
Perl version 5.12.4 documentation - B

Page 1http://perldoc.perl.org

NAME
B - The Perl Compiler Backend

SYNOPSIS
	 use B;

DESCRIPTION
The B module supplies classes which allow a Perl program to delve
 into its own innards. It is the
module used to implement the
 "backends" of the Perl compiler. Usage of the compiler does not

require knowledge of this module: see the O module for the
 user-visible part. The B module is of use
to those who want to
 write new compiler backends. This documentation assumes that the
 reader
knows a fair amount about perl's internals including such
 things as SVs, OPs and the internal symbol
table and syntax tree
 of a program.

OVERVIEW
The B module contains a set of utility functions for querying the
 current state of the Perl interpreter;
typically these functions
 return objects from the B::SV and B::OP classes, or their derived
 classes.
These classes in turn define methods for querying the
 resulting objects about their own internal state.

Utility Functions
The B module exports a variety of functions: some are simple
 utility functions, others provide a Perl
program with a way to
 get an initial "handle" on an internal object.

Functions Returning B::SV, B::AV, B::HV, and B::CV objects
For descriptions of the class hierarchy of these objects and the
 methods that can be called on them,
see below, OVERVIEW OF CLASSES and SV-RELATED CLASSES.

sv_undef

Returns the SV object corresponding to the C variable sv_undef.

sv_yes

Returns the SV object corresponding to the C variable sv_yes.

sv_no

Returns the SV object corresponding to the C variable sv_no.

svref_2object(SVREF)

Takes a reference to any Perl value, and turns the referred-to value
 into an object in the
appropriate B::OP-derived or B::SV-derived
 class. Apart from functions such as main_root,
this is the primary
 way to get an initial "handle" on an internal perl data structure
 which can
then be followed with the other access methods.

The returned object will only be valid as long as the underlying OPs
 and SVs continue to exist.
Do not attempt to use the object after the
 underlying structures are freed.

amagic_generation

Returns the SV object corresponding to the C variable amagic_generation.

init_av

Returns the AV object (i.e. in class B::AV) representing INIT blocks.

check_av

Returns the AV object (i.e. in class B::AV) representing CHECK blocks.

unitcheck_av

Returns the AV object (i.e. in class B::AV) representing UNITCHECK blocks.

Perl version 5.12.4 documentation - B

Page 2http://perldoc.perl.org

begin_av

Returns the AV object (i.e. in class B::AV) representing BEGIN blocks.

end_av

Returns the AV object (i.e. in class B::AV) representing END blocks.

comppadlist

Returns the AV object (i.e. in class B::AV) of the global comppadlist.

regex_padav

Only when perl was compiled with ithreads.

main_cv

Return the (faked) CV corresponding to the main part of the Perl
 program.

Functions for Examining the Symbol Table
walksymtable(SYMREF, METHOD, RECURSE, PREFIX)

Walk the symbol table starting at SYMREF and call METHOD on each
 symbol (a B::GV
object) visited. When the walk reaches package
 symbols (such as "Foo::") it invokes
RECURSE, passing in the symbol
 name, and only recurses into the package if that sub
returns true.

PREFIX is the name of the SYMREF you're walking.

For example:

 # Walk CGI's symbol table calling print_subs on each symbol.
 # Recurse only into CGI::Util::
 walksymtable(\%CGI::, 'print_subs', sub { $_[0] eq 'CGI::Util::' },
 'CGI::');

print_subs() is a B::GV method you have declared. Also see B::GV Methods, below.

Functions Returning B::OP objects or for walking op trees
For descriptions of the class hierarchy of these objects and the
 methods that can be called on them,
see below, OVERVIEW OF CLASSES and OP-RELATED CLASSES.

main_root

Returns the root op (i.e. an object in the appropriate B::OP-derived
 class) of the main part of
the Perl program.

main_start

Returns the starting op of the main part of the Perl program.

walkoptree(OP, METHOD)

Does a tree-walk of the syntax tree based at OP and calls METHOD on
 each op it visits. Each
node is visited before its children. If walkoptree_debug (see below) has been called to turn
debugging on then
 the method walkoptree_debug is called on each op before METHOD is

called.

walkoptree_debug(DEBUG)

Returns the current debugging flag for walkoptree. If the optional
 DEBUG argument is
non-zero, it sets the debugging flag to that. See
 the description of walkoptree above for
what the debugging flag
 does.

Perl version 5.12.4 documentation - B

Page 3http://perldoc.perl.org

Miscellaneous Utility Functions
ppname(OPNUM)

Return the PP function name (e.g. "pp_add") of op number OPNUM.

hash(STR)

Returns a string in the form "0x..." representing the value of the
 internal hash function used by
perl on string STR.

cast_I32(I)

Casts I to the internal I32 type used by that perl.

minus_c

Does the equivalent of the -c command-line option. Obviously, this
 is only useful in a BEGIN
block or else the flag is set too late.

cstring(STR)

Returns a double-quote-surrounded escaped version of STR which can
 be used as a string in
C source code.

perlstring(STR)

Returns a double-quote-surrounded escaped version of STR which can
 be used as a string in
Perl source code.

class(OBJ)

Returns the class of an object without the part of the classname
 preceding the first "::". This
is used to turn "B::UNOP" into "UNOP" for example.

threadsv_names

In a perl compiled for threads, this returns a list of the special
 per-thread threadsv variables.

Exported utility variabiles
@optype

 my $op_type = $optype[$op_type_num];

A simple mapping of the op type number to its type (like 'COP' or 'BINOP').

@specialsv_name

 my $sv_name = $specialsv_name[$sv_index];

Certain SV types are considered 'special'. They're represented by
 B::SPECIAL and are
referred to by a number from the specialsv_list.
 This array maps that number back to the
name of the SV (like 'Nullsv'
 or '&PL_sv_undef').

OVERVIEW OF CLASSES
The C structures used by Perl's internals to hold SV and OP
 information (PVIV, AV, HV, ..., OP,
SVOP, UNOP, ...) are modelled on a
 class hierarchy and the B module gives access to them via a
true
 object hierarchy. Structure fields which point to other objects
 (whether types of SV or types of
OP) are represented by the B
 module as Perl objects of the appropriate class.

The bulk of the B module is the methods for accessing fields of
 these structures.

Note that all access is read-only. You cannot modify the internals by
 using this module. Also, note that
the B::OP and B::SV objects created
 by this module are only valid for as long as the underlying
objects
 exist; their creation doesn't increase the reference counts of the
 underlying objects. Trying to
access the fields of a freed object will
 give incomprehensible results, or worse.

Perl version 5.12.4 documentation - B

Page 4http://perldoc.perl.org

SV-RELATED CLASSES
B::IV, B::NV, B::RV, B::PV, B::PVIV, B::PVNV, B::PVMG, B::BM (5.9.5 and
 earlier), B::PVLV, B::AV,
B::HV, B::CV, B::GV, B::FM, B::IO. These classes
 correspond in the obvious way to the underlying C
structures of similar names.
 The inheritance hierarchy mimics the underlying C "inheritance". For the

5.10.x branch, (ie 5.10.0, 5.10.1 etc) this is:

 B::SV
 |
 +------------+------------+------------+
 | | | |
 B::PV B::IV B::NV B::RV
 \ / /
 \ / /
 B::PVIV /
 \ /
 \ /
 \ /
 B::PVNV
 |
 |
 B::PVMG
 |
 +-----+-----+-----+-----+
 | | | | |
 B::AV B::GV B::HV B::CV B::IO
 | |
 | |
 B::PVLV B::FM

For 5.9.0 and earlier, PVLV is a direct subclass of PVMG, and BM is still
 present as a distinct type, so
the base of this diagram is

 |
 |
 B::PVMG
 |
 +------+-----+-----+-----+-----+-----+
 | | | | | | |
 B::PVLV B::BM B::AV B::GV B::HV B::CV B::IO
 |
 |
 B::FM

For 5.11.0 and later, B::RV is abolished, and IVs can be used to store
 references, and a new type
B::REGEXP is introduced, giving this structure:

 B::SV
 |
 +------------+------------+
 | | |
 B::PV B::IV B::NV
 \ / /
 \ / /
 B::PVIV /
 \ /
 \ /

Perl version 5.12.4 documentation - B

Page 5http://perldoc.perl.org

 \ /
 B::PVNV
 |
 |
 B::PVMG
 |
 +-------+-------+---+---+-------+-------+
 | | | | | |
 B::AV B::GV B::HV B::CV B::IO B::REGEXP
 | |
 | |
 B::PVLV B::FM

Access methods correspond to the underlying C macros for field access,
 usually with the leading
"class indication" prefix removed (Sv, Av,
 Hv, ...). The leading prefix is only left in cases where its
removal
 would cause a clash in method name. For example, GvREFCNT stays
 as-is since its
abbreviation would clash with the "superclass" method REFCNT (corresponding to the C function
SvREFCNT).

B::SV Methods
REFCNT

FLAGS

object_2svref

Returns a reference to the regular scalar corresponding to this
 B::SV object. In other words,
this method is the inverse operation
 to the svref_2object() subroutine. This scalar and other
data it points
 at should be considered read-only: modifying them is neither safe nor

guaranteed to have a sensible effect.

B::IV Methods
IV

Returns the value of the IV, interpreted as
 a signed integer. This will be misleading
 if FLAGS &
 SVf_IVisUV. Perhaps you want the int_value method instead?

IVX

UVX

int_value

This method returns the value of the IV as an integer.
 It differs from IV in that it returns the
correct
 value regardless of whether it's stored signed or
 unsigned.

needs64bits

packiv

B::NV Methods
NV

NVX

B::RV Methods
RV

B::PV Methods
PV

This method is the one you usually want. It constructs a
 string using the length and offset
information in the struct:
 for ordinary scalars it will return the string that you'd see
 from Perl,

Perl version 5.12.4 documentation - B

Page 6http://perldoc.perl.org

even if it contains null characters.

RV

Same as B::RV::RV, except that it will die() if the PV isn't
 a reference.

PVX

This method is less often useful. It assumes that the string
 stored in the struct is
null-terminated, and disregards the
 length information.

It is the appropriate method to use if you need to get the name
 of a lexical variable from a
padname array. Lexical variable names
 are always stored with a null terminator, and the
length field
 (SvCUR) is overloaded for other purposes and can't be relied on here.

B::PVMG Methods
MAGIC

SvSTASH

B::MAGIC Methods
MOREMAGIC

precomp

Only valid on r-magic, returns the string that generated the regexp.

PRIVATE

TYPE

FLAGS

OBJ

Will die() if called on r-magic.

PTR

REGEX

Only valid on r-magic, returns the integer value of the REGEX stored
 in the MAGIC.

B::PVLV Methods
TARGOFF

TARGLEN

TYPE

TARG

B::BM Methods
USEFUL

PREVIOUS

RARE

TABLE

B::GV Methods
is_empty

This method returns TRUE if the GP field of the GV is NULL.

NAME

SAFENAME

This method returns the name of the glob, but if the first
 character of the name is a control
character, then it converts
 it to ^X first, so that *^G would return "^G" rather than "\cG".

Perl version 5.12.4 documentation - B

Page 7http://perldoc.perl.org

It's useful if you want to print out the name of a variable.
 If you restrict yourself to globs which
exist at compile-time
 then the result ought to be unambiguous, because code like ${"^G"} =
 1 is compiled as two ops - a constant string and
 a dereference (rv2gv) - so that the glob is
created at runtime.

If you're working with globs at runtime, and need to disambiguate
 *^G from *{"^G"}, then you
should use the raw NAME method.

STASH

SV

IO

FORM

AV

HV

EGV

CV

CVGEN

LINE

FILE

FILEGV

GvREFCNT

FLAGS

B::IO Methods
LINES

PAGE

PAGE_LEN

LINES_LEFT

TOP_NAME

TOP_GV

FMT_NAME

FMT_GV

BOTTOM_NAME

BOTTOM_GV

SUBPROCESS

IoTYPE

IoFLAGS

IsSTD

Takes one arguments ('stdin' | 'stdout' | 'stderr') and returns true
 if the IoIFP of the object is
equal to the handle whose name was
 passed as argument (i.e. $io->IsSTD('stderr') is true if

IoIFP($io) == PerlIO_stdin()).

B::AV Methods
FILL

MAX

ARRAY

ARRAYelt

Perl version 5.12.4 documentation - B

Page 8http://perldoc.perl.org

Like ARRAY, but takes an index as an argument to get only one element,
 rather than a list of
all of them.

OFF

This method is deprecated if running under Perl 5.8, and is no longer present
 if running under
Perl 5.9

AvFLAGS

This method returns the AV specific flags. In Perl 5.9 these are now stored
 in with the main SV
flags, so this method is no longer present.

B::CV Methods
STASH

START

ROOT

GV

FILE

DEPTH

PADLIST

OUTSIDE

OUTSIDE_SEQ

XSUB

XSUBANY

For constant subroutines, returns the constant SV returned by the subroutine.

CvFLAGS

const_sv

B::HV Methods
FILL

MAX

KEYS

RITER

NAME

ARRAY

PMROOT

This method is not present if running under Perl 5.9, as the PMROOT
 information is no longer
stored directly in the hash.

OP-RELATED CLASSES
B::OP, B::UNOP, B::BINOP, B::LOGOP, B::LISTOP, B::PMOP, B::SVOP, B::PADOP, B::PVOP,
B::LOOP, B::COP.

These classes correspond in the obvious way to the underlying C
 structures of similar names. The
inheritance hierarchy mimics the
 underlying C "inheritance":

 B::OP
 |
 +---------------+--------+--------+-------+
 | | | | |
 B::UNOP B::SVOP B::PADOP B::COP B::PVOP

Perl version 5.12.4 documentation - B

Page 9http://perldoc.perl.org

 ,' `-.
 / `--.
 B::BINOP B::LOGOP
 |
 |
 B::LISTOP
 ,' `.
 / \
 B::LOOP B::PMOP

Access methods correspond to the underlying C structre field names,
 with the leading "class
indication" prefix ("op_") removed.

B::OP Methods
These methods get the values of similarly named fields within the OP
 data structure. See top of op.h
for more info.

next

sibling

name

This returns the op name as a string (e.g. "add", "rv2av").

ppaddr

This returns the function name as a string (e.g. "PL_ppaddr[OP_ADD]",

"PL_ppaddr[OP_RV2AV]").

desc

This returns the op description from the global C PL_op_desc array
 (e.g. "addition" "array
deref").

targ

type

opt

flags

private

spare

B::UNOP METHOD
first

B::BINOP METHOD
last

B::LOGOP METHOD
other

B::LISTOP METHOD
children

B::PMOP Methods
pmreplroot

pmreplstart

pmnext

Perl version 5.12.4 documentation - B

Page 10http://perldoc.perl.org

Only up to Perl 5.9.4

pmregexp

pmflags

extflags

Since Perl 5.9.5

precomp

pmoffset

Only when perl was compiled with ithreads.

B::SVOP METHOD
sv

gv

B::PADOP METHOD
padix

B::PVOP METHOD
pv

B::LOOP Methods
redoop

nextop

lastop

B::COP Methods
label

stash

stashpv

file

cop_seq

arybase

line

warnings

io

hints

hints_hash

AUTHOR
Malcolm Beattie, mbeattie@sable.ox.ac.uk

