
Perl version 5.12.4 documentation - CGI

Page 1http://perldoc.perl.org

NAME
CGI - Handle Common Gateway Interface requests and responses

SYNOPSIS
 use CGI;

 my $q = CGI->new;

 # Process an HTTP request
 @values = $q->param('form_field');

 $fh = $q->upload('file_field');

 $riddle = $query->cookie('riddle_name');
 %answers = $query->cookie('answers');

 # Prepare various HTTP responses
 print $q->header();
 print $q->header('application/json');

	 $cookie1 = $q->cookie(-name=>'riddle_name', -value=>"The Sphynx's
Question");
	 $cookie2 = $q->cookie(-name=>'answers', -value=>\%answers);
 print $q->header(
 -type => 'image/gif',
 -expires => '+3d',
 -cookie => [$cookie1,$cookie2]
);

 print $q->redirect('http://somewhere.else/in/movie/land');

DESCRIPTION
CGI.pm is a stable, complete and mature solution for processing and preparing
 HTTP requests and
responses. Major features including processing form
 submissions, file uploads, reading and writing
cookies, query string generation
 and manipulation, and processing and preparing HTTP headers.
Some HTML
 generation utilities are included as well.

CGI.pm performs very well in in a vanilla CGI.pm environment and also comes
 with built-in support for
mod_perl and mod_perl2 as well as FastCGI.

It has the benefit of having developed and refined over 10 years with input
 from dozens of
contributors and being deployed on thousands of websites.
 CGI.pm has been included in the Perl
distribution since Perl 5.4, and has
 become a de-facto standard.

PROGRAMMING STYLE
There are two styles of programming with CGI.pm, an object-oriented
 style and a function-oriented
style. In the object-oriented style you
 create one or more CGI objects and then use object methods to
create
 the various elements of the page. Each CGI object starts out with the
 list of named parameters
that were passed to your CGI script by the
 server. You can modify the objects, save them to a file or
database
 and recreate them. Because each object corresponds to the "state" of
 the CGI script, and
because each object's parameter list is
 independent of the others, this allows you to save the state of
the
 script and restore it later.

For example, using the object oriented style, here is how you create
 a simple "Hello World" HTML

Perl version 5.12.4 documentation - CGI

Page 2http://perldoc.perl.org

page: #!/usr/local/bin/perl -w
 use CGI; # load CGI routines
 $q = CGI->new; # create new CGI object
 print $q->header, # create the HTTP header
 $q->start_html('hello world'), # start the HTML
 $q->h1('hello world'), # level 1 header
 $q->end_html; # end the HTML

In the function-oriented style, there is one default CGI object that
 you rarely deal with directly. Instead
you just call functions to
 retrieve CGI parameters, create HTML tags, manage cookies, and so
 on.
This provides you with a cleaner programming interface, but
 limits you to using one CGI object at a
time. The following example
 prints the same page, but uses the function-oriented interface.
 The main
differences are that we now need to import a set of functions
 into our name space (usually the
"standard" functions), and we don't
 need to create the CGI object.

 #!/usr/local/bin/perl
 use CGI qw/:standard/; # load standard CGI routines
 print header, # create the HTTP header
 start_html('hello world'), # start the HTML
 h1('hello world'), # level 1 header
 end_html; # end the HTML

The examples in this document mainly use the object-oriented style.
 See HOW TO IMPORT
FUNCTIONS for important information on
 function-oriented programming in CGI.pm

CALLING CGI.PM ROUTINES
Most CGI.pm routines accept several arguments, sometimes as many as 20
 optional ones! To
simplify this interface, all routines use a named
 argument calling style that looks like this:

 print $q->header(-type=>'image/gif',-expires=>'+3d');

Each argument name is preceded by a dash. Neither case nor order
 matters in the argument list.
-type, -Type, and -TYPE are all
 acceptable. In fact, only the first argument needs to begin with a
 dash.
If a dash is present in the first argument, CGI.pm assumes
 dashes for the subsequent ones.

Several routines are commonly called with just one argument. In the
 case of these routines you can
provide the single argument without an
 argument name. header() happens to be one of these
routines. In this
 case, the single argument is the document type.

 print $q->header('text/html');

Other such routines are documented below.

Sometimes named arguments expect a scalar, sometimes a reference to an
 array, and sometimes a
reference to a hash. Often, you can pass any
 type of argument and the routine will do whatever is
most appropriate.
 For example, the param() routine is used to set a CGI parameter to a
 single or a
multi-valued value. The two cases are shown below:

 $q->param(-name=>'veggie',-value=>'tomato');

$q->param(-name=>'veggie',-value=>['tomato','tomahto','potato','potahto']);

A large number of routines in CGI.pm actually aren't specifically
 defined in the module, but are
generated automatically as needed.
 These are the "HTML shortcuts," routines that generate HTML
tags for
 use in dynamically-generated pages. HTML tags have both attributes
 (the attribute="value"
pairs within the tag itself) and contents (the
 part between the opening and closing pairs.) To

Perl version 5.12.4 documentation - CGI

Page 3http://perldoc.perl.org

distinguish between
 attributes and contents, CGI.pm uses the convention of passing HTML
 attributes
as a hash reference as the first argument, and the
 contents, if any, as any subsequent arguments. It
works out like
 this:

 Code Generated HTML
 ---- --------------
 h1() <h1>
 h1('some','contents'); <h1>some contents</h1>
 h1({-align=>left}); <h1 align="LEFT">
 h1({-align=>left},'contents'); <h1 align="LEFT">contents</h1>

HTML tags are described in more detail later.

Many newcomers to CGI.pm are puzzled by the difference between the
 calling conventions for the
HTML shortcuts, which require curly braces
 around the HTML tag attributes, and the calling
conventions for other
 routines, which manage to generate attributes without the curly
 brackets. Don't
be confused. As a convenience the curly braces are
 optional in all but the HTML shortcuts. If you like,
you can use
 curly braces when calling any routine that takes named arguments. For
 example:

 print $q->header({-type=>'image/gif',-expires=>'+3d'});

If you use the -w switch, you will be warned that some CGI.pm argument
 names conflict with built-in
Perl functions. The most frequent of
 these is the -values argument, used to create multi-valued
menus,
 radio button clusters and the like. To get around this warning, you
 have several choices:

1. Use another name for the argument, if one is available. For example, -value is an alias for
-values.

2. Change the capitalization, e.g. -Values

3. Put quotes around the argument name, e.g. '-values'

Many routines will do something useful with a named argument that it
 doesn't recognize. For example,
you can produce non-standard HTTP
 header fields by providing them as named arguments:

 print $q->header(-type => 'text/html',
 -cost => 'Three smackers',
 -annoyance_level => 'high',
 -complaints_to => 'bit bucket');

This will produce the following nonstandard HTTP header:

 HTTP/1.0 200 OK
 Cost: Three smackers
 Annoyance-level: high
 Complaints-to: bit bucket
 Content-type: text/html

Notice the way that underscores are translated automatically into
 hyphens. HTML-generating routines
perform a different type of
 translation.

This feature allows you to keep up with the rapidly changing HTTP and
 HTML "standards".

CREATING A NEW QUERY OBJECT (OBJECT-ORIENTED STYLE):
 $query = CGI->new;

This will parse the input (from both POST and GET methods) and store
 it into a perl5 object called
$query.

Perl version 5.12.4 documentation - CGI

Page 4http://perldoc.perl.org

Any filehandles from file uploads will have their position reset to the beginning of the file.

CREATING A NEW QUERY OBJECT FROM AN INPUT FILE
 $query = CGI->new(INPUTFILE);

If you provide a file handle to the new() method, it will read
 parameters from the file (or STDIN, or
whatever). The file can be in
 any of the forms describing below under debugging (i.e. a series of

newline delimited TAG=VALUE pairs will work). Conveniently, this type
 of file is created by the save()
method (see below). Multiple records
 can be saved and restored.

Perl purists will be pleased to know that this syntax accepts
 references to file handles, or even
references to filehandle globs,
 which is the "official" way to pass a filehandle:

 $query = CGI->new(*STDIN);

You can also initialize the CGI object with a FileHandle or IO::File
 object.

If you are using the function-oriented interface and want to
 initialize CGI state from a file handle, the
way to do this is with restore_parameters(). This will (re)initialize the
 default CGI object from the
indicated file handle.

 open (IN,"test.in") || die;
 restore_parameters(IN);
 close IN;

You can also initialize the query object from a hash
 reference:

 $query = CGI->new({'dinosaur'=>'barney',
		 'song'=>'I love you',
		 'friends'=>[qw/Jessica George Nancy/]}
);

or from a properly formatted, URL-escaped query string:

 $query = CGI->new('dinosaur=barney&color=purple');

or from a previously existing CGI object (currently this clones the
 parameter list, but none of the other
object-specific fields, such as
 autoescaping):

 $old_query = CGI->new;
 $new_query = CGI->new($old_query);

To create an empty query, initialize it from an empty string or hash:

 $empty_query = CGI->new("");

 -or-

 $empty_query = CGI->new({});

FETCHING A LIST OF KEYWORDS FROM THE QUERY:
 @keywords = $query->keywords

If the script was invoked as the result of an <ISINDEX> search, the
 parsed keywords can be obtained
as an array using the keywords() method.

Perl version 5.12.4 documentation - CGI

Page 5http://perldoc.perl.org

FETCHING THE NAMES OF ALL THE PARAMETERS PASSED TO YOUR SCRIPT:
 @names = $query->param

If the script was invoked with a parameter list
 (e.g. "name1=value1&name2=value2&name3=value3"),
the param() method
 will return the parameter names as a list. If the script was invoked
 as an
<ISINDEX> script and contains a string without ampersands
 (e.g. "value1+value2+value3") , there will
be a single parameter named
 "keywords" containing the "+"-delimited keywords.

NOTE: As of version 1.5, the array of parameter names returned will
 be in the same order as they
were submitted by the browser.
 Usually this order is the same as the order in which the parameters
are defined in the form (however, this isn't part
 of the spec, and so isn't guaranteed).

FETCHING THE VALUE OR VALUES OF A SINGLE NAMED PARAMETER:
 @values = $query->param('foo');

	 -or-

 $value = $query->param('foo');

Pass the param() method a single argument to fetch the value of the
 named parameter. If the
parameter is multivalued (e.g. from multiple
 selections in a scrolling list), you can ask to receive an
array. Otherwise
 the method will return a single value.

If a value is not given in the query string, as in the queries
 "name1=&name2=", it will be returned as
an empty string.

If the parameter does not exist at all, then param() will return undef
 in a scalar context, and the empty
list in a list context.

SETTING THE VALUE(S) OF A NAMED PARAMETER:
 $query->param('foo','an','array','of','values');

This sets the value for the named parameter 'foo' to an array of
 values. This is one way to change the
value of a field AFTER
 the script has been invoked once before. (Another way is with
 the -override
parameter accepted by all methods that generate
 form elements.)

param() also recognizes a named parameter style of calling described
 in more detail later:

 $query->param(-name=>'foo',-values=>['an','array','of','values']);

			 -or-

 $query->param(-name=>'foo',-value=>'the value');

APPENDING ADDITIONAL VALUES TO A NAMED PARAMETER:
 $query->append(-name=>'foo',-values=>['yet','more','values']);

This adds a value or list of values to the named parameter. The
 values are appended to the end of
the parameter if it already exists.
 Otherwise the parameter is created. Note that this method only

recognizes the named argument calling syntax.

IMPORTING ALL PARAMETERS INTO A NAMESPACE:
 $query->import_names('R');

Perl version 5.12.4 documentation - CGI

Page 6http://perldoc.perl.org

This creates a series of variables in the 'R' namespace. For example,
 $R::foo, @R:foo. For keyword
lists, a variable @R::keywords will appear.
 If no namespace is given, this method will assume 'Q'.

WARNING: don't import anything into 'main'; this is a major security
 risk!!!!

NOTE 1: Variable names are transformed as necessary into legal Perl
 variable names. All non-legal
characters are transformed into
 underscores. If you need to keep the original names, you should use

the param() method instead to access CGI variables by name.

NOTE 2: In older versions, this method was called import(). As of version 2.20, this name has been
removed completely to avoid conflict with the built-in
 Perl module import operator.

DELETING A PARAMETER COMPLETELY:
 $query->delete('foo','bar','baz');

This completely clears a list of parameters. It sometimes useful for
 resetting parameters that you don't
want passed down between script
 invocations.

If you are using the function call interface, use "Delete()" instead
 to avoid conflicts with Perl's built-in
delete operator.

DELETING ALL PARAMETERS:
 $query->delete_all();

This clears the CGI object completely. It might be useful to ensure
 that all the defaults are taken when
you create a fill-out form.

Use Delete_all() instead if you are using the function call interface.

HANDLING NON-URLENCODED ARGUMENTS
If POSTed data is not of type application/x-www-form-urlencoded or
 multipart/form-data, then the
POSTed data will not be processed, but
 instead be returned as-is in a parameter named POSTDATA.
To retrieve
 it, use code like this:

 my $data = $query->param('POSTDATA');

Likewise if PUTed data can be retrieved with code like this:

 my $data = $query->param('PUTDATA');

(If you don't know what the preceding means, don't worry about it. It
 only affects people trying to use
CGI for XML processing and other
 specialized tasks.)

DIRECT ACCESS TO THE PARAMETER LIST:
 $q->param_fetch('address')->[1] = '1313 Mockingbird Lane';
 unshift @{$q->param_fetch(-name=>'address')},'George Munster';

If you need access to the parameter list in a way that isn't covered
 by the methods above, you can
obtain a direct reference to it by
 calling the param_fetch() method with the name of the . This
 will
return an array reference to the named parameters, which you then
 can manipulate in any way you
like.

You can also use a named argument style using the -name argument.

FETCHING THE PARAMETER LIST AS A HASH:
 $params = $q->Vars;
 print $params->{'address'};
 @foo = split("\0",$params->{'foo'});

Perl version 5.12.4 documentation - CGI

Page 7http://perldoc.perl.org

 %params = $q->Vars;

 use CGI ':cgi-lib';
 $params = Vars;

Many people want to fetch the entire parameter list as a hash in which
 the keys are the names of the
CGI parameters, and the values are the
 parameters' values. The Vars() method does this. Called in a
scalar
 context, it returns the parameter list as a tied hash reference.
 Changing a key changes the
value of the parameter in the underlying
 CGI parameter list. Called in a list context, it returns the

parameter list as an ordinary hash. This allows you to read the
 contents of the parameter list, but not
to change it.

When using this, the thing you must watch out for are multivalued CGI
 parameters. Because a hash
cannot distinguish between scalar and
 list context, multivalued parameters will be returned as a
packed
 string, separated by the "\0" (null) character. You must split this
 packed string in order to get
at the individual values. This is the
 convention introduced long ago by Steve Brenner in his cgi-lib.pl

module for Perl version 4.

If you wish to use Vars() as a function, import the :cgi-lib set of
 function calls (also see the section on
CGI-LIB compatibility).

SAVING THE STATE OF THE SCRIPT TO A FILE:
 $query->save(*FILEHANDLE)

This will write the current state of the form to the provided
 filehandle. You can read it back in by
providing a filehandle
 to the new() method. Note that the filehandle can be a file, a pipe,
 or whatever!

The format of the saved file is:

	 NAME1=VALUE1
	 NAME1=VALUE1'
	 NAME2=VALUE2
	 NAME3=VALUE3
	 =

Both name and value are URL escaped. Multi-valued CGI parameters are
 represented as repeated
names. A session record is delimited by a
 single = symbol. You can write out multiple records and
read them
 back in with several calls to new. You can do this across several
 sessions by opening the
file in append mode, allowing you to create
 primitive guest books, or to keep a history of users'
queries. Here's
 a short example of creating multiple session records:

 use CGI;

 open (OUT,'>>','test.out') || die;
 $records = 5;
 for (0..$records) {
 my $q = CGI->new;
 $q->param(-name=>'counter',-value=>$_);
 $q->save(*OUT);
 }
 close OUT;

 # reopen for reading
 open (IN,'<','test.out') || die;
 while (!eof(IN)) {
 my $q = CGI->new(*IN);

Perl version 5.12.4 documentation - CGI

Page 8http://perldoc.perl.org

 print $q->param('counter'),"\n";
 }

The file format used for save/restore is identical to that used by the
 Whitehead Genome Center's data
exchange format "Boulderio", and can be
 manipulated and even databased using Boulderio utilities.
See

 http://stein.cshl.org/boulder/

for further details.

If you wish to use this method from the function-oriented (non-OO)
 interface, the exported name for
this method is save_parameters().

RETRIEVING CGI ERRORS
Errors can occur while processing user input, particularly when
 processing uploaded files. When
these errors occur, CGI will stop
 processing and return an empty parameter list. You can test for
 the
existence and nature of errors using the cgi_error() function.
 The error messages are formatted as
HTTP status codes. You can either
 incorporate the error text into an HTML page, or use it as the
value
 of the HTTP status:

 my $error = $q->cgi_error;
 if ($error) {
	 print $q->header(-status=>$error),
	 $q->start_html('Problems'),
 $q->h2('Request not processed'),
	 $q->strong($error);
 exit 0;
 }

When using the function-oriented interface (see the next section),
 errors may only occur the first time
you call param(). Be ready
 for this!

USING THE FUNCTION-ORIENTED INTERFACE
To use the function-oriented interface, you must specify which CGI.pm
 routines or sets of routines to
import into your script's namespace.
 There is a small overhead associated with this importation, but it

isn't much.

 use CGI <list of methods>;

The listed methods will be imported into the current package; you can
 call them directly without
creating a CGI object first. This example
 shows how to import the param() and header()
 methods,
and then use them directly:

 use CGI 'param','header';
 print header('text/plain');
 $zipcode = param('zipcode');

More frequently, you'll import common sets of functions by referring
 to the groups by name. All
function sets are preceded with a ":"
 character as in ":html3" (for tags defined in the HTML 3
standard).

Here is a list of the function sets you can import:

:cgi

Import all CGI-handling methods, such as param(), path_info()
 and the like.

Perl version 5.12.4 documentation - CGI

Page 9http://perldoc.perl.org

:form

Import all fill-out form generating methods, such as textfield().

:html2

Import all methods that generate HTML 2.0 standard elements.

:html3

Import all methods that generate HTML 3.0 elements (such as
 <table>, <super> and <sub>).

:html4

Import all methods that generate HTML 4 elements (such as
 <abbrev>, <acronym> and
<thead>).

:netscape

Import the <blink>, <fontsize> and <center> tags.

:html

Import all HTML-generating shortcuts (i.e. 'html2', 'html3', 'html4' and 'netscape')

:standard

Import "standard" features, 'html2', 'html3', 'html4', 'form' and 'cgi'.

:all

Import all the available methods. For the full list, see the CGI.pm
 code, where the variable
%EXPORT_TAGS is defined.

If you import a function name that is not part of CGI.pm, the module
 will treat it as a new HTML tag
and generate the appropriate
 subroutine. You can then use it like any other HTML tag. This is to

provide for the rapidly-evolving HTML "standard." For example, say
 Microsoft comes out with a new
tag called <gradient> (which causes the
 user's desktop to be flooded with a rotating gradient fill until
his
 machine reboots). You don't need to wait for a new version of CGI.pm
 to start using it immediately:

 use CGI qw/:standard :html3 gradient/;
 print gradient({-start=>'red',-end=>'blue'});

Note that in the interests of execution speed CGI.pm does not use
 the standard Exporter syntax for
specifying load symbols. This may
 change in the future.

If you import any of the state-maintaining CGI or form-generating
 methods, a default CGI object will
be created and initialized
 automatically the first time you use any of the methods that require
 one to
be present. This includes param(), textfield(), submit() and the like. (If you need direct access to the
CGI
 object, you can find it in the global variable $CGI::Q). By
 importing CGI.pm methods, you can
create visually elegant scripts:

 use CGI qw/:standard/;
 print
 header,
 start_html('Simple Script'),
 h1('Simple Script'),
 start_form,
 "What's your name? ",textfield('name'),p,
 "What's the combination?",
 checkbox_group(-name=>'words',
		 -values=>['eenie','meenie','minie','moe'],
		 -defaults=>['eenie','moe']),p,
 "What's your favorite color?",
 popup_menu(-name=>'color',

Perl version 5.12.4 documentation - CGI

Page 10http://perldoc.perl.org

		 -values=>['red','green','blue','chartreuse']),p,
 submit,
 end_form,
 hr,"\n";

 if (param) {
 print
	 "Your name is ",em(param('name')),p,
	 "The keywords are: ",em(join(", ",param('words'))),p,
	 "Your favorite color is ",em(param('color')),".\n";
 }
 print end_html;

PRAGMAS
In addition to the function sets, there are a number of pragmas that
 you can import. Pragmas, which
are always preceded by a hyphen,
 change the way that CGI.pm functions in various ways. Pragmas,

function sets, and individual functions can all be imported in the
 same use() line. For example, the
following use statement imports the
 standard set of functions and enables debugging mode (pragma

-debug):

 use CGI qw/:standard -debug/;

The current list of pragmas is as follows:

-any

When you use CGI -any, then any method that the query object
 doesn't recognize will be
interpreted as a new HTML tag. This allows
 you to support the next ad hoc HTML
 extension.
This lets you go wild with new and unsupported tags:

 use CGI qw(-any);
 $q=CGI->new;
 print $q->gradient({speed=>'fast',start=>'red',end=>'blue'});

Since using <cite>any</cite> causes any mistyped method name
 to be interpreted as an
HTML tag, use it with care or not at
 all.

-compile

This causes the indicated autoloaded methods to be compiled up front,
 rather than deferred to
later. This is useful for scripts that run
 for an extended period of time under FastCGI or
mod_perl, and for
 those destined to be crunched by Malcolm Beattie's Perl compiler. Use
 it in
conjunction with the methods or method families you plan to use.

 use CGI qw(-compile :standard :html3);

or even

 use CGI qw(-compile :all);

Note that using the -compile pragma in this way will always have
 the effect of importing the
compiled functions into the current
 namespace. If you want to compile without importing use
the
 compile() method instead:

 use CGI();
 CGI->compile();

This is particularly useful in a mod_perl environment, in which you
 might want to precompile
all CGI routines in a startup script, and
 then import the functions individually in each mod_perl
script.

Perl version 5.12.4 documentation - CGI

Page 11http://perldoc.perl.org

-nosticky

By default the CGI module implements a state-preserving behavior
 called "sticky" fields. The
way this works is that if you are
 regenerating a form, the methods that generate the form field
values
 will interrogate param() to see if similarly-named parameters are
 present in the query
string. If they find a like-named parameter, they
 will use it to set their default values.

Sometimes this isn't what you want. The -nosticky pragma prevents
 this behavior. You can
also selectively change the sticky behavior in
 each element that you generate.

-tabindex

Automatically add tab index attributes to each form field. With this
 option turned off, you can
still add tab indexes manually by passing a
 -tabindex option to each field-generating method.

-no_undef_params

This keeps CGI.pm from including undef params in the parameter list.

-no_xhtml

By default, CGI.pm versions 2.69 and higher emit XHTML
 (http://www.w3.org/TR/xhtml1/).
The -no_xhtml pragma disables this
 feature. Thanks to Michalis Kabrianis
<kabrianis@hellug.gr> for this
 feature.

If start_html()'s -dtd parameter specifies an HTML 2.0, 3.2, 4.0 or 4.01 DTD, XHTML will
automatically be disabled without needing to use this pragma.

-utf8

This makes CGI.pm treat all parameters as UTF-8 strings. Use this with
 care, as it will
interfere with the processing of binary uploads. It
 is better to manually select which fields are
expected to return utf-8
 strings and convert them using code like this:

 use Encode;
 my $arg = decode utf8=>param('foo');

-nph

This makes CGI.pm produce a header appropriate for an NPH (no
 parsed header) script. You
may need to do other things as well
 to tell the server that the script is NPH. See the discussion
of NPH scripts below.

-newstyle_urls

Separate the name=value pairs in CGI parameter query strings with
 semicolons rather than
ampersands. For example:

 ?name=fred;age=24;favorite_color=3

Semicolon-delimited query strings are always accepted, and will be emitted by
 self_url() and
query_string(). newstyle_urls became the default in version
 2.64.

-oldstyle_urls

Separate the name=value pairs in CGI parameter query strings with
 ampersands rather than
semicolons. This is no longer the default.

-autoload

This overrides the autoloader so that any function in your program
 that is not recognized is
referred to CGI.pm for possible evaluation.
 This allows you to use all the CGI.pm functions
without adding them to
 your symbol table, which is of concern for mod_perl users who are

worried about memory consumption. Warning: when -autoload is in effect, you cannot use
"poetry mode"
 (functions without the parenthesis). Use hr() rather
 than hr, or add something
like use subs qw/hr p header/ to the top of your script.

Perl version 5.12.4 documentation - CGI

Page 12http://perldoc.perl.org

-no_debug

This turns off the command-line processing features. If you want to
 run a CGI.pm script from
the command line to produce HTML, and you
 don't want it to read CGI parameters from the
command line or STDIN,
 then use this pragma:

 use CGI qw(-no_debug :standard);

-debug

This turns on full debugging. In addition to reading CGI arguments
 from the command-line
processing, CGI.pm will pause and try to read
 arguments from STDIN, producing the message
"(offline mode: enter
 name=value pairs on standard input)" features.

See the section on debugging for more details.

-private_tempfiles

CGI.pm can process uploaded file. Ordinarily it spools the uploaded
 file to a temporary
directory, then deletes the file when done.
 However, this opens the risk of eavesdropping as
described in the file
 upload section. Another CGI script author could peek at this data
 during
the upload, even if it is confidential information. On Unix
 systems, the -private_tempfiles
pragma will cause the temporary file
 to be unlinked as soon as it is opened and before any
data is written
 into it, reducing, but not eliminating the risk of eavesdropping
 (there is still a
potential race condition). To make life harder for
 the attacker, the program chooses tempfile
names by calculating a 32
 bit checksum of the incoming HTTP headers.

To ensure that the temporary file cannot be read by other CGI scripts,
 use suEXEC or a CGI
wrapper program to run your script. The temporary
 file is created with mode 0600 (neither
world nor group readable).

The temporary directory is selected using the following algorithm:

 1. if the current user (e.g. "nobody") has a directory named
 "tmp" in its home directory, use that (Unix systems only).

 2. if the environment variable TMPDIR exists, use the location
 indicated.

 3. Otherwise try the locations /usr/tmp, /var/tmp, C:\temp,
 /tmp, /temp, ::Temporary Items, and \WWW_ROOT.

Each of these locations is checked that it is a directory and is
 writable. If not, the algorithm
tries the next choice.

SPECIAL FORMS FOR IMPORTING HTML-TAG FUNCTIONS
Many of the methods generate HTML tags. As described below, tag
 functions automatically generate
both the opening and closing tags.
 For example:

 print h1('Level 1 Header');

produces

 <h1>Level 1 Header</h1>

There will be some times when you want to produce the start and end
 tags yourself. In this case, you
can use the form start_tag_name
 and end_tag_name, as in:

 print start_h1,'Level 1 Header',end_h1;

With a few exceptions (described below), start_tag_name and
 end_tag_name functions are not

Perl version 5.12.4 documentation - CGI

Page 13http://perldoc.perl.org

generated automatically when you use CGI. However, you can specify the tags you want to generate
start/end functions for by putting an asterisk in front of their
 name, or, alternatively, requesting either
"start_tag_name" or
 "end_tag_name" in the import list.

Example:

 use CGI qw/:standard *table start_ul/;

In this example, the following functions are generated in addition to
 the standard ones:

1. start_table() (generates a <table> tag)

2. end_table() (generates a </table> tag)

3. start_ul() (generates a tag)

4. end_ul() (generates a tag)

GENERATING DYNAMIC DOCUMENTS
Most of CGI.pm's functions deal with creating documents on the fly.
 Generally you will produce the
HTTP header first, followed by the
 document itself. CGI.pm provides functions for generating HTTP

headers of various types as well as for generating HTML. For creating
 GIF images, see the GD.pm
module.

Each of these functions produces a fragment of HTML or HTTP which you
 can print out directly so
that it displays in the browser window,
 append to a string, or save to a file for later use.

CREATING A STANDARD HTTP HEADER:
Normally the first thing you will do in any CGI script is print out an
 HTTP header. This tells the
browser what type of document to expect,
 and gives other optional information, such as the language,
expiration
 date, and whether to cache the document. The header can also be
 manipulated for special
purposes, such as server push and pay per view
 pages.

	 print header;

	 -or-

	 print header('image/gif');

	 -or-

	 print header('text/html','204 No response');

	 -or-

	 print header(-type=>'image/gif',
			 -nph=>1,
			 -status=>'402 Payment required',
			 -expires=>'+3d',
			 -cookie=>$cookie,
 -charset=>'utf-7',
 -attachment=>'foo.gif',
			 -Cost=>'$2.00');

header() returns the Content-type: header. You can provide your own
 MIME type if you choose,
otherwise it defaults to text/html. An
 optional second parameter specifies the status code and a
human-readable
 message. For example, you can specify 204, "No response" to create a
 script that

Perl version 5.12.4 documentation - CGI

Page 14http://perldoc.perl.org

tells the browser to do nothing at all.

The last example shows the named argument style for passing arguments
 to the CGI methods using
named parameters. Recognized parameters are -type, -status, -expires, and -cookie. Any other
named
 parameters will be stripped of their initial hyphens and turned into
 header fields, allowing you
to specify any HTTP header you desire.
 Internal underscores will be turned into hyphens:

 print header(-Content_length=>3002);

Most browsers will not cache the output from CGI scripts. Every time
 the browser reloads the page,
the script is invoked anew. You can
 change this behavior with the -expires parameter. When you
specify
 an absolute or relative expiration interval with this parameter, some
 browsers and proxy
servers will cache the script's output until the
 indicated expiration date. The following forms are all
valid for the
 -expires field:

	 +30s 30 seconds from now
	 +10m ten minutes from now
	 +1h one hour from now
	 -1d yesterday (i.e. "ASAP!")
	 now immediately
	 +3M in three months
	 +10y in ten years time
	 Thursday, 25-Apr-1999 00:40:33 GMT at the indicated time & date

The -cookie parameter generates a header that tells the browser to provide
 a "magic cookie" during
all subsequent transactions with your script.
 Some cookies have a special format that includes
interesting attributes
 such as expiration time. Use the cookie() method to create and retrieve
 session
cookies.

The -nph parameter, if set to a true value, will issue the correct
 headers to work with a NPH
(no-parse-header) script. This is important
 to use with certain servers that expect all their scripts to be
NPH.

The -charset parameter can be used to control the character set
 sent to the browser. If not provided,
defaults to ISO-8859-1. As a
 side effect, this sets the charset() method as well.

The -attachment parameter can be used to turn the page into an
 attachment. Instead of displaying
the page, some browsers will prompt
 the user to save it to disk. The value of the argument is the

suggested name for the saved file. In order for this to work, you may
 have to set the -type to
"application/octet-stream".

The -p3p parameter will add a P3P tag to the outgoing header. The
 parameter can be an arrayref or a
space-delimited string of P3P tags.
 For example:

 print header(-p3p=>[qw(CAO DSP LAW CURa)]);
 print header(-p3p=>'CAO DSP LAW CURa');

In either case, the outgoing header will be formatted as:

 P3P: policyref="/w3c/p3p.xml" cp="CAO DSP LAW CURa"

Note that if a header value contains a carriage return, a leading space will be
 added to each new line
that doesn't already have one as specified by RFC2616
 section 4.2. For example:

 print header(-ingredients => "ham\neggs\nbacon");

will generate

Perl version 5.12.4 documentation - CGI

Page 15http://perldoc.perl.org

 Ingredients: ham
 eggs
 bacon

GENERATING A REDIRECTION HEADER
 print $q->redirect('http://somewhere.else/in/movie/land');

Sometimes you don't want to produce a document yourself, but simply
 redirect the browser
elsewhere, perhaps choosing a URL based on the
 time of day or the identity of the user.

The redirect() method redirects the browser to a different URL. If
 you use redirection like this, you
should not print out a header as
 well.

You should always use full URLs (including the http: or ftp: part) in
 redirection requests. Relative
URLs will not work correctly.

You can also use named arguments:

 print $q->redirect(
 -uri=>'http://somewhere.else/in/movie/land',
	 -nph=>1,
 -status=>301);

All names arguments recognized by header() are also recognized by
 redirect(). However, most HTTP
headers, including those generated by
 -cookie and -target, are ignored by the browser.

The -nph parameter, if set to a true value, will issue the correct
 headers to work with a NPH
(no-parse-header) script. This is important
 to use with certain servers, such as Microsoft IIS, which

expect all their scripts to be NPH.

The -status parameter will set the status of the redirect. HTTP
 defines three different possible
redirection status codes:

 301 Moved Permanently
 302 Found
 303 See Other

The default if not specified is 302, which means "moved temporarily."
 You may change the status to
another status code if you wish. Be
 advised that changing the status to anything other than 301, 302
or
 303 will probably break redirection.

CREATING THE HTML DOCUMENT HEADER
 print start_html(-title=>'Secrets of the Pyramids',
			 -author=>'fred@capricorn.org',
			 -base=>'true',
			 -target=>'_blank',
			 -meta=>{'keywords'=>'pharaoh secret mummy',
				 'copyright'=>'copyright 1996 King Tut'},
			 -style=>{'src'=>'/styles/style1.css'},
			 -BGCOLOR=>'blue');

After creating the HTTP header, most CGI scripts will start writing
 out an HTML document. The
start_html() routine creates the top of the
 page, along with a lot of optional information that controls
the
 page's appearance and behavior.

This method returns a canned HTML header and the opening <body> tag.
 All parameters are
optional. In the named parameter form, recognized
 parameters are -title, -author, -base, -xbase, -dtd,

Perl version 5.12.4 documentation - CGI

Page 16http://perldoc.perl.org

-lang and -target
 (see below for the explanation). Any additional parameters you
 provide, such as the
unofficial BGCOLOR attribute, are added
 to the <body> tag. Additional parameters must be
proceeded by a
 hyphen.

The argument -xbase allows you to provide an HREF for the <base> tag
 different from the current
location, as in

 -xbase=>"http://home.mcom.com/"

All relative links will be interpreted relative to this tag.

The argument -target allows you to provide a default target frame
 for all the links and fill-out forms on
the page. This is a
 non-standard HTTP feature which only works with some browsers!

 -target=>"answer_window"

All relative links will be interpreted relative to this tag.
 You add arbitrary meta information to the
header with the -meta
 argument. This argument expects a reference to a hash
 containing name/value
pairs of meta information. These will be turned
 into a series of header <meta> tags that look
something like this:

 <meta name="keywords" content="pharaoh secret mummy">
 <meta name="description" content="copyright 1996 King Tut">

To create an HTTP-EQUIV type of <meta> tag, use -head, described
 below.

The -style argument is used to incorporate cascading stylesheets
 into your code. See the section on
CASCADING STYLESHEETS for more
 information.

The -lang argument is used to incorporate a language attribute into
 the <html> tag. For example:

 print $q->start_html(-lang=>'fr-CA');

The default if not specified is "en-US" for US English, unless the -dtd parameter specifies an HTML
2.0 or 3.2 DTD, in which case the
 lang attribute is left off. You can force the lang attribute to left
 off in
other cases by passing an empty string (-lang=>'').

The -encoding argument can be used to specify the character set for
 XHTML. It defaults to
iso-8859-1 if not specified.

The -declare_xml argument, when used in conjunction with XHTML,
 will put a <?xml> declaration at
the top of the HTML header. The sole
 purpose of this declaration is to declare the character set

encoding. In the absence of -declare_xml, the output HTML will contain
 a <meta> tag that specifies
the encoding, allowing the HTML to pass
 most validators. The default for -declare_xml is false.

You can place other arbitrary HTML elements to the <head> section with the -head tag. For example,
to place the rarely-used <link> element in the
 head section, use this:

 print start_html(-head=>Link({-rel=>'next',
		 -href=>'http://www.capricorn.com/s2.html'}));

To incorporate multiple HTML elements into the <head> section, just pass an
 array reference:

 print start_html(-head=>[
 Link({-rel=>'next',
				 -href=>'http://www.capricorn.com/s2.html'}),
		 Link({-rel=>'previous',
				 -href=>'http://www.capricorn.com/s1.html'})
]

Perl version 5.12.4 documentation - CGI

Page 17http://perldoc.perl.org

);

And here's how to create an HTTP-EQUIV <meta> tag:

 print start_html(-head=>meta({-http_equiv => 'Content-Type',
 -content => 'text/html'}))

JAVASCRIPTING: The -script, -noScript, -onLoad, -onMouseOver, -onMouseOut and -onUnload
parameters are used
 to add JavaScript calls to your pages. -script should
 point to a block of text
containing JavaScript function definitions.
 This block will be placed within a <script> block inside the
HTML (not
 HTTP) header. The block is placed in the header in order to give your
 page a fighting
chance of having all its JavaScript functions in place
 even if the user presses the stop button before
the page has loaded
 completely. CGI.pm attempts to format the script in such a way that

JavaScript-naive browsers will not choke on the code: unfortunately
 there are some browsers, such
as Chimera for Unix, that get confused
 by it nevertheless.

The -onLoad and -onUnload parameters point to fragments of JavaScript
 code to execute when the
page is respectively opened and closed by the
 browser. Usually these parameters are calls to
functions defined in the -script field:

 $query = CGI->new;
 print header;
 $JSCRIPT=<<END;
 // Ask a silly question
 function riddle_me_this() {
	 var r = prompt("What walks on four legs in the morning, " +
		 "two legs in the afternoon, " +
		 "and three legs in the evening?");
	 response(r);
 }
 // Get a silly answer
 function response(answer) {
	 if (answer == "man")
	 alert("Right you are!");
	 else
	 alert("Wrong! Guess again.");
 }
 END
 print start_html(-title=>'The Riddle of the Sphinx',
			 -script=>$JSCRIPT);

Use the -noScript parameter to pass some HTML text that will be displayed on browsers that do not
have JavaScript (or browsers where JavaScript is turned
 off).

The <script> tag, has several attributes including "type" and src.
 The latter is particularly interesting,
as it allows you to keep the
 JavaScript code in a file or CGI script rather than cluttering up each
 page
with the source. To use these attributes pass a HASH reference
 in the -script parameter containing
one or more of -type, -src, or
 -code:

 print $q->start_html(-title=>'The Riddle of the Sphinx',
			 -script=>{-type=>'JAVASCRIPT',
 -src=>'/javascript/sphinx.js'}
);

 print $q->(-title=>'The Riddle of the Sphinx',
	 -script=>{-type=>'PERLSCRIPT',

Perl version 5.12.4 documentation - CGI

Page 18http://perldoc.perl.org

			 -code=>'print "hello world!\n;"'}
);

A final feature allows you to incorporate multiple <script> sections into the
 header. Just pass the list of
script sections as an array reference.
 this allows you to specify different source files for different
dialects
 of JavaScript. Example:

 print $q->start_html(-title=>'The Riddle of the Sphinx',
 -script=>[
 { -type => 'text/javascript',
 -src =>
'/javascript/utilities10.js'
 },
 { -type => 'text/javascript',
 -src =>
'/javascript/utilities11.js'
 },
 { -type => 'text/jscript',
 -src =>
'/javascript/utilities12.js'
 },
 { -type => 'text/ecmascript',
 -src =>
'/javascript/utilities219.js'
 }
]
);

The option "-language" is a synonym for -type, and is supported for
 backwad compatibility.

The old-style positional parameters are as follows:

Parameters:

1. The title

2. The author's e-mail address (will create a <link rev="MADE"> tag if present

3. A 'true' flag if you want to include a <base> tag in the header. This
 helps resolve relative
addresses to absolute ones when the document is moved, but makes the document hierarchy
non-portable. Use with care!

4, 5, 6...

Any other parameters you want to include in the <body> tag. This is a good
 place to put HTML
extensions, such as colors and wallpaper patterns.

ENDING THE HTML DOCUMENT:
	 print end_html

This ends an HTML document by printing the </body></html> tags.

CREATING A SELF-REFERENCING URL THAT PRESERVES STATE INFORMATION:
 $myself = self_url;
 print q(I'm talking to myself.);

self_url() will return a URL, that, when selected, will reinvoke
 this script with all its state information
intact. This is most
 useful when you want to jump around within the document using
 internal anchors

Perl version 5.12.4 documentation - CGI

Page 19http://perldoc.perl.org

but you don't want to disrupt the current contents
 of the form(s). Something like this will do the trick.

 $myself = self_url;
 print "See table 1";
 print "See table 2";
 print "See for yourself";

If you want more control over what's returned, using the url()
 method instead.

You can also retrieve the unprocessed query string with query_string():

 $the_string = query_string;

OBTAINING THE SCRIPT'S URL
 $full_url = url();
 $full_url = url(-full=>1); #alternative syntax
 $relative_url = url(-relative=>1);
 $absolute_url = url(-absolute=>1);
 $url_with_path = url(-path_info=>1);
 $url_with_path_and_query = url(-path_info=>1,-query=>1);
 $netloc = url(-base => 1);

url() returns the script's URL in a variety of formats. Called
 without any arguments, it returns the full
form of the URL, including
 host name and port number

 http://your.host.com/path/to/script.cgi

You can modify this format with the following named arguments:

-absolute

If true, produce an absolute URL, e.g.

 /path/to/script.cgi

-relative

Produce a relative URL. This is useful if you want to reinvoke your
 script with different
parameters. For example:

 script.cgi

-full

Produce the full URL, exactly as if called without any arguments.
 This overrides the -relative
and -absolute arguments.

-path (-path_info)

Append the additional path information to the URL. This can be
 combined with -full, -absolute
or -relative. -path_info
 is provided as a synonym.

-query (-query_string)

Append the query string to the URL. This can be combined with -full, -absolute or -relative.
-query_string is provided
 as a synonym.

-base

Generate just the protocol and net location, as in http://www.foo.com:8000

-rewrite

Perl version 5.12.4 documentation - CGI

Page 20http://perldoc.perl.org

If Apache's mod_rewrite is turned on, then the script name and path
 info probably won't match
the request that the user sent. Set
 -rewrite=>1 (default) to return URLs that match what the
user sent
 (the original request URI). Set -rewrite=>0 to return URLs that match
 the URL after
mod_rewrite's rules have run. Because the additional
 path information only makes sense in
the context of the rewritten URL,
 -rewrite is set to false when you request path info in the URL.

MIXING POST AND URL PARAMETERS
 $color = url_param('color');

It is possible for a script to receive CGI parameters in the URL as
 well as in the fill-out form by
creating a form that POSTs to a URL
 containing a query string (a "?" mark followed by arguments).
The param() method will always return the contents of the POSTed
 fill-out form, ignoring the URL's
query string. To retrieve URL
 parameters, call the url_param() method. Use it in the same way as
param(). The main difference is that it allows you to read the
 parameters, but not set them.

Under no circumstances will the contents of the URL query string
 interfere with similarly-named CGI
parameters in POSTed forms. If you
 try to mix a URL query string with a form submitted with the GET

method, the results will not be what you expect.

CREATING STANDARD HTML ELEMENTS:
CGI.pm defines general HTML shortcut methods for most, if not all of
 the HTML 3 and HTML 4 tags.
HTML shortcuts are named after a single
 HTML element and return a fragment of HTML text that you
can then
 print or manipulate as you like. Each shortcut returns a fragment of
 HTML code that you can
append to a string, save to a file, or, most
 commonly, print out so that it displays in the browser
window.

This example shows how to use the HTML methods:

 print $q->blockquote(
		 "Many years ago on the island of",
		 $q->a({href=>"http://crete.org/"},"Crete"),
		 "there lived a Minotaur named",
		 $q->strong("Fred."),
),
 $q->hr;

This results in the following HTML code (extra newlines have been
 added for readability):

 <blockquote>
 Many years ago on the island of
 Crete there lived
 a minotaur named Fred.
 </blockquote>
 <hr>

If you find the syntax for calling the HTML shortcuts awkward, you can
 import them into your
namespace and dispense with the object syntax
 completely (see the next section for more details):

 use CGI ':standard';
 print blockquote(
 "Many years ago on the island of",
 a({href=>"http://crete.org/"},"Crete"),
 "there lived a minotaur named",
 strong("Fred."),
),
 hr;

Perl version 5.12.4 documentation - CGI

Page 21http://perldoc.perl.org

PROVIDING ARGUMENTS TO HTML SHORTCUTS
The HTML methods will accept zero, one or multiple arguments. If you
 provide no arguments, you get
a single tag:

 print hr; 	 # <hr>

If you provide one or more string arguments, they are concatenated
 together with spaces and placed
between opening and closing tags:

 print h1("Chapter","1"); # <h1>Chapter 1</h1>"

If the first argument is a hash reference, then the keys
 and values of the hash become the HTML
tag's attributes:

 print a({-href=>'fred.html',-target=>'_new'},
 "Open a new frame");

	 Open a new frame

You may dispense with the dashes in front of the attribute names if
 you prefer:

 print img {src=>'fred.gif',align=>'LEFT'};

	

Sometimes an HTML tag attribute has no argument. For example, ordered
 lists can be marked as
COMPACT. The syntax for this is an argument that
 that points to an undef string:

 print ol({compact=>undef},li('one'),li('two'),li('three'));

Prior to CGI.pm version 2.41, providing an empty ('') string as an
 attribute argument was the same as
providing undef. However, this has
 changed in order to accommodate those who want to create tags
of the form . The difference is shown in these two pieces of code:

 CODE RESULT
 img({alt=>undef})
 img({alt=>''})

THE DISTRIBUTIVE PROPERTY OF HTML SHORTCUTS
One of the cool features of the HTML shortcuts is that they are
 distributive. If you give them an
argument consisting of a reference to a list, the tag will be distributed across each
 element of the list.
For example, here's one way to make an ordered
 list:

 print ul(
 li({-type=>'disc'},['Sneezy','Doc','Sleepy','Happy'])
);

This example will result in HTML output that looks like this:

 <li type="disc">Sneezy
 <li type="disc">Doc
 <li type="disc">Sleepy
 <li type="disc">Happy

Perl version 5.12.4 documentation - CGI

Page 22http://perldoc.perl.org

This is extremely useful for creating tables. For example:

 print table({-border=>undef},
 caption('When Should You Eat Your Vegetables?'),
 Tr({-align=>'CENTER',-valign=>'TOP'},
 [
 th(['Vegetable', 'Breakfast','Lunch','Dinner']),
 td(['Tomatoes' , 'no', 'yes', 'yes']),
 td(['Broccoli' , 'no', 'no', 'yes']),
 td(['Onions' , 'yes','yes', 'yes'])
]
)
);

HTML SHORTCUTS AND LIST INTERPOLATION
Consider this bit of code:

 print blockquote(em('Hi'),'mom!'));

It will ordinarily return the string that you probably expect, namely:

 <blockquote>Hi mom!</blockquote>

Note the space between the element "Hi" and the element "mom!".
 CGI.pm puts the extra space there
using array interpolation, which is
 controlled by the magic $" variable. Sometimes this extra space is

not what you want, for example, when you are trying to align a series
 of images. In this case, you can
simply change the value of $" to an
 empty string.

 {
 local($") = '';
 print blockquote(em('Hi'),'mom!'));
 }

I suggest you put the code in a block as shown here. Otherwise the
 change to $" will affect all
subsequent code until you explicitly
 reset it.

NON-STANDARD HTML SHORTCUTS
A few HTML tags don't follow the standard pattern for various
 reasons.

comment() generates an HTML comment (<!-- comment -->). Call it
 like

 print comment('here is my comment');

Because of conflicts with built-in Perl functions, the following functions
 begin with initial caps:

 Select
 Tr
 Link
 Delete
 Accept
 Sub

In addition, start_html(), end_html(), start_form(), end_form(),
 start_multipart_form() and all the fill-out
form tags are special.
 See their respective sections.

Perl version 5.12.4 documentation - CGI

Page 23http://perldoc.perl.org

AUTOESCAPING HTML
By default, all HTML that is emitted by the form-generating functions
 is passed through a function
called escapeHTML():

$escaped_string = escapeHTML("unescaped string");

Escape HTML formatting characters in a string.

Provided that you have specified a character set of ISO-8859-1 (the
 default), the standard HTML
escaping rules will be used. The "<"
 character becomes "<", ">" becomes ">", "&" becomes
"&", and
 the quote character becomes """. In addition, the hexadecimal
 0x8b and 0x9b
characters, which some browsers incorrectly interpret
 as the left and right angle-bracket characters,
are replaced by their
 numeric character entities ("‹" and "›"). If you manually change

the charset, either by calling the charset() method explicitly or by
 passing a -charset argument to
header(), then all characters will
 be replaced by their numeric entities, since CGI.pm has no lookup

table for all the possible encodings.

escapeHTML() expects the supplied string to be a character string. This means you
 should
Encode::decode data received from "outside" and Encode::encode your
 strings before sending them
back outside. If your source code UTF-8 encoded and
 you want to upgrade string literals in your
source to character strings, you
 can use "use utf8". See perlunitut, perlunifaq and perlunicode for
more
 information on how Perl handles the difference between bytes and characters.

The automatic escaping does not apply to other shortcuts, such as
 h1(). You should call
escapeHTML() yourself on untrusted data in
 order to protect your pages against nasty tricks that
people may enter
 into guestbooks, etc.. To change the character set, use charset().
 To turn
autoescaping off completely, use autoEscape(0):

$charset = charset([$charset]);

Get or set the current character set.

$flag = autoEscape([$flag]);

Get or set the value of the autoescape flag.

PRETTY-PRINTING HTML
By default, all the HTML produced by these functions comes out as one
 long line without carriage
returns or indentation. This is yuck, but
 it does reduce the size of the documents by 10-20%. To get

pretty-printed output, please use CGI::Pretty, a subclass
 contributed by Brian Paulsen.

CREATING FILL-OUT FORMS:
General note The various form-creating methods all return strings
 to the caller, containing the tag or
tags that will create the requested
 form element. You are responsible for actually printing out these
strings.
 It's set up this way so that you can place formatting tags
 around the form elements.

Another note The default values that you specify for the forms are only
 used the first time the script is
invoked (when there is no query
 string). On subsequent invocations of the script (when there is a
query
 string), the former values are used even if they are blank.

If you want to change the value of a field from its previous value, you have two
 choices:

(1) call the param() method to set it.

(2) use the -override (alias -force) parameter (a new feature in version 2.15).
 This forces the default
value to be used, regardless of the previous value:

 print textfield(-name=>'field_name',
			 -default=>'starting value',
			 -override=>1,
			 -size=>50,

Perl version 5.12.4 documentation - CGI

Page 24http://perldoc.perl.org

			 -maxlength=>80);

Yet another note By default, the text and labels of form elements are
 escaped according to HTML
rules. This means that you can safely use
 "<CLICK ME>" as the label for a button. However, it also
interferes with
 your ability to incorporate special HTML character sequences, such as Á,
 into
your fields. If you wish to turn off automatic escaping, call the
 autoEscape() method with a false value
immediately after creating the CGI object:

 $query = CGI->new;
 $query->autoEscape(0);

Note that autoEscape() is exclusively used to effect the behavior of how some
 CGI.pm HTML
generation fuctions handle escaping. Calling escapeHTML()
 explicitly will always escape the HTML.

A Lurking Trap! Some of the form-element generating methods return
 multiple tags. In a scalar
context, the tags will be concatenated
 together with spaces, or whatever is the current value of the $"

global. In a list context, the methods will return a list of
 elements, allowing you to modify them if you
wish. Usually you will
 not notice this behavior, but beware of this:

 printf("%s\n",end_form())

end_form() produces several tags, and only the first of them will be
 printed because the format only
expects one value.

<p>

CREATING AN ISINDEX TAG
 print isindex(-action=>$action);

	 -or-

 print isindex($action);

Prints out an <isindex> tag. Not very exciting. The parameter
 -action specifies the URL of the script to
process the query. The
 default is to process the query with the current script.

STARTING AND ENDING A FORM
 print start_form(-method=>$method,
		 -action=>$action,
		 -enctype=>$encoding);
 <... various form stuff ...>
 print end_form;

	 -or-

 print start_form($method,$action,$encoding);
 <... various form stuff ...>
 print end_form;

start_form() will return a <form> tag with the optional method,
 action and form encoding that you
specify. The defaults are:

 method: POST
 action: this script
 enctype: application/x-www-form-urlencoded for non-XHTML

Perl version 5.12.4 documentation - CGI

Page 25http://perldoc.perl.org

 multipart/form-data for XHTML, see mulitpart/form-data below.

end_form() returns the closing </form> tag.

Start_form()'s enctype argument tells the browser how to package the various
 fields of the form before
sending the form to the server. Two
 values are possible:

Note: These methods were previously named startform() and endform().
 These methods are now
DEPRECATED.
 Please use start_form() and end_form() instead.

application/x-www-form-urlencoded

This is the older type of encoding. It is compatible with many CGI scripts and is
 suitable for
short fields containing text data. For your
 convenience, CGI.pm stores the name of this
encoding
 type in &CGI::URL_ENCODED.

multipart/form-data

This is the newer type of encoding.
 It is suitable for forms that contain very large fields or that

are intended for transferring binary data. Most importantly,
 it enables the "file upload" feature.
For
 your convenience, CGI.pm stores the name of this encoding type
 in &CGI::MULTIPART

Forms that use this type of encoding are not easily interpreted
 by CGI scripts unless they use
CGI.pm or another library designed
 to handle them.

If XHTML is activated (the default), then forms will be automatically
 created using this type of
encoding.

The start_form() method uses the older form of encoding by
 default unless XHTML is requested. If
you want to use the
 newer form of encoding by default, you can call start_multipart_form() instead
of start_form(). The
 method end_multipart_form() is an alias to end_form().

JAVASCRIPTING: The -name and -onSubmit parameters are provided
 for use with JavaScript. The
-name parameter gives the
 form a name so that it can be identified and manipulated by
 JavaScript
functions. -onSubmit should point to a JavaScript
 function that will be executed just before the form is
submitted to your
 server. You can use this opportunity to check the contents of the form for
consistency and completeness. If you find something wrong, you
 can put up an alert box or maybe fix
things up yourself. You can abort the submission by returning false from this function.

Usually the bulk of JavaScript functions are defined in a <script>
 block in the HTML header and
-onSubmit points to one of these function
 call. See start_html() for details.

FORM ELEMENTS
After starting a form, you will typically create one or more
 textfields, popup menus, radio groups and
other form elements. Each
 of these elements takes a standard set of named arguments. Some

elements also have optional arguments. The standard arguments are as
 follows:

-name

The name of the field. After submission this name can be used to
 retrieve the field's value
using the param() method.

-value, -values

The initial value of the field which will be returned to the script
 after form submission. Some
form elements, such as text fields, take
 a single scalar -value argument. Others, such as
popup menus, take a
 reference to an array of values. The two arguments are synonyms.

-tabindex

A numeric value that sets the order in which the form element receives
 focus when the user
presses the tab key. Elements with lower values
 receive focus first.

-id

Perl version 5.12.4 documentation - CGI

Page 26http://perldoc.perl.org

A string identifier that can be used to identify this element to
 JavaScript and DHTML.

-override

A boolean, which, if true, forces the element to take on the value
 specified by -value,
overriding the sticky behavior described
 earlier for the -nosticky pragma.

-onChange, -onFocus, -onBlur, -onMouseOver, -onMouseOut, -onSelect

These are used to assign JavaScript event handlers. See the
 JavaScripting section for more
details.

Other common arguments are described in the next section. In addition
 to these, all attributes
described in the HTML specifications are
 supported.

CREATING A TEXT FIELD
 print textfield(-name=>'field_name',
		 -value=>'starting value',
		 -size=>50,
		 -maxlength=>80);
	 -or-

 print textfield('field_name','starting value',50,80);

textfield() will return a text input field.

Parameters

1. The first parameter is the required name for the field (-name).

2. The optional second parameter is the default starting value for the field
 contents (-value,
formerly known as -default).

3. The optional third parameter is the size of the field in
 characters (-size).

4. The optional fourth parameter is the maximum number of characters the
 field will accept
(-maxlength).

As with all these methods, the field will be initialized with its previous contents from earlier invocations
of the script.
 When the form is processed, the value of the text field can be
 retrieved with:

 $value = param('foo');

If you want to reset it from its initial value after the script has been
 called once, you can do so like this:

 param('foo',"I'm taking over this value!");

CREATING A BIG TEXT FIELD
 print textarea(-name=>'foo',
			 -default=>'starting value',
			 -rows=>10,
			 -columns=>50);

	 -or

 print textarea('foo','starting value',10,50);

textarea() is just like textfield, but it allows you to specify
 rows and columns for a multiline text entry
box. You can provide
 a starting value for the field, which can be long and contain
 multiple lines.

Perl version 5.12.4 documentation - CGI

Page 27http://perldoc.perl.org

CREATING A PASSWORD FIELD
 print password_field(-name=>'secret',
				 -value=>'starting value',
				 -size=>50,
				 -maxlength=>80);
	 -or-

 print password_field('secret','starting value',50,80);

password_field() is identical to textfield(), except that its contents will be starred out on the web page.

CREATING A FILE UPLOAD FIELD
 print filefield(-name=>'uploaded_file',
			 -default=>'starting value',
			 -size=>50,
			 -maxlength=>80);
	 -or-

 print filefield('uploaded_file','starting value',50,80);

filefield() will return a file upload field.
 In order to take full advantage of this you must use the new
multipart encoding scheme for the form. You can do this either
 by calling start_form() with an
encoding type of &CGI::MULTIPART,
 or by calling the new method start_multipart_form() instead
of
 vanilla start_form().

Parameters

1. The first parameter is the required name for the field (-name).

2. The optional second parameter is the starting value for the field contents
 to be used as the
default file name (-default).

For security reasons, browsers don't pay any attention to this field,
 and so the starting value
will always be blank. Worse, the field
 loses its "sticky" behavior and forgets its previous
contents. The
 starting value field is called for in the HTML specification, however,
 and possibly
some browser will eventually provide support for it.

3. The optional third parameter is the size of the field in
 characters (-size).

4. The optional fourth parameter is the maximum number of characters the
 field will accept
(-maxlength).

JAVASCRIPTING: The -onChange, -onFocus, -onBlur, -onMouseOver, -onMouseOut and
-onSelect parameters are
 recognized. See textfield() for details.

PROCESSING A FILE UPLOAD FIELD
Basics

When the form is processed, you can retrieve an IO::Handle compatibile
 handle for a file upload field
like this:

 $lightweight_fh = $q->upload('field_name');

 # undef may be returned if it's not a valid file handle
 if (defined $lightweight_fh) {
 # Upgrade the handle to one compatible with IO::Handle:
 my $io_handle = $lightweight_fh->handle;

Perl version 5.12.4 documentation - CGI

Page 28http://perldoc.perl.org

 open (OUTFILE,'>>','/usr/local/web/users/feedback');
 while ($bytesread = $io_handle->read($buffer,1024)) {
 print OUTFILE $buffer;
 }
 }

In a list context, upload() will return an array of filehandles.
 This makes it possible to process forms
that use the same name for
 multiple upload fields.

If you want the entered file name for the file, you can just call param():

 $filename = $q->param('field_name');

Different browsers will return slightly different things for the
 name. Some browsers return the filename
only. Others return the full
 path to the file, using the path conventions of the user's machine.

Regardless, the name returned is always the name of the file on the user's machine, and is unrelated
to the name of the temporary file
 that CGI.pm creates during upload spooling (see below).

When a file is uploaded the browser usually sends along some
 information along with it in the format
of headers. The information
 usually includes the MIME content type. To
 retrieve this information, call
uploadInfo(). It returns a reference to
 a hash containing all the document headers.

 $filename = $q->param('uploaded_file');
 $type = $q->uploadInfo($filename)->{'Content-Type'};
 unless ($type eq 'text/html') {
 die "HTML FILES ONLY!";
 }

If you are using a machine that recognizes "text" and "binary" data
 modes, be sure to understand
when and how to use them (see the Camel book). Otherwise you may find that binary files are
corrupted during file
 uploads.

Accessing the temp files directly

When processing an uploaded file, CGI.pm creates a temporary file on your hard
 disk and passes you
a file handle to that file. After you are finished with the
 file handle, CGI.pm unlinks (deletes) the
temporary file. If you need to you
 can access the temporary file directly. You can access the temp file
for a file
 upload by passing the file name to the tmpFileName() method:

 $filename = $query->param('uploaded_file');
 $tmpfilename = $query->tmpFileName($filename);

The temporary file will be deleted automatically when your program exits unless
 you manually rename
it. On some operating systems (such as Windows NT), you
 will need to close the temporary file's
filehandle before your program exits.
 Otherwise the attempt to delete the temporary file will fail.

Handling interrupted file uploads

There are occasionally problems involving parsing the uploaded file.
 This usually happens when the
user presses "Stop" before the upload is
 finished. In this case, CGI.pm will return undef for the name
of the
 uploaded file and set cgi_error() to the string "400 Bad request
 (malformed multipart POST)".
This error message is designed so that
 you can incorporate it into a status code to be sent to the
browser.
 Example:

 $file = $q->upload('uploaded_file');
 if (!$file && $q->cgi_error) {
 print $q->header(-status=>$q->cgi_error);
 exit 0;
 }

Perl version 5.12.4 documentation - CGI

Page 29http://perldoc.perl.org

You are free to create a custom HTML page to complain about the error,
 if you wish.

Progress bars for file uploads and avoiding temp files

CGI.pm gives you low-level access to file upload management through
 a file upload hook. You can
use this feature to completely turn off
 the temp file storage of file uploads, or potentially write your
own
 file upload progess meter.

This is much like the UPLOAD_HOOK facility available in Apache::Request, with
 the exception that
the first argument to the callback is an Apache::Upload
 object, here it's the remote filename.

 $q = CGI->new(\&hook [,$data [,$use_tempfile]]);

 sub hook {
 my ($filename, $buffer, $bytes_read, $data) = @_;
 print "Read $bytes_read bytes of $filename\n";
 }

The $data field is optional; it lets you pass configuration
 information (e.g. a database handle) to your
hook callback.

The $use_tempfile field is a flag that lets you turn on and off
 CGI.pm's use of a temporary
disk-based file during file upload. If you
 set this to a FALSE value (default true) then
$q->param('uploaded_file')
 will no longer work, and the only way to get at the uploaded data is
 via the
hook you provide.

If using the function-oriented interface, call the CGI::upload_hook()
 method before calling param() or
any other CGI functions:

 CGI::upload_hook(\&hook [,$data [,$use_tempfile]]);

This method is not exported by default. You will have to import it
 explicitly if you wish to use it without
the CGI:: prefix.

Troubleshooting file uploads on Windows

If you are using CGI.pm on a Windows platform and find that binary
 files get slightly larger when
uploaded but that text files remain the
 same, then you have forgotten to activate binary mode on the
output
 filehandle. Be sure to call binmode() on any handle that you create
 to write the uploaded file to
disk.

Older ways to process file uploads

(This section is here for completeness. if you are building a new application with CGI.pm, you can
skip it.)

The original way to process file uploads with CGI.pm was to use param(). The
 value it returns has a
dual nature as both a file name and a lightweight
 filehandle. This dual nature is problematic if you
following the recommended
 practice of having use strict in your code. Perl will complain when
you try
 to use a string as a filehandle. More seriously, it is possible for the remote
 user to type
garbage into the upload field, in which case what you get from
 param() is not a filehandle at all, but a
string.

To solve this problem the upload() method was added, which always returns a
 lightweight filehandle.
This generally works well, but will have trouble
 interoperating with some other modules because the
file handle is not derived
 from IO::Handle. So that brings us to current recommedation given above,

which is to call the handle() method on the file handle returned by upload().
 That upgrades the handle
to an IO::Handle. It's a big win for compatibility for
 a small penalty of loading IO::Handle the first time
you call it.

Perl version 5.12.4 documentation - CGI

Page 30http://perldoc.perl.org

CREATING A POPUP MENU
 print popup_menu('menu_name',
			 ['eenie','meenie','minie'],
			 'meenie');

 -or-

 %labels = ('eenie'=>'your first choice',
	 'meenie'=>'your second choice',
	 'minie'=>'your third choice');
 %attributes = ('eenie'=>{'class'=>'class of first choice'});
 print popup_menu('menu_name',
			 ['eenie','meenie','minie'],
 'meenie',\%labels,\%attributes);

	 -or (named parameter style)-

 print popup_menu(-name=>'menu_name',
			 -values=>['eenie','meenie','minie'],
			 -default=>['meenie','minie'],
 -labels=>\%labels,
 -attributes=>\%attributes);

popup_menu() creates a menu.

1. The required first argument is the menu's name (-name).

2. The required second argument (-values) is an array reference
 containing the list of menu
items in the menu. You can pass the
 method an anonymous array, as shown in the example,
or a reference to
 a named array, such as "\@foo".

3. The optional third parameter (-default) is the name of the default
 menu choice. If not specified,
the first item will be the default.
 The values of the previous choice will be maintained across

queries. Pass an array reference to select multiple defaults.

4. The optional fourth parameter (-labels) is provided for people who
 want to use different values
for the user-visible label inside the
 popup menu and the value returned to your script. It's a
pointer to an
 hash relating menu values to user-visible labels. If you
 leave this parameter
blank, the menu values will be displayed by
 default. (You can also leave a label undefined if
you want to).

5. The optional fifth parameter (-attributes) is provided to assign
 any of the common HTML
attributes to an individual menu item. It's
 a pointer to a hash relating menu values to another

hash with the attribute's name as the key and the
 attribute's value as the value.

When the form is processed, the selected value of the popup menu can
 be retrieved using:

 $popup_menu_value = param('menu_name');

CREATING AN OPTION GROUP
Named parameter style

 print popup_menu(-name=>'menu_name',
 -values=>[qw/eenie meenie minie/,
 optgroup(-name=>'optgroup_name',
 -values => ['moe','catch'],

Perl version 5.12.4 documentation - CGI

Page 31http://perldoc.perl.org

-attributes=>{'catch'=>{'class'=>'red'}})],
 -labels=>{'eenie'=>'one',
 'meenie'=>'two',
 'minie'=>'three'},
 -default=>'meenie');

 Old style
 print popup_menu('menu_name',
 ['eenie','meenie','minie',
 optgroup('optgroup_name', ['moe', 'catch'],
 {'catch'=>{'class'=>'red'}})],'meenie',
 {'eenie'=>'one','meenie'=>'two','minie'=>'three'});

optgroup() creates an option group within a popup menu.

1. The required first argument (-name) is the label attribute of the
 optgroup and is not inserted in
the parameter list of the query.

2. The required second argument (-values) is an array reference
 containing the list of menu
items in the menu. You can pass the
 method an anonymous array, as shown in the example,
or a reference
 to a named array, such as \@foo. If you pass a HASH reference,
 the keys will
be used for the menu values, and the values will be
 used for the menu labels (see -labels
below).

3. The optional third parameter (-labels) allows you to pass a reference
 to a hash containing
user-visible labels for one or more
 of the menu items. You can use this when you want the
user to see one
 menu string, but have the browser return your program a different one.
 If you
don't specify this, the value string will be used instead
 ("eenie", "meenie" and "minie" in this
example). This is equivalent
 to using a hash reference for the -values parameter.

4. An optional fourth parameter (-labeled) can be set to a true value
 and indicates that the
values should be used as the label attribute
 for each option element within the optgroup.

5. An optional fifth parameter (-novals) can be set to a true value and
 indicates to suppress the
val attribute in each option element within
 the optgroup.

See the discussion on optgroup at W3C

(http://www.w3.org/TR/REC-html40/interact/forms.html#edef-OPTGROUP)
 for details.

6. An optional sixth parameter (-attributes) is provided to assign
 any of the common HTML
attributes to an individual menu item. It's
 a pointer to a hash relating menu values to another

hash with the attribute's name as the key and the
 attribute's value as the value.

CREATING A SCROLLING LIST
 print scrolling_list('list_name',
				 ['eenie','meenie','minie','moe'],
 ['eenie','moe'],5,'true',{'moe'=>{'class'=>'red'}});
 -or-

 print scrolling_list('list_name',
				 ['eenie','meenie','minie','moe'],
				 ['eenie','moe'],5,'true',
 \%labels,%attributes);

	 -or-

Perl version 5.12.4 documentation - CGI

Page 32http://perldoc.perl.org

 print scrolling_list(-name=>'list_name',
				 -values=>['eenie','meenie','minie','moe'],
				 -default=>['eenie','moe'],
				 -size=>5,
				 -multiple=>'true',
 -labels=>\%labels,
 -attributes=>\%attributes);

scrolling_list() creates a scrolling list.

Parameters:

1. The first and second arguments are the list name (-name) and values
 (-values). As in the
popup menu, the second argument should be an
 array reference.

2. The optional third argument (-default) can be either a reference to a
 list containing the values
to be selected by default, or can be a
 single value to select. If this argument is missing or
undefined,
 then nothing is selected when the list first appears. In the named
 parameter
version, you can use the synonym "-defaults" for this
 parameter.

3. The optional fourth argument is the size of the list (-size).

4. The optional fifth argument can be set to true to allow multiple
 simultaneous selections
(-multiple). Otherwise only one selection
 will be allowed at a time.

5. The optional sixth argument is a pointer to a hash
 containing long user-visible labels for the list
items (-labels).
 If not provided, the values will be displayed.

6. The optional sixth parameter (-attributes) is provided to assign
 any of the common HTML
attributes to an individual menu item. It's
 a pointer to a hash relating menu values to another

hash with the attribute's name as the key and the
 attribute's value as the value.

When this form is processed, all selected list items will be returned as
 a list under the
parameter name 'list_name'. The values of the
 selected items can be retrieved with:

 @selected = param('list_name');

CREATING A GROUP OF RELATED CHECKBOXES
 print checkbox_group(-name=>'group_name',
				 -values=>['eenie','meenie','minie','moe'],
				 -default=>['eenie','moe'],
				 -linebreak=>'true',
 -disabled => ['moe'],
 -labels=>\%labels,
 -attributes=>\%attributes);

 print checkbox_group('group_name',
				 ['eenie','meenie','minie','moe'],
 ['eenie','moe'],'true',\%labels,
 {'moe'=>{'class'=>'red'}});

 HTML3-COMPATIBLE BROWSERS ONLY:

 print checkbox_group(-name=>'group_name',
				 -values=>['eenie','meenie','minie','moe'],
				 -rows=2,-columns=>2);

checkbox_group() creates a list of checkboxes that are related
 by the same name.

Perl version 5.12.4 documentation - CGI

Page 33http://perldoc.perl.org

Parameters:

1. The first and second arguments are the checkbox name and values,
 respectively (-name and
-values). As in the popup menu, the second
 argument should be an array reference. These
values are used for the
 user-readable labels printed next to the checkboxes as well as for the

values passed to your script in the query string.

2. The optional third argument (-default) can be either a reference to a
 list containing the values
to be checked by default, or can be a
 single value to checked. If this argument is missing or
undefined,
 then nothing is selected when the list first appears.

3. The optional fourth argument (-linebreak) can be set to true to place
 line breaks between the
checkboxes so that they appear as a vertical
 list. Otherwise, they will be strung together on a
horizontal line.

The optional -labels argument is a pointer to a hash
 relating the checkbox values to the user-visible
labels that will be
 printed next to them. If not provided, the values will be used as the
 default.

The optional parameters -rows, and -columns cause
 checkbox_group() to return an HTML3
compatible table containing the
 checkbox group formatted with the specified number of rows and

columns. You can provide just the -columns parameter if you wish;
 checkbox_group will calculate the
correct number of rows for you.

The option -disabled takes an array of checkbox values and disables
 them by greying them out (this
may not be supported by all browsers).

The optional -attributes argument is provided to assign any of the
 common HTML attributes to an
individual menu item. It's a pointer to
 a hash relating menu values to another hash
 with the attribute's
name as the key and the attribute's value as the
 value.

The optional -tabindex argument can be used to control the order in which
 radio buttons receive
focus when the user presses the tab button. If
 passed a scalar numeric value, the first element in the
group will
 receive this tab index and subsequent elements will be incremented by
 one. If given a
reference to an array of radio button values, then
 the indexes will be jiggered so that the order
specified in the array
 will correspond to the tab order. You can also pass a reference to a
 hash in
which the hash keys are the radio button values and the values
 are the tab indexes of each button.
Examples:

 -tabindex => 100 # this group starts at index 100 and counts up
 -tabindex => ['moe','minie','eenie','meenie'] # tab in this order
 -tabindex => {meenie=>100,moe=>101,minie=>102,eenie=>200} # tab in this
order

The optional -labelattributes argument will contain attributes
 attached to the <label> element that
surrounds each button.

When the form is processed, all checked boxes will be returned as
 a list under the parameter name
'group_name'. The values of the
 "on" checkboxes can be retrieved with:

 @turned_on = param('group_name');

The value returned by checkbox_group() is actually an array of button
 elements. You can capture
them and use them within tables, lists,
 or in other creative ways:

 @h = checkbox_group(-name=>'group_name',-values=>\@values);
 &use_in_creative_way(@h);

Perl version 5.12.4 documentation - CGI

Page 34http://perldoc.perl.org

CREATING A STANDALONE CHECKBOX
 print checkbox(-name=>'checkbox_name',
			 -checked=>1,
			 -value=>'ON',
			 -label=>'CLICK ME');

	 -or-

 print checkbox('checkbox_name','checked','ON','CLICK ME');

checkbox() is used to create an isolated checkbox that isn't logically
 related to any others.

Parameters:

1. The first parameter is the required name for the checkbox (-name). It
 will also be used for the
user-readable label printed next to the
 checkbox.

2. The optional second parameter (-checked) specifies that the checkbox
 is turned on by default.
Synonyms are -selected and -on.

3. The optional third parameter (-value) specifies the value of the
 checkbox when it is checked. If
not provided, the word "on" is
 assumed.

4. The optional fourth parameter (-label) is the user-readable label to
 be attached to the
checkbox. If not provided, the checkbox name is
 used.

The value of the checkbox can be retrieved using:

 $turned_on = param('checkbox_name');

CREATING A RADIO BUTTON GROUP
 print radio_group(-name=>'group_name',
			 -values=>['eenie','meenie','minie'],
			 -default=>'meenie',
			 -linebreak=>'true',
 -labels=>\%labels,
 -attributes=>\%attributes);

	 -or-

 print radio_group('group_name',['eenie','meenie','minie'],
 'meenie','true',\%labels,\%attributes);

 HTML3-COMPATIBLE BROWSERS ONLY:

 print radio_group(-name=>'group_name',
			 -values=>['eenie','meenie','minie','moe'],
			 -rows=2,-columns=>2);

radio_group() creates a set of logically-related radio buttons
 (turning one member of the group on
turns the others off)

Parameters:

1. The first argument is the name of the group and is required (-name).

Perl version 5.12.4 documentation - CGI

Page 35http://perldoc.perl.org

2. The second argument (-values) is the list of values for the radio
 buttons. The values and the
labels that appear on the page are
 identical. Pass an array reference in the second argument,
either
 using an anonymous array, as shown, or by referencing a named array as
 in "\@foo".

3. The optional third parameter (-default) is the name of the default
 button to turn on. If not
specified, the first item will be the
 default. You can provide a nonexistent button name, such
as "-" to
 start up with no buttons selected.

4. The optional fourth parameter (-linebreak) can be set to 'true' to put
 line breaks between the
buttons, creating a vertical list.

5. The optional fifth parameter (-labels) is a pointer to an associative
 array relating the radio
button values to user-visible labels to be
 used in the display. If not provided, the values
themselves are
 displayed.

All modern browsers can take advantage of the optional parameters -rows, and -columns. These
parameters cause radio_group() to
 return an HTML3 compatible table containing the radio group
formatted
 with the specified number of rows and columns. You can provide just
 the -columns
parameter if you wish; radio_group will calculate the
 correct number of rows for you.

To include row and column headings in the returned table, you
 can use the -rowheaders and
-colheaders parameters. Both
 of these accept a pointer to an array of headings to use.
 The headings
are just decorative. They don't reorganize the
 interpretation of the radio buttons -- they're still a single
named
 unit.

The optional -tabindex argument can be used to control the order in which
 radio buttons receive
focus when the user presses the tab button. If
 passed a scalar numeric value, the first element in the
group will
 receive this tab index and subsequent elements will be incremented by
 one. If given a
reference to an array of radio button values, then
 the indexes will be jiggered so that the order
specified in the array
 will correspond to the tab order. You can also pass a reference to a
 hash in
which the hash keys are the radio button values and the values
 are the tab indexes of each button.
Examples:

 -tabindex => 100 # this group starts at index 100 and counts up
 -tabindex => ['moe','minie','eenie','meenie'] # tab in this order
 -tabindex => {meenie=>100,moe=>101,minie=>102,eenie=>200} # tab in this
order

The optional -attributes argument is provided to assign any of the
 common HTML attributes to an
individual menu item. It's a pointer to
 a hash relating menu values to another hash
 with the attribute's
name as the key and the attribute's value as the
 value.

The optional -labelattributes argument will contain attributes
 attached to the <label> element that
surrounds each button.

When the form is processed, the selected radio button can
 be retrieved using:

 $which_radio_button = param('group_name');

The value returned by radio_group() is actually an array of button
 elements. You can capture them
and use them within tables, lists,
 or in other creative ways:

 @h = radio_group(-name=>'group_name',-values=>\@values);
 &use_in_creative_way(@h);

Perl version 5.12.4 documentation - CGI

Page 36http://perldoc.perl.org

CREATING A SUBMIT BUTTON
 print submit(-name=>'button_name',
			 -value=>'value');

	 -or-

 print submit('button_name','value');

submit() will create the query submission button. Every form
 should have one of these.

Parameters:

1. The first argument (-name) is optional. You can give the button a
 name if you have several
submission buttons in your form and you want
 to distinguish between them.

2. The second argument (-value) is also optional. This gives the button
 a value that will be
passed to your script in the query string. The
 name will also be used as the user-visible label.

3. You can use -label as an alias for -value. I always get confused
 about which of -name and
-value changes the user-visible label on the
 button.

You can figure out which button was pressed by using different
 values for each one:

 $which_one = param('button_name');

CREATING A RESET BUTTON
 print reset

reset() creates the "reset" button. Note that it restores the
 form to its value from the last time the script
was called, NOT necessarily to the defaults.

Note that this conflicts with the Perl reset() built-in. Use
 CORE::reset() to get the original reset
function.

CREATING A DEFAULT BUTTON
 print defaults('button_label')

defaults() creates a button that, when invoked, will cause the
 form to be completely reset to its
defaults, wiping out all the
 changes the user ever made.

CREATING A HIDDEN FIELD
	 print hidden(-name=>'hidden_name',
			 -default=>['value1','value2'...]);

		 -or-

	 print hidden('hidden_name','value1','value2'...);

hidden() produces a text field that can't be seen by the user. It
 is useful for passing state variable
information from one invocation
 of the script to the next.

Parameters:

1. The first argument is required and specifies the name of this
 field (-name).

2. The second argument is also required and specifies its value
 (-default). In the named

Perl version 5.12.4 documentation - CGI

Page 37http://perldoc.perl.org

parameter style of calling, you can provide
 a single value here or a reference to a whole list

Fetch the value of a hidden field this way:

 $hidden_value = param('hidden_name');

Note, that just like all the other form elements, the value of a
 hidden field is "sticky". If you want to
replace a hidden field with
 some other values after the script has been called once you'll have to
 do it
manually:

 param('hidden_name','new','values','here');

CREATING A CLICKABLE IMAGE BUTTON
 print image_button(-name=>'button_name',
				 -src=>'/source/URL',
				 -align=>'MIDDLE');

	 -or-

 print image_button('button_name','/source/URL','MIDDLE');

image_button() produces a clickable image. When it's clicked on the
 position of the click is returned to
your script as "button_name.x"
 and "button_name.y", where "button_name" is the name you've
assigned
 to it.

Parameters:

1. The first argument (-name) is required and specifies the name of this
 field.

2. The second argument (-src) is also required and specifies the URL

3.
 The third option (-align, optional) is an alignment type, and may be
 TOP, BOTTOM or MIDDLE

Fetch the value of the button this way:
 $x = param('button_name.x');
 $y = param('button_name.y');

CREATING A JAVASCRIPT ACTION BUTTON
 print button(-name=>'button_name',
			 -value=>'user visible label',
			 -onClick=>"do_something()");

	 -or-

 print button('button_name',"user visible value","do_something()");

button() produces an <input> tag with type="button". When it's
 pressed the fragment of
JavaScript code pointed to by the -onClick parameter
 will be executed.

HTTP COOKIES
Browsers support a so-called "cookie" designed to help maintain state
 within a browser session.
CGI.pm has several methods that support
 cookies.

A cookie is a name=value pair much like the named parameters in a CGI
 query string. CGI scripts
create one or more cookies and send
 them to the browser in the HTTP header. The browser
maintains a list
 of cookies that belong to a particular Web server, and returns them
 to the CGI script
during subsequent interactions.

In addition to the required name=value pair, each cookie has several
 optional attributes:

Perl version 5.12.4 documentation - CGI

Page 38http://perldoc.perl.org

1. an expiration time

This is a time/date string (in a special GMT format) that indicates
 when a cookie expires. The
cookie will be saved and returned to your
 script until this expiration date is reached if the user
exits
 the browser and restarts it. If an expiration date isn't specified, the cookie
 will remain
active until the user quits the browser.

2. a domain

This is a partial or complete domain name for which the cookie is valid. The browser will return
the cookie to any host that matches
 the partial domain name. For example, if you specify a
domain name
 of ".capricorn.com", then the browser will return the cookie to
 Web servers
running on any of the machines "www.capricorn.com", "www2.capricorn.com",
"feckless.capricorn.com", etc. Domain names
 must contain at least two periods to prevent
attempts to match
 on top level domains like ".edu". If no domain is specified, then
 the browser
will only return the cookie to servers on the host the
 cookie originated from.

3. a path

If you provide a cookie path attribute, the browser will check it
 against your script's URL before
returning the cookie. For example,
 if you specify the path "/cgi-bin", then the cookie will be
returned
 to each of the scripts "/cgi-bin/tally.pl", "/cgi-bin/order.pl",
 and
"/cgi-bin/customer_service/complain.pl", but not to the script
 "/cgi-private/site_admin.pl". By
default, path is set to "/", which
 causes the cookie to be sent to any CGI script on your site.

4. a "secure" flag

If the "secure" attribute is set, the cookie will only be sent to your
 script if the CGI request is
occurring on a secure channel, such as SSL.

The interface to HTTP cookies is the cookie() method:

 $cookie = cookie(-name=>'sessionID',
			 -value=>'xyzzy',
			 -expires=>'+1h',
			 -path=>'/cgi-bin/database',
			 -domain=>'.capricorn.org',
			 -secure=>1);
 print header(-cookie=>$cookie);

cookie() creates a new cookie. Its parameters include:

-name

The name of the cookie (required). This can be any string at all.
 Although browsers limit their
cookie names to non-whitespace
 alphanumeric characters, CGI.pm removes this restriction by
escaping
 and unescaping cookies behind the scenes.

-value

The value of the cookie. This can be any scalar value,
 array reference, or even hash
reference. For example,
 you can store an entire hash into a cookie this way:

	 $cookie=cookie(-name=>'family information',
			 -value=>\%childrens_ages);

-path

The optional partial path for which this cookie will be valid, as described
 above.

-domain

The optional partial domain for which this cookie will be valid, as described
 above.

Perl version 5.12.4 documentation - CGI

Page 39http://perldoc.perl.org

-expires

The optional expiration date for this cookie. The format is as described in the section on the
header() method:

	 "+1h" one hour from now

-secure

If set to true, this cookie will only be used within a secure
 SSL session.

The cookie created by cookie() must be incorporated into the HTTP
 header within the string returned
by the header() method:

 use CGI ':standard';
	 print header(-cookie=>$my_cookie);

To create multiple cookies, give header() an array reference:

	 $cookie1 = cookie(-name=>'riddle_name',
				 -value=>"The Sphynx's Question");
	 $cookie2 = cookie(-name=>'answers',
				 -value=>\%answers);
	 print header(-cookie=>[$cookie1,$cookie2]);

To retrieve a cookie, request it by name by calling cookie() method
 without the -value parameter. This
example uses the object-oriented
 form:

	 use CGI;
	 $query = CGI->new;
	 $riddle = $query->cookie('riddle_name');
 %answers = $query->cookie('answers');

Cookies created with a single scalar value, such as the "riddle_name"
 cookie, will be returned in that
form. Cookies with array and hash
 values can also be retrieved.

The cookie and CGI namespaces are separate. If you have a parameter
 named 'answers' and a
cookie named 'answers', the values retrieved by
 param() and cookie() are independent of each other.
However, it's
 simple to turn a CGI parameter into a cookie, and vice-versa:

 # turn a CGI parameter into a cookie
 $c=cookie(-name=>'answers',-value=>[param('answers')]);
 # vice-versa
 param(-name=>'answers',-value=>[cookie('answers')]);

If you call cookie() without any parameters, it will return a list of
 the names of all cookies passed to
your script:

 @cookies = cookie();

See the cookie.cgi example script for some ideas on how to use
 cookies effectively.

WORKING WITH FRAMES
It's possible for CGI.pm scripts to write into several browser panels
 and windows using the HTML 4
frame mechanism. There are three
 techniques for defining new frames programmatically:

1. Create a <Frameset> document

After writing out the HTTP header, instead of creating a standard
 HTML document using the

Perl version 5.12.4 documentation - CGI

Page 40http://perldoc.perl.org

start_html() call, create a <frameset> document that defines the frames on the page. Specify
your script(s)
 (with appropriate parameters) as the SRC for each of the frames.

There is no specific support for creating <frameset> sections in CGI.pm, but the HTML is very
simple to write.

2. Specify the destination for the document in the HTTP header

You may provide a -target parameter to the header() method:

 print header(-target=>'ResultsWindow');

This will tell the browser to load the output of your script into the
 frame named
"ResultsWindow". If a frame of that name doesn't already
 exist, the browser will pop up a new
window and load your script's
 document into that. There are a number of magic names that
you can
 use for targets. See the HTML <frame> documentation for details.

3. Specify the destination for the document in the <form> tag

You can specify the frame to load in the FORM tag itself. With
 CGI.pm it looks like this:

 print start_form(-target=>'ResultsWindow');

When your script is reinvoked by the form, its output will be loaded
 into the frame named
"ResultsWindow". If one doesn't already exist
 a new window will be created.

The script "frameset.cgi" in the examples directory shows one way to
 create pages in which the fill-out
form and the response live in
 side-by-side frames.

SUPPORT FOR JAVASCRIPT
The usual way to use JavaScript is to define a set of functions in a
 <SCRIPT> block inside the HTML
header and then to register event
 handlers in the various elements of the page. Events include such

things as the mouse passing over a form element, a button being
 clicked, the contents of a text field
changing, or a form being
 submitted. When an event occurs that involves an element that has

registered an event handler, its associated JavaScript code gets
 called.

The elements that can register event handlers include the <BODY> of an
 HTML document, hypertext
links, all the various elements of a fill-out
 form, and the form itself. There are a large number of
events, and
 each applies only to the elements for which it is relevant. Here is a
 partial list:

onLoad

The browser is loading the current document. Valid in:

 + The HTML <BODY> section only.

onUnload

The browser is closing the current page or frame. Valid for:

 + The HTML <BODY> section only.

onSubmit

The user has pressed the submit button of a form. This event happens
 just before the form is
submitted, and your function can return a
 value of false in order to abort the submission. Valid
for:

 + Forms only.

onClick

The mouse has clicked on an item in a fill-out form. Valid for:

 + Buttons (including submit, reset, and image buttons)

Perl version 5.12.4 documentation - CGI

Page 41http://perldoc.perl.org

 + Checkboxes
 + Radio buttons

onChange

The user has changed the contents of a field. Valid for:

 + Text fields
 + Text areas
 + Password fields
 + File fields
 + Popup Menus
 + Scrolling lists

onFocus

The user has selected a field to work with. Valid for:

 + Text fields
 + Text areas
 + Password fields
 + File fields
 + Popup Menus
 + Scrolling lists

onBlur

The user has deselected a field (gone to work somewhere else). Valid
 for:

 + Text fields
 + Text areas
 + Password fields
 + File fields
 + Popup Menus
 + Scrolling lists

onSelect

The user has changed the part of a text field that is selected. Valid
 for:

 + Text fields
 + Text areas
 + Password fields
 + File fields

onMouseOver

The mouse has moved over an element.

 + Text fields
 + Text areas
 + Password fields
 + File fields
 + Popup Menus
 + Scrolling lists

onMouseOut

The mouse has moved off an element.

 + Text fields
 + Text areas

Perl version 5.12.4 documentation - CGI

Page 42http://perldoc.perl.org

 + Password fields
 + File fields
 + Popup Menus
 + Scrolling lists

In order to register a JavaScript event handler with an HTML element,
 just use the event name as a
parameter when you call the corresponding
 CGI method. For example, to have your validateAge()
JavaScript code
 executed every time the textfield named "age" changes, generate the
 field like this:

 print textfield(-name=>'age',-onChange=>"validateAge(this)");

This example assumes that you've already declared the validateAge()
 function by incorporating it into
a <SCRIPT> block. The CGI.pm
 start_html() method provides a convenient way to create this section.

Similarly, you can create a form that checks itself over for
 consistency and alerts the user if some
essential value is missing by
 creating it this way: print start_form(-onSubmit=>"validateMe(this)");

See the javascript.cgi script for a demonstration of how this all
 works.

LIMITED SUPPORT FOR CASCADING STYLE SHEETS
CGI.pm has limited support for HTML3's cascading style sheets (css).
 To incorporate a stylesheet into
your document, pass the
 start_html() method a -style parameter. The value of this
 parameter may be
a scalar, in which case it is treated as the source
 URL for the stylesheet, or it may be a hash
reference. In the latter
 case you should provide the hash with one or more of -src or -code. -src
points to a URL where an externally-defined
 stylesheet can be found. -code points to a scalar value
to be
 incorporated into a <style> section. Style definitions in -code
 override similarly-named ones in
-src, hence the name "cascading."

You may also specify the type of the stylesheet by adding the optional -type parameter to the hash
pointed to by -style. If not
 specified, the style defaults to 'text/css'.

To refer to a style within the body of your document, add the -class parameter to any HTML element:

 print h1({-class=>'Fancy'},'Welcome to the Party');

Or define styles on the fly with the -style parameter:

 print h1({-style=>'Color: red;'},'Welcome to Hell');

You may also use the new span() element to apply a style to a
 section of text:

 print span({-style=>'Color: red;'},
	 h1('Welcome to Hell'),
	 "Where did that handbasket get to?"
);

Note that you must import the ":html3" definitions to have the span() method available. Here's a quick
and dirty example of using
 CSS's. See the CSS specification at
 http://www.w3.org/Style/CSS/ for
more information.

 use CGI qw/:standard :html3/;

 #here's a stylesheet incorporated directly into the page
 $newStyle=<<END;
 <!--
 P.Tip {
	 margin-right: 50pt;

Perl version 5.12.4 documentation - CGI

Page 43http://perldoc.perl.org

	 margin-left: 50pt;
 color: red;
 }
 P.Alert {
	 font-size: 30pt;
 font-family: sans-serif;
 color: red;
 }
 -->
 END
 print header();
 print start_html(-title=>'CGI with Style',
		 -style=>{-src=>'http://www.capricorn.com/style/st1.css',
		 -code=>$newStyle}
);
 print h1('CGI with Style'),
 p({-class=>'Tip'},
	 "Better read the cascading style sheet spec before playing with
this!"),
 span({-style=>'color: magenta'},
	 "Look Mom, no hands!",
	 p(),
	 "Whooo wee!"
);
 print end_html;

Pass an array reference to -code or -src in order to incorporate
 multiple stylesheets into your
document.

Should you wish to incorporate a verbatim stylesheet that includes
 arbitrary formatting in the header,
you may pass a -verbatim tag to
 the -style hash, as follows:

print start_html (-style => {-verbatim => '@import url("/server-common/css/'.$cssFile.'");',
 -src =>
'/server-common/css/core.css'});

This will generate an HTML header that contains this:

 <link rel="stylesheet" type="text/css"
href="/server-common/css/core.css">
 <style type="text/css">
 @import url("/server-common/css/main.css");
 </style>

Any additional arguments passed in the -style value will be
 incorporated into the <link> tag. For
example:

 start_html(-style=>{-src=>['/styles/print.css','/styles/layout.css'],
			 -media => 'all'});

This will give:

 <link rel="stylesheet" type="text/css" href="/styles/print.css"
media="all"/>
 <link rel="stylesheet" type="text/css" href="/styles/layout.css"
media="all"/>

<p>

Perl version 5.12.4 documentation - CGI

Page 44http://perldoc.perl.org

To make more complicated <link> tags, use the Link() function
 and pass it to start_html() in the -head
argument, as in:

 @h =
(Link({-rel=>'stylesheet',-type=>'text/css',-src=>'/ss/ss.css',-media=>'all
'}),

Link({-rel=>'stylesheet',-type=>'text/css',-src=>'/ss/fred.css',-media=>'pa
per'}));
 print start_html({-head=>\@h})

To create primary and "alternate" stylesheet, use the -alternate option:

 start_html(-style=>{-src=>[
 {-src=>'/styles/print.css'},
			 {-src=>'/styles/alt.css',-alternate=>1}
]
		 });

DEBUGGING
If you are running the script from the command line or in the perl
 debugger, you can pass the script a
list of keywords or
 parameter=value pairs on the command line or from standard input (you
 don't have
to worry about tricking your script into reading from
 environment variables). You can pass keywords
like this:

 your_script.pl keyword1 keyword2 keyword3

or this:

 your_script.pl keyword1+keyword2+keyword3

or this:

 your_script.pl name1=value1 name2=value2

or this:

 your_script.pl name1=value1&name2=value2

To turn off this feature, use the -no_debug pragma.

To test the POST method, you may enable full debugging with the -debug
 pragma. This will allow you
to feed newline-delimited name=value
 pairs to the script on standard input.

When debugging, you can use quotes and backslashes to escape characters in the familiar shell
manner, letting you place
 spaces and other funny characters in your parameter=value
 pairs:

 your_script.pl "name1='I am a long value'" "name2=two\ words"

Finally, you can set the path info for the script by prefixing the first
 name/value parameter with the
path followed by a question mark (?):

 your_script.pl /your/path/here?name1=value1&name2=value2

Perl version 5.12.4 documentation - CGI

Page 45http://perldoc.perl.org

DUMPING OUT ALL THE NAME/VALUE PAIRS
The Dump() method produces a string consisting of all the query's
 name/value pairs formatted nicely
as a nested list. This is useful
 for debugging purposes:

 print Dump

Produces something that looks like:

 name1
	
	 value1
	 value2
	
 name2
	
	 value1
	

As a shortcut, you can interpolate the entire CGI object into a string
 and it will be replaced with the a
nice HTML dump shown above:

 $query=CGI->new;
 print "<h2>Current Values</h2> $query\n";

FETCHING ENVIRONMENT VARIABLES
Some of the more useful environment variables can be fetched
 through this interface. The methods
are as follows:

Accept()

Return a list of MIME types that the remote browser accepts. If you
 give this method a single
argument corresponding to a MIME type, as in
 Accept('text/html'), it will return a floating point
value
 corresponding to the browser's preference for this type from 0.0
 (don't want) to 1.0. Glob
types (e.g. text/*) in the browser's accept
 list are handled correctly.

Note that the capitalization changed between version 2.43 and 2.44 in
 order to avoid conflict
with Perl's accept() function.

raw_cookie()

Returns the HTTP_COOKIE variable. Cookies have a special format, and
 this method call just
returns the raw form (?cookie dough). See
 cookie() for ways of setting and retrieving cooked
cookies.

Called with no parameters, raw_cookie() returns the packed cookie
 structure. You can
separate it into individual cookies by splitting
 on the character sequence "; ". Called with the
name of a cookie,
 retrieves the unescaped form of the cookie. You can use the
 regular
cookie() method to get the names, or use the raw_fetch()
 method from the CGI::Cookie
module.

user_agent()

Returns the HTTP_USER_AGENT variable. If you give
 this method a single argument, it will
attempt to
 pattern match on it, allowing you to do something
 like user_agent(Mozilla);

path_info()

Returns additional path information from the script URL.
 E.G. fetching
/cgi-bin/your_script/additional/stuff will result in
 path_info() returning "/additional/stuff".

Perl version 5.12.4 documentation - CGI

Page 46http://perldoc.perl.org

NOTE: The Microsoft Internet Information Server
 is broken with respect to additional path
information. If
 you use the Perl DLL library, the IIS server will attempt to
 execute the additional
path information as a Perl script.
 If you use the ordinary file associations mapping, the
 path
information will be present in the environment, but incorrect. The best thing to do is to avoid
using additional
 path information in CGI scripts destined for use with IIS.

path_translated()

As per path_info() but returns the additional
 path information translated into a physical path,
e.g.
 "/usr/local/etc/httpd/htdocs/additional/stuff".

The Microsoft IIS is broken with respect to the translated
 path as well.

remote_host()

Returns either the remote host name or IP address.
 if the former is unavailable.

remote_addr()

Returns the remote host IP address, or 127.0.0.1 if the address is unavailable.

script_name()
 Return the script name as a partial URL, for self-refering
 scripts.

referer()

Return the URL of the page the browser was viewing
 prior to fetching your script. Not
available for all
 browsers.

auth_type ()

Return the authorization/verification method in use for this
 script, if any.

server_name ()

Returns the name of the server, usually the machine's host
 name.

virtual_host ()

When using virtual hosts, returns the name of the host that
 the browser attempted to contact

server_port ()

Return the port that the server is listening on.

virtual_port ()

Like server_port() except that it takes virtual hosts into account.
 Use this when running with
virtual hosts.

server_software ()

Returns the server software and version number.

remote_user ()

Return the authorization/verification name used for user
 verification, if this script is protected.

user_name ()

Attempt to obtain the remote user's name, using a variety of different
 techniques. This only
works with older browsers such as Mosaic.
 Newer browsers do not report the user name for
privacy reasons!

request_method()

Returns the method used to access your script, usually
 one of 'POST', 'GET' or 'HEAD'.

content_type()

Returns the content_type of data submitted in a POST, generally multipart/form-data or
application/x-www-form-urlencoded

Perl version 5.12.4 documentation - CGI

Page 47http://perldoc.perl.org

http()

Called with no arguments returns the list of HTTP environment
 variables, including such things
as HTTP_USER_AGENT,
 HTTP_ACCEPT_LANGUAGE, and HTTP_ACCEPT_CHARSET,
corresponding to the
 like-named HTTP header fields in the request. Called with the name of

an HTTP header field, returns its value. Capitalization and the use
 of hyphens versus
underscores are not significant.

For example, all three of these examples are equivalent:

 $requested_language = http('Accept-language');
 $requested_language = http('Accept_language');
 $requested_language = http('HTTP_ACCEPT_LANGUAGE');

https()

The same as http(), but operates on the HTTPS environment variables
 present when the SSL
protocol is in effect. Can be used to determine
 whether SSL is turned on.

USING NPH SCRIPTS
NPH, or "no-parsed-header", scripts bypass the server completely by
 sending the complete HTTP
header directly to the browser. This has
 slight performance benefits, but is of most use for taking
advantage
 of HTTP extensions that are not directly supported by your server,
 such as server push
and PICS headers.

Servers use a variety of conventions for designating CGI scripts as
 NPH. Many Unix servers look at
the beginning of the script's name for
 the prefix "nph-". The Macintosh WebSTAR server and
Microsoft's
 Internet Information Server, in contrast, try to decide whether a
 program is an NPH script
by examining the first line of script output.

CGI.pm supports NPH scripts with a special NPH mode. When in this
 mode, CGI.pm will output the
necessary extra header information when
 the header() and redirect() methods are
 called.

The Microsoft Internet Information Server requires NPH mode. As of
 version 2.30, CGI.pm will
automatically detect when the script is
 running under IIS and put itself into this mode. You do not
need to
 do this manually, although it won't hurt anything if you do. However,
 note that if you have
applied Service Pack 6, much of the
 functionality of NPH scripts, including the ability to redirect while

setting a cookie, do not work at all on IIS without a special patch
 from Microsoft. See

http://web.archive.org/web/20010812012030/http://support.microsoft.com/support/kb
/articles/Q280/3/41.ASP
 Non-Parsed Headers Stripped From CGI Applications That Have nph-
 Prefix
in Name.

In the use statement

Simply add the "-nph" pragmato the list of symbols to be imported into
 your script:

 use CGI qw(:standard -nph)

By calling the nph() method:

Call nph() with a non-zero parameter at any point after using CGI.pm in your program.

 CGI->nph(1)

By using -nph parameters

in the header() and redirect() statements:

 print header(-nph=>1);

Perl version 5.12.4 documentation - CGI

Page 48http://perldoc.perl.org

Server Push
CGI.pm provides four simple functions for producing multipart
 documents of the type needed to
implement server push. These
 functions were graciously provided by Ed Jordan <ed@fidalgo.net>.
To
 import these into your namespace, you must import the ":push" set.
 You are also advised to put
the script into NPH mode and to set $| to
 1 to avoid buffering problems.

Here is a simple script that demonstrates server push:

 #!/usr/local/bin/perl
 use CGI qw/:push -nph/;
 $| = 1;
 print multipart_init(-boundary=>'----here we go!');
 for (0 .. 4) {
 print multipart_start(-type=>'text/plain'),
 "The current time is ",scalar(localtime),"\n";
 if ($_ < 4) {
 print multipart_end;
 } else {
 print multipart_final;
 }
 sleep 1;
 }

This script initializes server push by calling multipart_init().
 It then enters a loop in which it begins a
new multipart section by
 calling multipart_start(), prints the current local time,
 and ends a multipart
section with multipart_end(). It then sleeps
 a second, and begins again. On the final iteration, it ends
the
 multipart section with multipart_final() rather than with multipart_end().

multipart_init()

 multipart_init(-boundary=>$boundary);

Initialize the multipart system. The -boundary argument specifies
 what MIME boundary string
to use to separate parts of the document.
 If not provided, CGI.pm chooses a reasonable
boundary for you.

multipart_start()

 multipart_start(-type=>$type)

Start a new part of the multipart document using the specified MIME
 type. If not specified,
text/html is assumed.

multipart_end()

 multipart_end()

End a part. You must remember to call multipart_end() once for each
 multipart_start(), except
at the end of the last part of the multipart
 document when multipart_final() should be called
instead of multipart_end().

multipart_final()

 multipart_final()

End all parts. You should call multipart_final() rather than
 multipart_end() at the end of the last
part of the multipart document.

Users interested in server push applications should also have a look
 at the CGI::Push module.

Perl version 5.12.4 documentation - CGI

Page 49http://perldoc.perl.org

Avoiding Denial of Service Attacks
A potential problem with CGI.pm is that, by default, it attempts to
 process form POSTings no matter
how large they are. A wily hacker
 could attack your site by sending a CGI script a huge POST of
many
 megabytes. CGI.pm will attempt to read the entire POST into a
 variable, growing hugely in size
until it runs out of memory. While
 the script attempts to allocate the memory the system may slow
down
 dramatically. This is a form of denial of service attack.

Another possible attack is for the remote user to force CGI.pm to
 accept a huge file upload. CGI.pm
will accept the upload and store it
 in a temporary directory even if your script doesn't expect to receive
an uploaded file. CGI.pm will delete the file automatically when it
 terminates, but in the meantime the
remote user may have filled up the
 server's disk space, causing problems for other programs.

The best way to avoid denial of service attacks is to limit the amount
 of memory, CPU time and disk
space that CGI scripts can use. Some Web
 servers come with built-in facilities to accomplish this. In
other
 cases, you can use the shell limit or ulimit
 commands to put ceilings on CGI resource usage.

CGI.pm also has some simple built-in protections against denial of
 service attacks, but you must
activate them before you can use them.
 These take the form of two global variables in the CGI name
space:

$CGI::POST_MAX

If set to a non-negative integer, this variable puts a ceiling
 on the size of POSTings, in bytes. If
CGI.pm detects a POST
 that is greater than the ceiling, it will immediately exit with an error

message. This value will affect both ordinary POSTs and
 multipart POSTs, meaning that it
limits the maximum size of file
 uploads as well. You should set this to a reasonably high
 value,
such as 1 megabyte.

$CGI::DISABLE_UPLOADS

If set to a non-zero value, this will disable file uploads
 completely. Other fill-out form values will
work as usual.

You can use these variables in either of two ways.

1. On a script-by-script basis

Set the variable at the top of the script, right after the "use" statement:

 use CGI qw/:standard/;
 use CGI::Carp 'fatalsToBrowser';
 $CGI::POST_MAX=1024 * 100; # max 100K posts
 $CGI::DISABLE_UPLOADS = 1; # no uploads

2. Globally for all scripts

Open up CGI.pm, find the definitions for $POST_MAX and $DISABLE_UPLOADS, and set
them to the desired values. You'll find them towards the top of the file in a subroutine named
initialize_globals().

An attempt to send a POST larger than $POST_MAX bytes will cause param() to return an empty CGI
parameter list. You can test for
 this event by checking cgi_error(), either after you create the CGI

object or, if you are using the function-oriented interface, call
 <param()> for the first time. If the POST
was intercepted, then
 cgi_error() will return the message "413 POST too large".

This error message is actually defined by the HTTP protocol, and is
 designed to be returned to the
browser as the CGI script's status
 code. For example:

 $uploaded_file = param('upload');
 if (!$uploaded_file && cgi_error()) {
 print header(-status=>cgi_error());
 exit 0;

Perl version 5.12.4 documentation - CGI

Page 50http://perldoc.perl.org

 }

However it isn't clear that any browser currently knows what to do
 with this status code. It might be
better just to create an
 HTML page that warns the user of the problem.

COMPATIBILITY WITH CGI-LIB.PL
To make it easier to port existing programs that use cgi-lib.pl the
 compatibility routine "ReadParse" is
provided. Porting is simple:

OLD VERSION
 require "cgi-lib.pl";
 &ReadParse;
 print "The value of the antique is $in{antique}.\n";

NEW VERSION
 use CGI;
 CGI::ReadParse();
 print "The value of the antique is $in{antique}.\n";

CGI.pm's ReadParse() routine creates a tied variable named %in,
 which can be accessed to obtain
the query variables. Like
 ReadParse, you can also provide your own variable. Infrequently
 used
features of ReadParse, such as the creation of @in and $in variables, are not supported.

Once you use ReadParse, you can retrieve the query object itself
 this way:

 $q = $in{CGI};
 print textfield(-name=>'wow',
			 -value=>'does this really work?');

This allows you to start using the more interesting features
 of CGI.pm without rewriting your old
scripts from scratch.

AUTHOR INFORMATION
The CGI.pm distribution is copyright 1995-2007, Lincoln D. Stein. It is
 distributed under GPL and the
Artistic License 2.0.

Address bug reports and comments to: lstein@cshl.org. When sending
 bug reports, please provide
the version of CGI.pm, the version of
 Perl, the name and version of your Web server, and the name
and
 version of the operating system you are using. If the problem is even
 remotely browser
dependent, please provide information about the
 affected browers as well.

CREDITS
Thanks very much to:

Matt Heffron (heffron@falstaff.css.beckman.com)

James Taylor (james.taylor@srs.gov)

Scott Anguish <sanguish@digifix.com>

Mike Jewell (mlj3u@virginia.edu)

Timothy Shimmin (tes@kbs.citri.edu.au)

Joergen Haegg (jh@axis.se)

Laurent Delfosse (delfosse@delfosse.com)

Richard Resnick (applepi1@aol.com)

Craig Bishop (csb@barwonwater.vic.gov.au)

Tony Curtis (tc@vcpc.univie.ac.at)

Tim Bunce (Tim.Bunce@ig.co.uk)

Tom Christiansen (tchrist@convex.com)

Andreas Koenig (k@franz.ww.TU-Berlin.DE)

Tim MacKenzie (Tim.MacKenzie@fulcrum.com.au)

Kevin B. Hendricks (kbhend@dogwood.tyler.wm.edu)

Perl version 5.12.4 documentation - CGI

Page 51http://perldoc.perl.org

Stephen Dahmen (joyfire@inxpress.net)

Ed Jordan (ed@fidalgo.net)

David Alan Pisoni (david@cnation.com)

Doug MacEachern (dougm@opengroup.org)

Robin Houston (robin@oneworld.org)

...and many many more...

for suggestions and bug fixes.

A COMPLETE EXAMPLE OF A SIMPLE FORM-BASED SCRIPT
	 #!/usr/local/bin/perl

	 use CGI ':standard';

	 print header;
	 print start_html("Example CGI.pm Form");
	 print "<h1> Example CGI.pm Form</h1>\n";
 print_prompt();
	 do_work();
	 print_tail();
	 print end_html;

	 sub print_prompt {
	 print start_form;
	 print "What's your name?
";
	 print textfield('name');
	 print checkbox('Not my real name');

	 print "<p>Where can you find English Sparrows?
";
	 print checkbox_group(
				 -name=>'Sparrow locations',
				 -values=>[England,France,Spain,Asia,Hoboken],
				 -linebreak=>'yes',
				 -defaults=>[England,Asia]);

	 print "<p>How far can they fly?
",
		 radio_group(
			 -name=>'how far',
			 -values=>['10 ft','1 mile','10 miles','real far'],
			 -default=>'1 mile');

	 print "<p>What's your favorite color? ";
	 print popup_menu(-name=>'Color',
				 -values=>['black','brown','red','yellow'],
				 -default=>'red');

	 print hidden('Reference','Monty Python and the Holy Grail');

	 print "<p>What have you got there?
";
	 print scrolling_list(
			 -name=>'possessions',
			 -values=>['A Coconut','A Grail','An Icon',

Perl version 5.12.4 documentation - CGI

Page 52http://perldoc.perl.org

				 'A Sword','A Ticket'],
			 -size=>5,
			 -multiple=>'true');

	 print "<p>Any parting comments?
";
	 print textarea(-name=>'Comments',
				 -rows=>10,
				 -columns=>50);

	 print "<p>",reset;
	 print submit('Action','Shout');
	 print submit('Action','Scream');
	 print end_form;
	 print "<hr>\n";
	 }

	 sub do_work {

	 print "<h2>Here are the current settings in this form</h2>";

	 for my $key (param) {
	 print "$key -> ";
	 my @values = param($key);
	 print join(", ",@values),"
\n";
	 }
	 }

	 sub print_tail {
	 print <<END;
	 <hr>
	 <address>Lincoln D. Stein</address>

	 Home Page
	 END
	 }

BUGS
Please report them.

SEE ALSO
CGI::Carp - provides a Carp implementation tailored to the CGI environment.

CGI::Fast - supports running CGI applications under FastCGI

CGI::Pretty - pretty prints HTML generated by CGI.pm (with a performance penalty)

