIB_PREFIX), you
 need to put this
 directory and subdirectory
./os2 in PERLLIB or PERL5LIB
 variable. Do not use PERL5LIB unless you have it set already.
See "ENVIRONMENT" in perl.

[Check whether this extraction directory is still applicable with
 the new directory
structure layout!]

Tools to compile Perl modules

 unzip perl_blb.zip -d f:/perllib/lib

Same remark as for perl_ste.zip.

Manpages for Perl and utilities

 unzip perl_man.zip -d f:/perllib/man

This directory should better be on MANPATH. You need to have a
 working man to access these
files.

Manpages for Perl modules

 unzip perl_mam.zip -d f:/perllib/man

This directory should better be on MANPATH. You need to have a
 working man to access these
files.

Source for Perl documentation

 unzip perl_pod.zip -d f:/perllib/lib

Perl version 5.10.1 documentation - perlos2

Page 8http://perldoc.perl.org

This is used by the perldoc program (see perldoc), and may be used to
 generate HTML
documentation usable by WWW browsers, and
 documentation in zillions of other formats: info,
LaTeX, Acrobat, FrameMaker and so on. [Use programs such as pod2latex etc.]

Perl manual in .INF format

 unzip perl_inf.zip -d d:/os2/book

This directory should better be on BOOKSHELF.

Pdksh

 unzip perl_sh.zip -d f:/bin

This is used by perl to run external commands which explicitly
 require shell, like the commands
using redirection and shell
 metacharacters. It is also used instead of explicit /bin/sh.

Set PERL_SH_DIR (see PERL_SH_DIR) if you move sh.exe from
 the above location.

Note. It may be possible to use some other sh-compatible shell (untested).

After you installed the components you needed and updated the Config.sys correspondingly, you
need to hand-edit Config.pm. This file resides somewhere deep in the location you
 installed your perl
library, find it out by

 perl -MConfig -le "print $INC{'Config.pm'}"

You need to correct all the entries which look like file paths (they
 currently start with f:/).

Warning
The automatic and manual perl installation leave precompiled paths
 inside perl executables. While
these paths are overwriteable (see PERLLIB_PREFIX, PERL_SH_DIR), some people may prefer

binary editing of paths inside the executables/DLLs.

Accessing documentation
Depending on how you built/installed perl you may have (otherwise
 identical) Perl documentation in
the following formats:

OS/2 .INF file
Most probably the most convenient form. Under OS/2 view it as

 view perl
 view perl perlfunc
 view perl less
 view perl ExtUtils::MakeMaker

(currently the last two may hit a wrong location, but this may improve
 soon). Under Win* see
SYNOPSIS.

If you want to build the docs yourself, and have OS/2 toolkit, run

	 pod2ipf > perl.ipf

in /perllib/lib/pod directory, then

	 ipfc /inf perl.ipf

(Expect a lot of errors during the both steps.) Now move it on your
 BOOKSHELF path.

Perl version 5.10.1 documentation - perlos2

Page 9http://perldoc.perl.org

Plain text
If you have perl documentation in the source form, perl utilities
 installed, and GNU groff installed, you
may use

	 perldoc perlfunc
	 perldoc less
	 perldoc ExtUtils::MakeMaker

to access the perl documentation in the text form (note that you may get
 better results using perl
manpages).

Alternately, try running pod2text on .pod files.

Manpages
If you have man installed on your system, and you installed perl
 manpages, use something like this:

	 man perlfunc
	 man 3 less
	 man ExtUtils.MakeMaker

to access documentation for different components of Perl. Start with

	 man perl

Note that dot (.) is used as a package separator for documentation
 for packages, and as usual,
sometimes you need to give the section - 3
 above - to avoid shadowing by the less(1) manpage.

Make sure that the directory above the directory with manpages is
 on our MANPATH, like this

 set MANPATH=c:/man;f:/perllib/man

for Perl manpages in f:/perllib/man/man1/ etc.

HTML
If you have some WWW browser available, installed the Perl
 documentation in the source form, and
Perl utilities, you can build
 HTML docs. Cd to directory with .pod files, and do like this

	 cd f:/perllib/lib/pod
	 pod2html

After this you can direct your browser the file perl.html in this
 directory, and go ahead with reading
docs, like this:

	 explore file:///f:/perllib/lib/pod/perl.html

Alternatively you may be able to get these docs prebuilt from CPAN.

GNU info files
Users of Emacs would appreciate it very much, especially with CPerl mode loaded. You need to get
latest pod2texi from CPAN,
 or, alternately, the prebuilt info pages.

PDF files
for Acrobat are available on CPAN (may be for slightly older version of
 perl).

Perl version 5.10.1 documentation - perlos2

Page 10http://perldoc.perl.org

LaTeX docs
can be constructed using pod2latex.

BUILD
Here we discuss how to build Perl under OS/2. There is an alternative
 (but maybe older) view on
http://www.shadow.net/~troc/os2perl.html.

The short story
Assume that you are a seasoned porter, so are sure that all the necessary
 tools are already present
on your system, and you know how to get the Perl
 source distribution. Untar it, change to the extract
directory, and

 gnupatch -p0 < os2\diff.configure
 sh Configure -des -D prefix=f:/perllib
 make
 make test
 make install
 make aout_test
 make aout_install

This puts the executables in f:/perllib/bin. Manually move them to the PATH, manually move the built
perl*.dll to LIBPATH (here for
 Perl DLL * is a not-very-meaningful hex checksum), and run

 make installcmd INSTALLCMDDIR=d:/ir/on/path

Assuming that the man-files were put on an appropriate location,
 this completes the installation of
minimal Perl system. (The binary
 distribution contains also a lot of additional modules, and the

documentation in INF format.)

What follows is a detailed guide through these steps.

Prerequisites
You need to have the latest EMX development environment, the full
 GNU tool suite (gawk renamed to
awk, and GNU find.exe
 earlier on path than the OS/2 find.exe, same with sort.exe, to
 check use

 find --version
 sort --version

). You need the latest version of pdksh installed as sh.exe.

Check that you have BSD libraries and headers installed, and - optionally - Berkeley DB headers and
libraries, and crypt.

Possible locations to get the files:

 ftp://hobbes.nmsu.edu/os2/unix/
 ftp://ftp.cdrom.com/pub/os2/unix/
 ftp://ftp.cdrom.com/pub/os2/dev32/
 ftp://ftp.cdrom.com/pub/os2/emx09c/

It is reported that the following archives contain enough utils to
 build perl: gnufutil.zip, gnusutil.zip,
gnututil.zip, gnused.zip, gnupatch.zip, gnuawk.zip, gnumake.zip, gnugrep.zip, bsddev.zip and
ksh527rt.zip (or a later version). Note that all these utilities are
 known to be available from LEO:

 ftp://ftp.leo.org/pub/comp/os/os2/leo/gnu

Note also that the db.lib and db.a from the EMX distribution
 are not suitable for multi-threaded

Perl version 5.10.1 documentation - perlos2

Page 11http://perldoc.perl.org

compile (even single-threaded
 flavor of Perl uses multi-threaded C RTL, for
 compatibility with
XFree86-OS/2). Get a corrected one from

 http://www.ilyaz.org/software/os2/db_mt.zip

If you have exactly the same version of Perl installed already,
 make sure that no copies or perl are
currently running. Later steps
 of the build may fail since an older version of perl.dll loaded into

memory may be found. Running make test becomes meaningless, since
 the test are checking a
previous build of perl (this situation is detected
 and reported by lib/os2_base.t test). Do not forget to
unset PERL_EMXLOAD_SEC in environment.

Also make sure that you have /tmp directory on the current drive,
 and . directory in your LIBPATH.
One may try to correct the
 latter condition by

 set BEGINLIBPATH .\.

if you use something like CMD.EXE or latest versions of 4os2.exe. (Setting BEGINLIBPATH to just .
is ignored by the
 OS/2 kernel.)

Make sure your gcc is good for -Zomf linking: run omflibs
 script in /emx/lib directory.

Check that you have link386 installed. It comes standard with OS/2,
 but may be not installed due to
customization. If typing

 link386

shows you do not have it, do Selective install, and choose Link
 object modules in Optional
system utilities/More. If you get into
 link386 prompts, press Ctrl-C to exit.

Getting perl source
You need to fetch the latest perl source (including developers
 releases). With some probability it is
located in

 http://www.cpan.org/src/5.0
 http://www.cpan.org/src/5.0/unsupported

If not, you may need to dig in the indices to find it in the directory
 of the current maintainer.

Quick cycle of developers release may break the OS/2 build time to
 time, looking into

 http://www.cpan.org/ports/os2/

may indicate the latest release which was publicly released by the
 maintainer. Note that the release
may include some additional patches
 to apply to the current source of perl.

Extract it like this

 tar vzxf perl5.00409.tar.gz

You may see a message about errors while extracting Configure. This is
 because there is a conflict
with a similarly-named file configure.

Change to the directory of extraction.

Application of the patches
You need to apply the patches in ./os2/diff.* like this:

 gnupatch -p0 < os2\diff.configure

Perl version 5.10.1 documentation - perlos2

Page 12http://perldoc.perl.org

You may also need to apply the patches supplied with the binary
 distribution of perl. It also makes
sense to look on the
 perl5-porters mailing list for the latest OS/2-related patches (see
http://www.xray.mpe.mpg.de/mailing-lists/perl5-porters/). Such
 patches usually contain strings /os2/
and patch, so it makes
 sense looking for these strings.

Hand-editing
You may look into the file ./hints/os2.sh and correct anything
 wrong you find there. I do not expect it is
needed anywhere.

Making
 sh Configure -des -D prefix=f:/perllib

prefix means: where to install the resulting perl library. Giving
 correct prefix you may avoid the
need to specify PERLLIB_PREFIX,
 see PERLLIB_PREFIX.

Ignore the message about missing ln, and about -c option to
 tr. The latter is most probably already
fixed, if you see it and can trace
 where the latter spurious warning comes from, please inform me.

Now

 make

At some moment the built may die, reporting a version mismatch or unable to run perl. This means
that you do not have . in
 your LIBPATH, so perl.exe cannot find the needed perl67B2.dll (treat
 these
hex digits as line noise). After this is fixed the build
 should finish without a lot of fuss.

Testing
Now run

 make test

All tests should succeed (with some of them skipped). If you have the
 same version of Perl installed, it
is crucial that you have . early
 in your LIBPATH (or in BEGINLIBPATH), otherwise your tests will
most
 probably test the wrong version of Perl.

Some tests may generate extra messages similar to

A lot of bad free

in database tests related to Berkeley DB. This should be fixed already.
 If it persists, you may
disable this warnings, see PERL_BADFREE.

Process terminated by SIGTERM/SIGINT

This is a standard message issued by OS/2 applications. *nix
 applications die in silence. It is
considered to be a feature. One can
 easily disable this by appropriate sighandlers.

However the test engine bleeds these message to screen in unexpected
 moments. Two
messages of this kind should be present during
 testing.

To get finer test reports, call

 perl t/harness

The report with io/pipe.t failing may look like this:

 Failed Test Status Wstat Total Fail Failed List of failed
 --
 io/pipe.t 12 1 8.33% 9
 7 tests skipped, plus 56 subtests skipped.

Perl version 5.10.1 documentation - perlos2

Page 13http://perldoc.perl.org

 Failed 1/195 test scripts, 99.49% okay. 1/6542 subtests failed, 99.98%
okay.

The reasons for most important skipped tests are:

op/fs.t

18 Checks atime and mtime of stat() - unfortunately, HPFS
 provides only
2sec time granularity (for compatibility with FAT?).

25 Checks truncate() on a filehandle just opened for write - I do not
 know why
this should or should not work.

op/stat.t

Checks stat(). Tests:

4 Checks atime and mtime of stat() - unfortunately, HPFS
 provides only
2sec time granularity (for compatibility with FAT?).

Installing the built perl
If you haven't yet moved perl*.dll onto LIBPATH, do it now.

Run

 make install

It would put the generated files into needed locations. Manually put perl.exe, perl__.exe and
perl___.exe to a location on your
 PATH, perl.dll to a location on your LIBPATH.

Run

 make installcmd INSTALLCMDDIR=d:/ir/on/path

to convert perl utilities to .cmd files and put them on
 PATH. You need to put .EXE-utilities on path
manually. They are
 installed in $prefix/bin, here $prefix is what you gave to Configure, see
Making.

If you use man, either move the installed */man/ directories to
 your MANPATH, or modify MANPATH to
match the location. (One
 could have avoided this by providing a correct manpath option to
./Configure, or editing ./config.sh between configuring and
 making steps.)

a.out-style build
Proceed as above, but make perl_.exe (see perl_.exe) by

 make perl_

test and install by

 make aout_test
 make aout_install

Manually put perl_.exe to a location on your PATH.

Note. The build process for perl_ does not know about all the
 dependencies, so you should make
sure that anything is up-to-date,
 say, by doing

 make perl_dll

first.

Perl version 5.10.1 documentation - perlos2

Page 14http://perldoc.perl.org

Building a binary distribution
[This section provides a short overview only...]

Building should proceed differently depending on whether the version of perl
 you install is already
present and used on your system, or is a new version
 not yet used. The description below assumes
that the version is new, so
 installing its DLLs and .pm files will not disrupt the operation of your
 system
even if some intermediate steps are not yet fully working.

The other cases require a little bit more convoluted procedures. Below I
 suppose that the current
version of Perl is 5.8.2, so the executables are
 named accordingly.

1. Fully build and test the Perl distribution. Make sure that no tests are
 failing with test and
aout_test targets; fix the bugs in Perl and
 the Perl test suite detected by these tests. Make
sure that all_test
 make target runs as clean as possible. Check that os2/perlrexx.cmd

runs fine.

2. Fully install Perl, including installcmd target. Copy the generated DLLs
 to LIBPATH; copy
the numbered Perl executables (as in perl5.8.2.exe)
 to PATH; copy perl_.exe to PATH as
perl_5.8.2.exe. Think whether
 you need backward-compatibility DLLs. In most cases you
do not need to install
 them yet; but sometime this may simplify the following steps.

3. Make sure that CPAN.pm can download files from CPAN. If not, you may need
 to manually
install Net::FTP.

4. Install the bundle Bundle::OS2_default

 perl5.8.2 -MCPAN -e "install Bundle::OS2_default" < nul |& tee
00cpan_i_1

This may take a couple of hours on 1GHz processor (when run the first time).
 And this should
not be necessarily a smooth procedure. Some modules may not
 specify required
dependencies, so one may need to repeat this procedure several
 times until the results
stabilize.

 perl5.8.2 -MCPAN -e "install Bundle::OS2_default" < nul |& tee
00cpan_i_2
 perl5.8.2 -MCPAN -e "install Bundle::OS2_default" < nul |& tee
00cpan_i_3

Even after they stabilize, some tests may fail.

Fix as many discovered bugs as possible. Document all the bugs which are not
 fixed, and all
the failures with unknown reasons. Inspect the produced logs 00cpan_i_1 to find suspiciously
skipped tests, and other fishy events.

Keep in mind that installation of some modules may fail too: for example,
 the DLLs to update
may be already loaded by CPAN.pm. Inspect the install
 logs (in the example above
00cpan_i_1 etc) for errors, and install things
 manually, as in

 cd $CPANHOME/.cpan/build/Digest-MD5-2.31
 make install

Some distributions may fail some tests, but you may want to install them
 anyway (as above, or
via force install command of CPAN.pm shell-mode).

Since this procedure may take quite a long time to complete, it makes sense
 to "freeze" your
CPAN configuration by disabling periodic updates of the
 local copy of CPAN index: set
index_expire to some big value (I use 365),
 then save the settings

 CPAN> o conf index_expire 365
 CPAN> o conf commit

Perl version 5.10.1 documentation - perlos2

Page 15http://perldoc.perl.org

Reset back to the default value 1 when you are finished.

5. When satisfied with the results, rerun the installcmd target. Now you
 can copy
perl5.8.2.exe to perl.exe, and install the other OMF-build
 executables: perl__.exe
etc. They are ready to be used.

6. Change to the ./pod directory of the build tree, download the Perl logo CamelGrayBig.BMP,
and run

 (perl2ipf > perl.ipf) |& tee 00ipf
 ipfc /INF perl.ipf |& tee 00inf

This produces the Perl docs online book perl.INF. Install in on BOOKSHELF path.

7. Now is the time to build statically linked executable perl_.exe which
 includes newly-installed
via Bundle::OS2_default modules. Doing testing
 via CPAN.pm is going to be painfully
slow, since it statically links
 a new executable per XS extension.

Here is a possible workaround: create a toplevel Makefile.PL in $CPANHOME/.cpan/build/
with contents being (compare with Making executables with a custom collection of statically
loaded extensions)

 use ExtUtils::MakeMaker;
 WriteMakefile NAME => 'dummy';

execute this as

 perl_5.8.2.exe Makefile.PL <nul |& tee 00aout_c1
 make -k all test <nul |& 00aout_t1

Again, this procedure should not be absolutely smooth. Some Makefile.PL's
 in
subdirectories may be buggy, and would not run as "child" scripts. The
 interdependency of
modules can strike you; however, since non-XS modules
 are already installed, the
prerequisites of most modules have a very good
 chance to be present.

If you discover some glitches, move directories of problematic modules to a
 different location;
if these modules are non-XS modules, you may just ignore
 them - they are already installed;
the remaining, XS, modules you need to
 install manually one by one.

After each such removal you need to rerun the Makefile.PL/make process;
 usually this
procedure converges soon. (But be sure to convert all the
 necessary external C libraries from
.lib format to .a format: run one of

 emxaout foo.lib
 emximp -o foo.a foo.lib

whichever is appropriate.) Also, make sure that the DLLs for external
 libraries are usable with
with executables compiled without -Zmtd options.

When you are sure that only a few subdirectories
 lead to failures, you may want to add -j4
option to make to speed up
 skipping subdirectories with already finished build.

When you are satisfied with the results of tests, install the build C libraries
 for extensions:

 make install |& tee 00aout_i

Now you can rename the file ./perl.exe generated during the last phase
 to perl_5.8.2.exe;
place it on PATH; if there is an inter-dependency
 between some XS modules, you may need to
repeat the test/install loop
 with this new executable and some excluded modules - until
the procedure
 converges.

Now you have all the necessary .a libraries for these Perl modules in the
 places where Perl
builder can find it. Use the perl builder: change to an
 empty directory, create a "dummy"
Makefile.PL again, and run

Perl version 5.10.1 documentation - perlos2

Page 16http://perldoc.perl.org

 perl_5.8.2.exe Makefile.PL |& tee 00c
 make perl		 |& tee 00p

This should create an executable ./perl.exe with all the statically loaded
 extensions built in.
Compare the generated perlmain.c files to make sure
 that during the iterations the number of
loaded extensions only increases.
 Rename ./perl.exe to perl_5.8.2.exe on PATH.

When it converges, you got a functional variant of perl_5.8.2.exe; copy it
 to perl_.exe. You
are done with generation of the local Perl installation.

8. Make sure that the installed modules are actually installed in the location
 of the new Perl, and
are not inherited from entries of @INC given for
 inheritance from the older versions of Perl: set
PERLLIB_582_PREFIX to
 redirect the new version of Perl to a new location, and copy the
installed
 files to this new location. Redo the tests to make sure that the versions of
 modules
inherited from older versions of Perl are not needed.

Actually, the log output of pod2ipf during the step 6 gives a very detailed
 info about which
modules are loaded from which place; so you may use it as
 an additional verification tool.

Check that some temporary files did not make into the perl install tree.
 Run something like this

 pfind . -f
"!(/\.(pm|pl|ix|al|h|a|lib|txt|pod|imp|bs|dll|ld|bs|inc|xbm|yml|cgi|u
u|e2x|skip|packlist|eg|cfg|html|pub|enc|all|ini|po|pot)$/i or
/^\w+$/") | less

in the install tree (both top one and sitelib one).

Compress all the DLLs with lxlite. The tiny .exe can be compressed with /c:max (the bug only
appears when there is a fixup in the last 6 bytes of a
 page (?); since the tiny executables are
much smaller than a page, the bug
 will not hit). Do not compress perl_.exe - it would not
work under DOS.

9. Now you can generate the binary distribution. This is done by running the
 test of the CPAN
distribution OS2::SoftInstaller. Tune up the file test.pl to suit the layout of current
version of Perl first. Do not
 forget to pack the necessary external DLLs accordingly. Include
the
 description of the bugs and test suite failures you could not fix. Include
 the small-stack
versions of Perl executables from Perl build directory.

Include perl5.def so that people can relink the perl DLL preserving
 the binary compatibility, or
can create compatibility DLLs. Include the diff
 files (diff -pu old new) of fixes you did so
that people can rebuild your
 version. Include perl5.map so that one can use remote
debugging.

10. Share what you did with the other people. Relax. Enjoy fruits of your work.

11. Brace yourself for thanks, bug reports, hate mail and spam coming as result
 of the previous
step. No good deed should remain unpunished!

Building custom .EXE files
The Perl executables can be easily rebuilt at any moment. Moreover, one can
 use the embedding
interface (see perlembed) to make very customized
 executables.

Making executables with a custom collection of statically loaded extensions
It is a little bit easier to do so while decreasing the list of statically
 loaded extensions. We discuss this
case only here.

1. Change to an empty directory, and create a placeholder <Makefile.PL>:

 use ExtUtils::MakeMaker;
 WriteMakefile NAME => 'dummy';

Perl version 5.10.1 documentation - perlos2

Page 17http://perldoc.perl.org

2. Run it with the flavor of Perl (perl.exe or perl_.exe) you want to
 rebuild.

 perl_ Makefile.PL

3. Ask it to create new Perl executable:

 make perl

(you may need to manually add PERLTYPE=-DPERL_CORE to this commandline on
 some
versions of Perl; the symptom is that the command-line globbing does not
 work from OS/2
shells with the newly-compiled executable; check with

 .\perl.exe -wle "print for @ARGV" *

).

4. The previous step created perlmain.c which contains a list of newXS() calls
 near the end.
Removing unnecessary calls, and rerunning

 make perl

will produce a customized executable.

Making executables with a custom search-paths
The default perl executable is flexible enough to support most usages.
 However, one may want
something yet more flexible; for example, one may want
 to find Perl DLL relatively to the location of
the EXE file; or one may want
 to ignore the environment when setting the Perl-library search patch,
etc.

If you fill comfortable with embedding interface (see perlembed), such
 things are easy to do repeating
the steps outlined in Making executables with a custom collection of statically loaded extensions, and

doing more comprehensive edits to main() of perlmain.c. The people with
 little desire to understand
Perl can just rename main(), and do necessary
 modification in a custom main() which calls the
renamed function in appropriate
 time.

However, there is a third way: perl DLL exports the main() function and several
 callbacks to customize
the search path. Below is a complete example of a
 "Perl loader" which

1. Looks for Perl DLL in the directory $exedir/../dll;

2. Prepends the above directory to BEGINLIBPATH;

3. Fails if the Perl DLL found via BEGINLIBPATH is different from what was
 loaded on step 1;
e.g., another process could have loaded it from LIBPATH
 or from a different value of
BEGINLIBPATH. In these cases one needs to
 modify the setting of the system so that this
other process either does not
 run, or loads the DLL from BEGINLIBPATH with
LIBPATHSTRICT=T (available
 with kernels after September 2000).

4. Loads Perl library from $exedir/../dll/lib/.

5. Uses Bourne shell from $exedir/../dll/sh/ksh.exe.

For best results compile the C file below with the same options as the Perl
 DLL. However, a lot of
functionality will work even if the executable is not
 an EMX applications, e.g., if compiled with

 gcc -Wall -DDOSISH -DOS2=1 -O2 -s -Zomf -Zsys perl-starter.c
-DPERL_DLL_BASENAME=\"perl312F\" -Zstack 8192 -Zlinker /PM:VIO

Here is the sample C file:

 #define INCL_DOS

Perl version 5.10.1 documentation - perlos2

Page 18http://perldoc.perl.org

 #define INCL_NOPM
 /* These are needed for compile if os2.h includes os2tk.h, not os2emx.h
*/
 #define INCL_DOSPROCESS
 #include <os2.h>

 #include "EXTERN.h"
 #define PERL_IN_MINIPERLMAIN_C
 #include "perl.h"

 static char *me;
 HMODULE handle;

 static void
 die_with(char *msg1, char *msg2, char *msg3, char *msg4)
 {
 ULONG c;
 char *s = " error: ";

 DosWrite(2, me, strlen(me), &c);
 DosWrite(2, s, strlen(s), &c);
 DosWrite(2, msg1, strlen(msg1), &c);
 DosWrite(2, msg2, strlen(msg2), &c);
 DosWrite(2, msg3, strlen(msg3), &c);
 DosWrite(2, msg4, strlen(msg4), &c);
 DosWrite(2, "\r\n", 2, &c);
 exit(255);
 }

 typedef ULONG (*fill_extLibpath_t)(int type, char *pre, char *post, int
replace, char *msg);
 typedef int (*main_t)(int type, char *argv[], char *env[]);
 typedef int (*handler_t)(void* data, int which);

 #ifndef PERL_DLL_BASENAME
 # define PERL_DLL_BASENAME "perl"
 #endif

 static HMODULE
 load_perl_dll(char *basename)
 {
 char buf[300], fail[260];
 STRLEN l, dirl;
 fill_extLibpath_t f;
 ULONG rc_fullname;
 HMODULE handle, handle1;

 if (_execname(buf, sizeof(buf) - 13) != 0)
 die_with("Can't find full path: ", strerror(errno), "", "");
 /* XXXX Fill `me' with new value */
 l = strlen(buf);
 while (l && buf[l-1] != '/' && buf[l-1] != '\\')
 l--;

Perl version 5.10.1 documentation - perlos2

Page 19http://perldoc.perl.org

 dirl = l - 1;
 strcpy(buf + l, basename);
 l += strlen(basename);
 strcpy(buf + l, ".dll");
 if ((rc_fullname = DosLoadModule(fail, sizeof fail, buf, &handle))
!= 0
 && DosLoadModule(fail, sizeof fail, basename, &handle) != 0)
 die_with("Can't load DLL ", buf, "", "");
 if (rc_fullname)
 return handle;		 /* was loaded with short name; all is fine */
 if (DosQueryProcAddr(handle, 0, "fill_extLibpath", (PFN*)&f))
 die_with(buf, ": DLL exports no symbol ", "fill_extLibpath", "");
 buf[dirl] = 0;
 if (f(0 /*BEGINLIBPATH*/, buf /* prepend */, NULL /* append */,
 0 /* keep old value */, me))
 die_with(me, ": prepending BEGINLIBPATH", "", "");
 if (DosLoadModule(fail, sizeof fail, basename, &handle1) != 0)
 die_with(me, ": finding perl DLL again via BEGINLIBPATH", "",
"");
 buf[dirl] = '\\';
 if (handle1 != handle) {
 if (DosQueryModuleName(handle1, sizeof(fail), fail))
 strcpy(fail, "???");
 die_with(buf, ":\n\tperl DLL via BEGINLIBPATH is different:
\n\t",
 fail,
 "\n\tYou may need to manipulate global BEGINLIBPATH and
LIBPATHSTRICT"
 "\n\tso that the other copy is loaded via
BEGINLIBPATH.");
 }
 return handle;
 }

 int
 main(int argc, char **argv, char **env)
 {
 main_t f;
 handler_t h;

 me = argv[0];
 /**/
 handle = load_perl_dll(PERL_DLL_BASENAME);

 if (DosQueryProcAddr(handle, 0, "Perl_OS2_handler_install",
(PFN*)&h))
 die_with(PERL_DLL_BASENAME, ": DLL exports no symbol ",
"Perl_OS2_handler_install", "");
 if (!h((void *)"~installprefix", Perlos2_handler_perllib_from)
 || !h((void *)"~dll", Perlos2_handler_perllib_to)
 || !h((void *)"~dll/sh/ksh.exe", Perlos2_handler_perl_sh))
 die_with(PERL_DLL_BASENAME, ": Can't install @INC manglers", "",
"");

 if (DosQueryProcAddr(handle, 0, "dll_perlmain", (PFN*)&f))

Perl version 5.10.1 documentation - perlos2

Page 20http://perldoc.perl.org

 die_with(PERL_DLL_BASENAME, ": DLL exports no symbol ",
"dll_perlmain", "");
 return f(argc, argv, env);
 }

Build FAQ
Some / became \ in pdksh.

You have a very old pdksh. See Prerequisites.

'errno' - unresolved external
You do not have MT-safe db.lib. See Prerequisites.

Problems with tr or sed
reported with very old version of tr and sed.

Some problem (forget which ;-)
You have an older version of perl.dll on your LIBPATH, which
 broke the build of extensions.

Library ... not found
You did not run omflibs. See Prerequisites.

Segfault in make
You use an old version of GNU make. See Prerequisites.

op/sprintf test failure
This can result from a bug in emx sprintf which was fixed in 0.9d fix 03.

Specific (mis)features of OS/2 port
setpriority, getpriority

Note that these functions are compatible with *nix, not with the older
 ports of '94 - 95. The priorities
are absolute, go from 32 to -95,
 lower is quicker. 0 is the default priority.

WARNING. Calling getpriority on a non-existing process could lock
 the system before Warp3
fixpak22. Starting with Warp3, Perl will use
 a workaround: it aborts getpriority() if the process is not
present.
 This is not possible on older versions 2.*, and has a race
 condition anyway.

system()
Multi-argument form of system() allows an additional numeric
 argument. The meaning of this
argument is described in OS2::Process.

When finding a program to run, Perl first asks the OS to look for executables
 on PATH (OS/2 adds
extension .exe if no extension is present).
 If not found, it looks for a script with possible extensions
added in this order: no extension, .cmd, .btm, .bat, .pl. If found, Perl checks the start of the file for
magic
 strings "#!" and "extproc ". If found, Perl uses the rest of the
 first line as the beginning of
the command line to run this script. The
 only mangling done to the first line is extraction of arguments
(currently
 up to 3), and ignoring of the path-part of the "interpreter" name if it can't
 be found using the
full path.

E.g., system 'foo', 'bar', 'baz' may lead Perl to finding C:/emx/bin/foo.cmd with the first line
being

 extproc /bin/bash -x -c

If /bin/bash.exe is not found, then Perl looks for an executable bash.exe on PATH. If found in
C:/emx.add/bin/bash.exe, then the above system() is
 translated to

Perl version 5.10.1 documentation - perlos2

Page 21http://perldoc.perl.org

 system qw(C:/emx.add/bin/bash.exe -x -c C:/emx/bin/foo.cmd bar baz)

One additional translation is performed: instead of /bin/sh Perl uses
 the hardwired-or-customized shell
(see PERL_SH_DIR).

The above search for "interpreter" is recursive: if bash executable is not
 found, but bash.btm is found,
Perl will investigate its first line etc.
 The only hardwired limit on the recursion depth is implicit: there is
a limit
 4 on the number of additional arguments inserted before the actual arguments
 given to
system(). In particular, if no additional arguments are specified
 on the "magic" first lines, then the limit
on the depth is 4.

If Perl finds that the found executable is of PM type when the
 current session is not, it will start the
new process in a separate session of
 necessary type. Call via OS2::Process to disable this magic.

WARNING. Due to the described logic, you need to explicitly
 specify .com extension if needed.
Moreover, if the executable perl5.6.1 is requested, Perl will not look for perl5.6.1.exe.
 [This may
change in the future.]

extproc on the first line
If the first chars of a Perl script are "extproc ", this line is treated
 as #!-line, thus all the switches
on this line are processed (twice
 if script was started via cmd.exe). See "DESCRIPTION" in perlrun.

Additional modules:
OS2::Process, OS2::DLL, OS2::REXX, OS2::PrfDB, OS2::ExtAttr. These
 modules provide access to
additional numeric argument for system
 and to the information about the running process,
 to DLLs
having functions with REXX signature and to the REXX runtime, to
 OS/2 databases in the .INI format,
and to Extended Attributes.

Two additional extensions by Andreas Kaiser, OS2::UPM, and OS2::FTP, are included into ILYAZ
directory, mirrored on CPAN.
 Other OS/2-related extensions are available too.

Prebuilt methods:
File::Copy::syscopy

used by File::Copy::copy, see File::Copy.

DynaLoader::mod2fname

used by DynaLoader for DLL name mangling.

Cwd::current_drive()

Self explanatory.

Cwd::sys_chdir(name)

leaves drive as it is.

Cwd::change_drive(name)

chanes the "current" drive.

Cwd::sys_is_absolute(name)

means has drive letter and is_rooted.

Cwd::sys_is_rooted(name)

means has leading [/\\] (maybe after a drive-letter:).

Cwd::sys_is_relative(name)

means changes with current dir.

Cwd::sys_cwd(name)

Perl version 5.10.1 documentation - perlos2

Page 22http://perldoc.perl.org

Interface to cwd from EMX. Used by Cwd::cwd.

Cwd::sys_abspath(name, dir)

Really really odious function to implement. Returns absolute name of
 file which would have
name if CWD were dir. Dir defaults to the
 current dir.

Cwd::extLibpath([type])

Get current value of extended library search path. If type is
 present and positive, works with
END_LIBPATH, if negative, works
 with LIBPATHSTRICT, otherwise with BEGIN_LIBPATH.

Cwd::extLibpath_set(path [, type])

Set current value of extended library search path. If type is
 present and positive, works with
<END_LIBPATH>, if negative, works
 with LIBPATHSTRICT, otherwise with BEGIN_LIBPATH.

OS2::Error(do_harderror,do_exception)

Returns undef if it was not called yet, otherwise bit 1 is
 set if on the previous call
do_harderror was enabled, bit
 2 is set if on previous call do_exception was enabled.

This function enables/disables error popups associated with hardware errors (Disk not ready
etc.) and software exceptions.

I know of no way to find out the state of popups before the first call
 to this function.

OS2::Errors2Drive(drive)

Returns undef if it was not called yet, otherwise return false if errors
 were not requested to be
written to a hard drive, or the drive letter if
 this was requested.

This function may redirect error popups associated with hardware errors
 (Disk not ready etc.)
and software exceptions to the file POPUPLOG.OS2 at
 the root directory of the specified
drive. Overrides OS2::Error() specified
 by individual programs. Given argument undef will
disable redirection.

Has global effect, persists after the application exits.

I know of no way to find out the state of redirection of popups to the disk before the first call to
this function.

OS2::SysInfo()

Returns a hash with system information. The keys of the hash are

	 MAX_PATH_LENGTH, MAX_TEXT_SESSIONS, MAX_PM_SESSIONS,
	 MAX_VDM_SESSIONS, BOOT_DRIVE, DYN_PRI_VARIATION,
	 MAX_WAIT, MIN_SLICE, MAX_SLICE, PAGE_SIZE,
	 VERSION_MAJOR, VERSION_MINOR, VERSION_REVISION,
	 MS_COUNT, TIME_LOW, TIME_HIGH, TOTPHYSMEM, TOTRESMEM,
	 TOTAVAILMEM, MAXPRMEM, MAXSHMEM, TIMER_INTERVAL,
	 MAX_COMP_LENGTH, FOREGROUND_FS_SESSION,
	 FOREGROUND_PROCESS

OS2::BootDrive()

Returns a letter without colon.

OS2::MorphPM(serve), OS2::UnMorphPM(serve)

Transforms the current application into a PM application and back.
 The argument true means
that a real message loop is going to be served.
 OS2::MorphPM() returns the PM message
queue handle as an integer.

See Centralized management of resources for additional details.

OS2::Serve_Messages(force)

Perl version 5.10.1 documentation - perlos2

Page 23http://perldoc.perl.org

Fake on-demand retrieval of outstanding PM messages. If force is false,
 will not dispatch
messages if a real message loop is known to
 be present. Returns number of messages
retrieved.

Dies with "QUITing..." if WM_QUIT message is obtained.

OS2::Process_Messages(force [, cnt])

Retrieval of PM messages until window creation/destruction. If force is false, will not
dispatch messages if a real message loop
 is known to be present.

Returns change in number of windows. If cnt is given,
 it is incremented by the number of
messages retrieved.

Dies with "QUITing..." if WM_QUIT message is obtained.

OS2::_control87(new,mask)

the same as _control87(3) of EMX. Takes integers as arguments, returns
 the previous
coprocessor control word as an integer. Only bits in new which
 are present in mask are
changed in the control word.

OS2::get_control87()

gets the coprocessor control word as an integer.

OS2::set_control87_em(new=MCW_EM,mask=MCW_EM)

The variant of OS2::_control87() with default values good for
 handling exception mask: if no
mask, uses exception mask part of new
 only. If no new, disables all the floating point
exceptions.

See Misfeatures for details.

OS2::DLLname([how [, \&xsub]])

Gives the information about the Perl DLL or the DLL containing the C
 function bound to by
&xsub. The meaning of how is: default (2):
 full name; 0: handle; 1: module name.

(Note that some of these may be moved to different libraries -
 eventually).

Prebuilt variables:
$OS2::emx_rev

numeric value is the same as _emx_rev of EMX, a string value the same
 as _emx_vprt
(similar to 0.9c).

$OS2::emx_env

same as _emx_env of EMX, a number similar to 0x8001.

$OS2::os_ver

a number OS_MAJOR + 0.001 * OS_MINOR.

$OS2::is_aout

true if the Perl library was compiled in AOUT format.

$OS2::can_fork

true if the current executable is an AOUT EMX executable, so Perl can
 fork. Do not use this,
use the portable check for
 $Config::Config{dfork}.

$OS2::nsyserror

This variable (default is 1) controls whether to enforce the contents
 of $^E to start with
SYS0003-like id. If set to 0, then the string
 value of $^E is what is available from the OS/2
message file. (Some
 messages in this file have an SYS0003-like id prepended, some not.)

Perl version 5.10.1 documentation - perlos2

Page 24http://perldoc.perl.org

Misfeatures
Since flock(3) is present in EMX, but is not functional, it is emulated by perl. To disable the
emulations, set environment variable USE_PERL_FLOCK=0.

Here is the list of things which may be "broken" on
 EMX (from EMX docs):

The functions recvmsg(3), sendmsg(3), and socketpair(3) are not
 implemented.

sock_init(3) is not required and not implemented.

flock(3) is not yet implemented (dummy function). (Perl has a workaround.)

kill(3): Special treatment of PID=0, PID=1 and PID=-1 is not implemented.

waitpid(3):

 WUNTRACED
	 Not implemented.
 waitpid() is not implemented for negative values of PID.

Note that kill -9 does not work with the current version of EMX.

See Text-mode filehandles.

Unix-domain sockets on OS/2 live in a pseudo-file-system /sockets/....
 To avoid a failure
to create a socket with a name of a different form, "/socket/" is prepended to the socket
name (unless it starts with this
 already).

This may lead to problems later in case the socket is accessed via the
 "usual" file-system calls
using the "initial" name.

Apparently, IBM used a compiler (for some period of time around '95?) which
 changes FP
mask right and left. This is not that bad for IBM's
 programs, but the same compiler was used
for DLLs which are used with
 general-purpose applications. When these DLLs are used, the
state of
 floating-point flags in the application is not predictable.

What is much worse, some DLLs change the floating point flags when in
 _DLLInitTerm() (e.g.,
TCP32IP). This means that even if you do not call
 any function in the DLL, just the act of
loading this DLL will reset your
 flags. What is worse, the same compiler was used to compile
some HOOK DLLs.
 Given that HOOK dlls are executed in the context of all the applications
 in
the system, this means a complete unpredictablity of floating point
 flags on systems using
such HOOK DLLs. E.g., GAMESRVR.DLL of DIVE
 origin changes the floating point flags on
each write to the TTY of a VIO
 (windowed text-mode) applications.

Some other (not completely debugged) situations when FP flags change include
 some video
drivers (?), and some operations related to creation of the windows.
 People who code
OpenGL may have more experience on this.

Perl is generally used in the situation when all the floating-point
 exceptions are ignored, as is
the default under EMX. If they are not ignored,
 some benign Perl programs would get a
SIGFPE and would die a horrible death.

To circumvent this, Perl uses two hacks. They help against one type of
 damage only: FP flags
changed when loading a DLL.

One of the hacks is to disable floating point exceptions on Perl startup (as
 is the default with
EMX). This helps only with compile-time-linked DLLs
 changing the flags before main() had a
chance to be called.

The other hack is to restore FP flags after a call to dlopen(). This helps
 against similar damage
done by DLLs _DLLInitTerm() at runtime. Currently
 no way to switch these hacks off is
provided.

Perl version 5.10.1 documentation - perlos2

Page 25http://perldoc.perl.org

Modifications
Perl modifies some standard C library calls in the following ways:

popen

my_popen uses sh.exe if shell is required, cf. PERL_SH_DIR.

tmpnam

is created using TMP or TEMP environment variable, via tempnam.

tmpfile

If the current directory is not writable, file is created using modified tmpnam, so there
may be a race condition.

ctermid

a dummy implementation.

stat

os2_stat special-cases /dev/tty and /dev/con.

mkdir, rmdir

these EMX functions do not work if the path contains a trailing /.
 Perl contains a
workaround for this.

flock

Since flock(3) is present in EMX, but is not functional, it is emulated by perl. To
disable the emulations, set environment variable USE_PERL_FLOCK=0.

Identifying DLLs
All the DLLs built with the current versions of Perl have ID strings
 identifying the name of the
extension, its version, and the version
 of Perl required for this DLL. Run bldlevel DLL-name to
find this
 info.

Centralized management of resources
Since to call certain OS/2 API one needs to have a correctly initialized Win subsystem, OS/2-specific
extensions may require getting HABs and HMQs. If an extension would do it on its own, another
extension could
 fail to initialize.

Perl provides a centralized management of these resources:

HAB

To get the HAB, the extension should call hab = perl_hab_GET() in C. After
 this call is
performed, hab may be accessed as Perl_hab. There is
 no need to release the HAB after it
is used.

If by some reasons perl.h cannot be included, use

 extern int Perl_hab_GET(void);

instead.

HMQ

There are two cases:

the extension needs an HMQ only because some API will not work otherwise.
 Use
serve = 0 below.

the extension needs an HMQ since it wants to engage in a PM event loop.
 Use serve
= 1 below.

Perl version 5.10.1 documentation - perlos2

Page 26http://perldoc.perl.org

To get an HMQ, the extension should call hmq = perl_hmq_GET(serve) in C.
 After this call
is performed, hmq may be accessed as Perl_hmq.

To signal to Perl that HMQ is not needed any more, call perl_hmq_UNSET(serve). Perl
process will automatically morph/unmorph itself
 into/from a PM process if HMQ is
needed/not-needed. Perl will automatically
 enable/disable WM_QUIT message during
shutdown if the message queue is
 served/not-served.

NOTE. If during a shutdown there is a message queue which did not disable
 WM_QUIT, and
which did not process the received WM_QUIT message, the
 shutdown will be automatically
cancelled. Do not call perl_hmq_GET(1)
 unless you are going to process messages on an
orderly basis.

* Treating errors reported by OS/2 API

There are two principal conventions (it is useful to call them Dos*
 and Win* - though this part
of the function signature is not always
 determined by the name of the API) of reporting the
error conditions
 of OS/2 API. Most of Dos* APIs report the error code as the result
 of the call
(so 0 means success, and there are many types of errors).
 Most of Win* API report
success/fail via the result being TRUE/FALSE; to find the reason for the failure one should call

WinGetLastError() API.

Some Win* entry points also overload a "meaningful" return value
 with the error indicator;
having a 0 return value indicates an error.
 Yet some other Win* entry points overload things
even more, and 0
 return value may mean a successful call returning a valid value 0, as
 well as
an error condition; in the case of a 0 return value one should
 call WinGetLastError() API to
distinguish a successful call from a
 failing one.

By convention, all the calls to OS/2 API should indicate their
 failures by resetting $^E. All the
Perl-accessible functions which
 call OS/2 API may be broken into two classes: some die()s
when an API
 error is encountered, the other report the error via a false return
 value (of course,
this does not concern Perl-accessible functions
 which expect a failure of the OS/2 API call,
having some workarounds
 coded).

Obviously, in the situation of the last type of the signature of an OS/2
 API, it is must more
convenient for the users if the failure is
 indicated by die()ing: one does not need to check $^E
to know that
 something went wrong. If, however, this solution is not desirable by
 some reason,
the code in question should reset $^E to 0 before making
 this OS/2 API call, so that the caller
of this Perl-accessible
 function has a chance to distinguish a success-but-0-return value from

a failure. (One may return undef as an alternative way of reporting
 an error.)

The macros to simplify this type of error propagation are

CheckOSError(expr)

Returns true on error, sets $^E. Expects expr() be a call of Dos*-style API.

CheckWinError(expr)

Returns true on error, sets $^E. Expects expr() be a call of Win*-style API.

SaveWinError(expr)

Returns expr, sets $^E from WinGetLastError() if expr is false.

SaveCroakWinError(expr,die,name1,name2)

Returns expr, sets $^E from WinGetLastError() if expr is false,
 and die()s if die and
$^E are true. The message to die is the
 concatenated strings name1 and name2,
separated by ": " from
 the contents of $^E.

WinError_2_Perl_rc

Sets Perl_rc to the return value of WinGetLastError().

FillWinError

Perl version 5.10.1 documentation - perlos2

Page 27http://perldoc.perl.org

Sets Perl_rc to the return value of WinGetLastError(), and sets $^E
 to the
corresponding value.

FillOSError(rc)

Sets Perl_rc to rc, and sets $^E to the corresponding value.

* Loading DLLs and ordinals in DLLs

Some DLLs are only present in some versions of OS/2, or in some
 configurations of OS/2.
Some exported entry points are present only
 in DLLs shipped with some versions of OS/2. If
these DLLs and entry
 points were linked directly for a Perl executable/DLL or from a Perl

extensions, this binary would work only with the specified
 versions/setups. Even if these entry
points were not needed, the load of the executable (or DLL) would fail.

For example, many newer useful APIs are not present in OS/2 v2; many
 PM-related APIs
require DLLs not available on floppy-boot setup.

To make these calls fail only when the calls are executed, one
 should call these API via a
dynamic linking API. There is a subsystem
 in Perl to simplify such type of calls. A large
number of entry
 points available for such linking is provided (see entries_ordinals
 - and
also PMWIN_entries - in os2ish.h). These ordinals can be
 accessed via the APIs:

 CallORD(), DeclFuncByORD(), DeclVoidFuncByORD(),
 DeclOSFuncByORD(), DeclWinFuncByORD(), AssignFuncPByORD(),
 DeclWinFuncByORD_CACHE(), DeclWinFuncByORD_CACHE_survive(),
 DeclWinFuncByORD_CACHE_resetError_survive(),
 DeclWinFunc_CACHE(), DeclWinFunc_CACHE_resetError(),
 DeclWinFunc_CACHE_survive(), DeclWinFunc_CACHE_resetError_survive()

See the header files and the C code in the supplied OS/2-related
 modules for the details on
usage of these functions.

Some of these functions also combine dynaloading semantic with the
 error-propagation
semantic discussed above.

Perl flavors
Because of idiosyncrasies of OS/2 one cannot have all the eggs in the
 same basket (though EMX
environment tries hard to overcome this
 limitations, so the situation may somehow improve). There
are 4
 executables for Perl provided by the distribution:

perl.exe
The main workhorse. This is a chimera executable: it is compiled as an a.out-style executable, but is
linked with omf-style dynamic
 library perl.dll, and with dynamic CRT DLL. This executable is a
 VIO
application.

It can load perl dynamic extensions, and it can fork().

Note. Keep in mind that fork() is needed to open a pipe to yourself.

perl_.exe
This is a statically linked a.out-style executable. It cannot
 load dynamic Perl extensions. The
executable supplied in binary
 distributions has a lot of extensions prebuilt, thus the above restriction is
important only if you use custom-built extensions. This executable is a VIO
 application.

This is the only executable with does not require OS/2. The
 friends locked into M$ world would
appreciate the fact that this
 executable runs under DOS, Win0.3*, Win0.95 and WinNT with an

appropriate extender. See Other OSes.

Perl version 5.10.1 documentation - perlos2

Page 28http://perldoc.perl.org

perl__.exe
This is the same executable as perl___.exe, but it is a PM
 application.

Note. Usually (unless explicitly redirected during the startup)
 STDIN, STDERR, and STDOUT of a PM
application are redirected to nul. However, it is possible to see
 them if you start perl__.exe from a
PM program which emulates a
 console window, like Shell mode of Emacs or EPM. Thus it is
 possible
to use Perl debugger (see perldebug) to debug your PM
 application (but beware of the message loop
lockups - this will not
 work if you have a message queue to serve, unless you hook the serving
 into
the getc() function of the debugger).

Another way to see the output of a PM program is to run it as

 pm_prog args 2>&1 | cat -

with a shell different from cmd.exe, so that it does not create
 a link between a VIO session and the
session of pm_porg. (Such a link
 closes the VIO window.) E.g., this works with sh.exe - or with Perl!

 open P, 'pm_prog args 2>&1 |' or die;
 print while <P>;

The flavor perl__.exe is required if you want to start your program without
 a VIO window present, but
not detached (run help detach for more info).
 Very useful for extensions which use PM, like
Perl/Tk or OpenGL.

Note also that the differences between PM and VIO executables are only
 in the default behaviour.
One can start any executable in any kind of session by using the arguments /fs, /pm or /win
switches of the command start (of CMD.EXE or a similar
 shell). Alternatively, one can use the
numeric first argument of the system Perl function (see OS2::Process).

perl___.exe
This is an omf-style executable which is dynamically linked to perl.dll and CRT DLL. I know no
advantages of this executable
 over perl.exe, but it cannot fork() at all. Well, one advantage is
 that
the build process is not so convoluted as with perl.exe.

It is a VIO application.

Why strange names?
Since Perl processes the #!-line (cf. "DESCRIPTION" in perlrun, "Switches" in perlrun, "Not a perl
script" in perldiag, "No Perl script found in input" in perldiag), it should know when a
 program is a Perl.
There is some naming convention which allows
 Perl to distinguish correct lines from wrong ones. The
above names are
 almost the only names allowed by this convention which do not contain
 digits
(which have absolutely different semantics).

Why dynamic linking?
Well, having several executables dynamically linked to the same huge
 library has its advantages, but
this would not substantiate the
 additional work to make it compile. The reason is the
complicated-to-developers
 but very quick and convenient-to-users "hard" dynamic linking used by
OS/2.

There are two distinctive features of the dyna-linking model of OS/2:
 first, all the references to
external functions are resolved at the compile time;
 second, there is no runtime fixup of the DLLs after
they are loaded into memory.
 The first feature is an enormous advantage over other models: it avoids

conflicts when several DLLs used by an application export entries with
 the same name. In such cases
"other" models of dyna-linking just choose
 between these two entry points using some random
criterion - with predictable
 disasters as results. But it is the second feature which requires the build
 of
perl.dll.

The address tables of DLLs are patched only once, when they are
 loaded. The addresses of the entry

Perl version 5.10.1 documentation - perlos2

Page 29http://perldoc.perl.org

points into DLLs are guaranteed to be
 the same for all the programs which use the same DLL. This
removes the
 runtime fixup - once DLL is loaded, its code is read-only.

While this allows some (significant?) performance advantages, this makes life
 much harder for
developers, since the above scheme makes it impossible
 for a DLL to be "linked" to a symbol in the
.EXE file. Indeed, this
 would need a DLL to have different relocations tables for the
 (different)
executables which use this DLL.

However, a dynamically loaded Perl extension is forced to use some symbols
 from the perl

executable, e.g., to know how to find the arguments to the functions:
 the arguments live on the perl

internal evaluation stack. The solution is to put the main code of
 the interpreter into a DLL, and make
the .EXE file which just loads
 this DLL into memory and supplies command-arguments. The extension
DLL
 cannot link to symbols in .EXE, but it has no problem linking
 to symbols in the .DLL.

This greatly increases the load time for the application (as well as
 complexity of the compilation).
Since interpreter is in a DLL,
 the C RTL is basically forced to reside in a DLL as well (otherwise

extensions would not be able to use CRT). There are some advantages if
 you use different flavors of
perl, such as running perl.exe and perl__.exe simultaneously: they share the memory of perl.dll.

NOTE. There is one additional effect which makes DLLs more wasteful:
 DLLs are loaded in the
shared memory region, which is a scarse resource
 given the 512M barrier of the "standard" OS/2
virtual memory. The code of .EXE files is also shared by all the processes which use the particular
.EXE, but they are "shared in the private address space of the process";
 this is possible because the
address at which different sections
 of the .EXE file are loaded is decided at compile-time, thus all the

processes have these sections loaded at same addresses, and no fixup
 of internal links inside the
.EXE is needed.

Since DLLs may be loaded at run time, to have the same mechanism for DLLs
 one needs to have the
address range of any of the loaded DLLs in the
 system to be available in all the processes which did
not load a particular
 DLL yet. This is why the DLLs are mapped to the shared memory region.

Why chimera build?
Current EMX environment does not allow DLLs compiled using Unixish a.out format to export
symbols for data (or at least some types of
 data). This forces omf-style compile of perl.dll.

Current EMX environment does not allow .EXE files compiled in omf format to fork(). fork() is needed
for exactly three Perl
 operations:

explicit fork() in the script,

open FH, "|-"

open FH, "-|", in other words, opening pipes to itself.

While these operations are not questions of life and death, they are
 needed for a lot of
 useful scripts.
This forces a.out-style compile of perl.exe.

ENVIRONMENT
Here we list environment variables with are either OS/2- and DOS- and
 Win*-specific, or are more
important under OS/2 than under other OSes.

PERLLIB_PREFIX
Specific for EMX port. Should have the form

 path1;path2

or

 path1 path2

Perl version 5.10.1 documentation - perlos2

Page 30http://perldoc.perl.org

If the beginning of some prebuilt path matches path1, it is
 substituted with path2.

Should be used if the perl library is moved from the default
 location in preference to PERL(5)LIB,
since this would not leave wrong
 entries in @INC. For example, if the compiled version of perl looks
for @INC
 in f:/perllib/lib, and you want to install the library in h:/opt/gnu, do

 set PERLLIB_PREFIX=f:/perllib/lib;h:/opt/gnu

This will cause Perl with the prebuilt @INC of

 f:/perllib/lib/5.00553/os2
 f:/perllib/lib/5.00553
 f:/perllib/lib/site_perl/5.00553/os2
 f:/perllib/lib/site_perl/5.00553
 .

to use the following @INC:

 h:/opt/gnu/5.00553/os2
 h:/opt/gnu/5.00553
 h:/opt/gnu/site_perl/5.00553/os2
 h:/opt/gnu/site_perl/5.00553
 .

PERL_BADLANG
If 0, perl ignores setlocale() failing. May be useful with some
 strange locales.

PERL_BADFREE
If 0, perl would not warn of in case of unwarranted free(). With older
 perls this might be
 useful in
conjunction with the module DB_File, which was buggy when
 dynamically linked and OMF-built.

Should not be set with newer Perls, since this may hide some real problems.

PERL_SH_DIR
Specific for EMX port. Gives the directory part of the location for sh.exe.

USE_PERL_FLOCK
Specific for EMX port. Since flock(3) is present in EMX, but is not functional, it is emulated by perl. To
disable the emulations, set environment variable USE_PERL_FLOCK=0.

TMP or TEMP
Specific for EMX port. Used as storage place for temporary files.

Evolution
Here we list major changes which could make you by surprise.

Text-mode filehandles
Starting from version 5.8, Perl uses a builtin translation layer for
 text-mode files. This replaces the
efficient well-tested EMX layer by
 some code which should be best characterized as a "quick hack".

In addition to possible bugs and an inability to follow changes to the
 translation policy with off/on
switches of TERMIO translation, this
 introduces a serious incompatible change: before sysread() on

text-mode filehandles would go through the translation layer, now it
 would not.

Priorities
setpriority and getpriority are not compatible with earlier
 ports by Andreas Kaiser. See
"setpriority, getpriority".

Perl version 5.10.1 documentation - perlos2

Page 31http://perldoc.perl.org

DLL name mangling: pre 5.6.2
With the release 5.003_01 the dynamically loadable libraries
 should be rebuilt when a different
version of Perl is compiled. In particular,
 DLLs (including perl.dll) are now created with the names

which contain a checksum, thus allowing workaround for OS/2 scheme of
 caching DLLs.

It may be possible to code a simple workaround which would

find the old DLLs looking through the old @INC;

mangle the names according to the scheme of new perl and copy the DLLs to
 these names;

edit the internal LX tables of DLL to reflect the change of the name
 (probably not needed for
Perl extension DLLs, since the internally coded names
 are not used for "specific" DLLs, they
used only for "global" DLLs).

edit the internal IMPORT tables and change the name of the "old" perl????.dll to the "new"
perl????.dll.

DLL name mangling: 5.6.2 and beyond
In fact mangling of extension DLLs was done due to misunderstanding
 of the OS/2 dynaloading
model. OS/2 (effectively) maintains two
 different tables of loaded DLL:

Global DLLs

those loaded by the base name from LIBPATH; including those
 associated at link time;

specific DLLs

loaded by the full name.

When resolving a request for a global DLL, the table of already-loaded
 specific DLLs is (effectively)
ignored; moreover, specific DLLs are always loaded from the prescribed path.

There is/was a minor twist which makes this scheme fragile: what to do
 with DLLs loaded from

BEGINLIBPATH and ENDLIBPATH

(which depend on the process)

. from LIBPATH

which effectively depends on the process (although LIBPATH is the
 same for all the
processes).

Unless LIBPATHSTRICT is set to T (and the kernel is after
 2000/09/01), such DLLs are considered to
be global. When loading a
 global DLL it is first looked in the table of already-loaded global
 DLLs.
Because of this the fact that one executable loaded a DLL from BEGINLIBPATH and ENDLIBPATH, or
. from LIBPATH may affect which DLL is loaded when another executable requests a DLL with
 the
same name. This is the reason for version-specific mangling of
 the DLL name for perl DLL.

Since the Perl extension DLLs are always loaded with the full path,
 there is no need to mangle their
names in a version-specific ways:
 their directory already reflects the corresponding version of perl,

and @INC takes into account binary compatibility with older version.
 Starting from 5.6.2 the name
mangling scheme is fixed to be the
 same as for Perl 5.005_53 (same as in a popular binary release).
Thus
 new Perls will be able to resolve the names of old extension DLLs
 if @INC allows finding their
directories.

However, this still does not guarantee that these DLL may be loaded.
 The reason is the mangling of
the name of the Perl DLL. And since
 the extension DLLs link with the Perl DLL, extension DLLs for
older
 versions would load an older Perl DLL, and would most probably
 segfault (since the data in this
DLL is not properly initialized).

There is a partial workaround (which can be made complete with newer
 OS/2 kernels): create a

Perl version 5.10.1 documentation - perlos2

Page 32http://perldoc.perl.org

forwarder DLL with the same name as the DLL of
 the older version of Perl, which forwards the entry
points to the
 newer Perl's DLL. Make this DLL accessible on (say) the BEGINLIBPATH of
 the new
Perl executable. When the new executable accesses old Perl's
 extension DLLs, they would request
the old Perl's DLL by name, get the
 forwarder instead, so effectively will link with the currently running

(new) Perl DLL.

This may break in two ways:

Old perl executable is started when a new executable is running has
 loaded an extension
compiled for the old executable (ouph!). In this
 case the old executable will get a forwarder
DLL instead of the old
 perl DLL, so would link with the new perl DLL. While not directly
 fatal, it
will behave the same as new executable. This beats the whole
 purpose of explicitly starting an
old executable.

A new executable loads an extension compiled for the old executable
 when an old perl
executable is running. In this case the extension
 will not pick up the forwarder - with fatal
results.

With support for LIBPATHSTRICT this may be circumvented - unless
 one of DLLs is started from .
from LIBPATH (I do not know
 whether LIBPATHSTRICT affects this case).

REMARK. Unless newer kernels allow . in BEGINLIBPATH (older
 do not), this mess cannot be
completely cleaned. (It turns out that
 as of the beginning of 2002, . is not allowed, but .\. is - and
 it has
the same effect.)

REMARK. LIBPATHSTRICT, BEGINLIBPATH and ENDLIBPATH are
 not environment variables,
although cmd.exe emulates them on SET
 ... lines. From Perl they may be accessed by
Cwd::extLibpath and Cwd::extLibpath_set.

DLL forwarder generation
Assume that the old DLL is named perlE0AC.dll (as is one for
 5.005_53), and the new version is
5.6.1. Create a file perl5shim.def-leader with

 LIBRARY 'perlE0AC' INITINSTANCE TERMINSTANCE
 DESCRIPTION '@#perl5-porters@perl.org:5.006001#@ Perl module for 5.00553
-> Perl 5.6.1 forwarder'
 CODE LOADONCALL
 DATA LOADONCALL NONSHARED MULTIPLE
 EXPORTS

modifying the versions/names as needed. Run

 perl -wnle "next if 0../EXPORTS/; print qq(\"$1\") if /\"(\w+)\"/"
perl5.def >lst

in the Perl build directory (to make the DLL smaller replace perl5.def
 with the definition file for the
older version of Perl if present).

 cat perl5shim.def-leader lst >perl5shim.def
 gcc -Zomf -Zdll -o perlE0AC.dll perl5shim.def -s -llibperl

(ignore multiple warning L4085).

Threading
As of release 5.003_01 perl is linked to multithreaded C RTL
 DLL. If perl itself is not compiled
multithread-enabled, so will not be perl's
 malloc(). However, extensions may use multiple thread on
their own
 risk.

Perl version 5.10.1 documentation - perlos2

Page 33http://perldoc.perl.org

This was needed to compile Perl/Tk for XFree86-OS/2 out-of-the-box, and
 link with DLLs for other
useful libraries, which typically are compiled
 with -Zmt -Zcrtdll.

Calls to external programs
Due to a popular demand the perl external program calling has been
 changed wrt Andreas Kaiser's
port. If perl needs to call an
 external program via shell, the f:/bin/sh.exe will be called, or
 whatever is
the override, see PERL_SH_DIR.

Thus means that you need to get some copy of a sh.exe as well (I
 use one from pdksh). The path
F:/bin above is set up automatically during
 the build to a correct value on the builder machine, but is

overridable at runtime,

Reasons: a consensus on perl5-porters was that perl should use
 one non-overridable shell per
platform. The obvious choices for OS/2
 are cmd.exe and sh.exe. Having perl build itself would be
impossible
 with cmd.exe as a shell, thus I picked up sh.exe. This assures almost
 100% compatibility
with the scripts coming from *nix. As an added benefit this works as well under DOS if you use
DOS-enabled port of pdksh (see Prerequisites).

Disadvantages: currently sh.exe of pdksh calls external programs
 via fork()/exec(), and there is no
functioning exec() on
 OS/2. exec() is emulated by EMX by an asynchronous call while the caller
 waits
for child completion (to pretend that the pid did not change). This
 means that 1 extra copy of sh.exe
is made active via fork()/exec(),
 which may lead to some resources taken from the system (even if we
do
 not count extra work needed for fork()ing).

Note that this a lesser issue now when we do not spawn sh.exe
 unless needed (metachars found).

One can always start cmd.exe explicitly via

 system 'cmd', '/c', 'mycmd', 'arg1', 'arg2', ...

If you need to use cmd.exe, and do not want to hand-edit thousands of your
 scripts, the long-term
solution proposed on p5-p is to have a directive

 use OS2::Cmd;

which will override system(), exec(), ``, and open(,'...|'). With current perl you may override
only system(),
 readpipe() - the explicit version of ``, and maybe exec(). The code
 will substitute the
one-argument call to system() by CORE::system('cmd.exe', '/c', shift).

If you have some working code for OS2::Cmd, please send it to me,
 I will include it into distribution. I
have no need for such a module, so
 cannot test it.

For the details of the current situation with calling external programs,
 see "2 (and DOS) programs
under Perl" in Starting OS. Set us mention a couple
 of features:

External scripts may be called by their basename. Perl will try the same
 extensions as when
processing -S command-line switch.

External scripts starting with #! or extproc will be executed directly,
 without calling the
shell, by calling the program specified on the rest of
 the first line.

Memory allocation
Perl uses its own malloc() under OS/2 - interpreters are usually malloc-bound
 for speed, but perl is
not, since its malloc is lightning-fast.
 Perl-memory-usage-tuned benchmarks show that Perl's malloc is
5 times quicker
 than EMX one. I do not have convincing data about memory footprint, but
 a (pretty
random) benchmark showed that Perl's one is 5% better.

Combination of perl's malloc() and rigid DLL name resolution creates
 a special problem with library
functions which expect their return value to
 be free()d by system's free(). To facilitate extensions

Perl version 5.10.1 documentation - perlos2

Page 34http://perldoc.perl.org

which need to call such functions, system memory-allocation functions are still available with
 the
prefix emx_ added. (Currently only DLL perl has this, it should propagate to perl_.exe shortly.)

Threads
One can build perl with thread support enabled by providing -D usethreads
 option to Configure.
Currently OS/2 support of threads is very preliminary.

Most notable problems:

COND_WAIT

may have a race condition (but probably does not due to edge-triggered
 nature of OS/2 Event
semaphores). (Needs a reimplementation (in terms of chaining
 waiting threads, with the linked
list stored in per-thread structure?)?)

os2.c

has a couple of static variables used in OS/2-specific functions. (Need to be
 moved to
per-thread structure, or serialized?)

Note that these problems should not discourage experimenting, since they
 have a low probability of
affecting small programs.

BUGS
This description is not updated often (since 5.6.1?), see ./os2/Changes
 (perlos2delta) for more info.

AUTHOR
Ilya Zakharevich, cpan@ilyaz.org

SEE ALSO
perl(1).

