
Perl version 5.12.4 documentation - IO::Uncompress::AnyUncompress

Page 1http://perldoc.perl.org

NAME
IO::Uncompress::AnyUncompress - Uncompress gzip, zip, bzip2 or lzop file/buffer

SYNOPSIS
 use IO::Uncompress::AnyUncompress qw(anyuncompress $AnyUncompressError)
 ;

 my $status = anyuncompress $input => $output [,OPTS]
 or die "anyuncompress failed: $AnyUncompressError\n";

 my $z = new IO::Uncompress::AnyUncompress $input [OPTS]
 or die "anyuncompress failed: $AnyUncompressError\n";

 $status = $z->read($buffer)
 $status = $z->read($buffer, $length)
 $status = $z->read($buffer, $length, $offset)
 $line = $z->getline()
 $char = $z->getc()
 $char = $z->ungetc()
 $char = $z->opened()

 $data = $z->trailingData()
 $status = $z->nextStream()
 $data = $z->getHeaderInfo()
 $z->tell()
 $z->seek($position, $whence)
 $z->binmode()
 $z->fileno()
 $z->eof()
 $z->close()

 $AnyUncompressError ;

 # IO::File mode

 <$z>
 read($z, $buffer);
 read($z, $buffer, $length);
 read($z, $buffer, $length, $offset);
 tell($z)
 seek($z, $position, $whence)
 binmode($z)
 fileno($z)
 eof($z)
 close($z)

DESCRIPTION
This module provides a Perl interface that allows the reading of
 files/buffers that have been
compressed with a variety of compression
 libraries.

The formats supported are:

RFC 1950

Perl version 5.12.4 documentation - IO::Uncompress::AnyUncompress

Page 2http://perldoc.perl.org

RFC 1951 (optionally)

gzip (RFC 1952)

zip

bzip2

lzop

lzf

lzma

xz

The module will auto-detect which, if any, of the supported
 compression formats is being used.

Functional Interface
A top-level function, anyuncompress, is provided to carry out
 "one-shot" uncompression between
buffers and/or files. For finer
 control over the uncompression process, see the OO Interface
 section.

 use IO::Uncompress::AnyUncompress qw(anyuncompress $AnyUncompressError)
 ;

 anyuncompress $input => $output [,OPTS]
 or die "anyuncompress failed: $AnyUncompressError\n";

The functional interface needs Perl5.005 or better.

anyuncompress $input => $output [, OPTS]
anyuncompress expects at least two parameters, $input and $output.

The $input parameter

The parameter, $input, is used to define the source of
 the compressed data.

It can take one of the following forms:

A filename

If the $input parameter is a simple scalar, it is assumed to be a
 filename. This file will be
opened for reading and the input data
 will be read from it.

A filehandle

If the $input parameter is a filehandle, the input data will be
 read from it.
 The string '-' can
be used as an alias for standard input.

A scalar reference

If $input is a scalar reference, the input data will be read
 from $$input.

An array reference

If $input is an array reference, each element in the array must be a
 filename.

The input data will be read from each file in turn.

The complete array will be walked to ensure that it only
 contains valid filenames before any
data is uncompressed.

An Input FileGlob string

If $input is a string that is delimited by the characters "<" and ">" anyuncompress will
assume that it is an input fileglob string. The
 input is the list of files that match the fileglob.

If the fileglob does not match any files ...

See File::GlobMapper for more details.

Perl version 5.12.4 documentation - IO::Uncompress::AnyUncompress

Page 3http://perldoc.perl.org

If the $input parameter is any other type, undef will be returned.

The $output parameter

The parameter $output is used to control the destination of the
 uncompressed data. This parameter
can take one of these forms.

A filename

If the $output parameter is a simple scalar, it is assumed to be a
 filename. This file will be
opened for writing and the uncompressed
 data will be written to it.

A filehandle

If the $output parameter is a filehandle, the uncompressed data
 will be written to it.
 The
string '-' can be used as an alias for standard output.

A scalar reference

If $output is a scalar reference, the uncompressed data will be
 stored in $$output.

An Array Reference

If $output is an array reference, the uncompressed data will be
 pushed onto the array.

An Output FileGlob

If $output is a string that is delimited by the characters "<" and ">" anyuncompress will
assume that it is an output fileglob string. The
 output is the list of files that match the fileglob.

When $output is an fileglob string, $input must also be a fileglob
 string. Anything else is
an error.

If the $output parameter is any other type, undef will be returned.

Notes
When $input maps to multiple compressed files/buffers and $output is
 a single file/buffer, after
uncompression $output will contain a
 concatenation of all the uncompressed data from each of the
input
 files/buffers.

Optional Parameters
Unless specified below, the optional parameters for anyuncompress, OPTS, are the same as those
used with the OO interface defined in the Constructor Options section below.

AutoClose => 0|1

This option applies to any input or output data streams to anyuncompress that are
filehandles.

If AutoClose is specified, and the value is true, it will result in all
 input and/or output
filehandles being closed once anyuncompress has
 completed.

This parameter defaults to 0.

BinModeOut => 0|1

When writing to a file or filehandle, set binmode before writing to the
 file.

Defaults to 0.

Append => 0|1

The behaviour of this option is dependent on the type of output data
 stream.

* A Buffer

If Append is enabled, all uncompressed data will be append to the end of
 the
output buffer. Otherwise the output buffer will be cleared before any
 uncompressed
data is written to it.

Perl version 5.12.4 documentation - IO::Uncompress::AnyUncompress

Page 4http://perldoc.perl.org

* A Filename

If Append is enabled, the file will be opened in append mode. Otherwise
 the
contents of the file, if any, will be truncated before any uncompressed
 data is
written to it.

* A Filehandle

If Append is enabled, the filehandle will be positioned to the end of
 the file via a
call to seek before any uncompressed data is
 written to it. Otherwise the file
pointer will not be moved.

When Append is specified, and set to true, it will append all uncompressed data to the
output data stream.

So when the output is a filehandle it will carry out a seek to the eof
 before writing any
uncompressed data. If the output is a filename, it will be opened for
 appending. If the output
is a buffer, all uncompressed data will be appened to
 the existing buffer.

Conversely when Append is not specified, or it is present and is set to
 false, it will operate
as follows.

When the output is a filename, it will truncate the contents of the file
 before writing any
uncompressed data. If the output is a filehandle
 its position will not be changed. If the output
is a buffer, it will be
 wiped before any uncompressed data is output.

Defaults to 0.

MultiStream => 0|1

If the input file/buffer contains multiple compressed data streams, this
 option will
uncompress the whole lot as a single data stream.

Defaults to 0.

TrailingData => $scalar

Returns the data, if any, that is present immediately after the compressed
 data stream once
uncompression is complete.

This option can be used when there is useful information immediately
 following the
compressed data stream, and you don't know the length of the
 compressed data stream.

If the input is a buffer, trailingData will return everything from the
 end of the
compressed data stream to the end of the buffer.

If the input is a filehandle, trailingData will return the data that is
 left in the filehandle
input buffer once the end of the compressed data
 stream has been reached. You can then
use the filehandle to read the rest
 of the input file.

Don't bother using trailingData if the input is a filename.

If you know the length of the compressed data stream before you start
 uncompressing, you
can avoid having to use trailingData by setting the InputLength option.

Examples
To read the contents of the file file1.txt.Compressed and write the
 uncompressed data to the
file file1.txt.

 use strict ;
 use warnings ;
 use IO::Uncompress::AnyUncompress qw(anyuncompress $AnyUncompressError)
 ;

 my $input = "file1.txt.Compressed";
 my $output = "file1.txt";
 anyuncompress $input => $output

Perl version 5.12.4 documentation - IO::Uncompress::AnyUncompress

Page 5http://perldoc.perl.org

 or die "anyuncompress failed: $AnyUncompressError\n";

To read from an existing Perl filehandle, $input, and write the
 uncompressed data to a buffer,
$buffer.

 use strict ;
 use warnings ;
 use IO::Uncompress::AnyUncompress qw(anyuncompress $AnyUncompressError)
 ;
 use IO::File ;

 my $input = new IO::File "<file1.txt.Compressed"
 or die "Cannot open 'file1.txt.Compressed': $!\n" ;
 my $buffer ;
 anyuncompress $input => \$buffer
 or die "anyuncompress failed: $AnyUncompressError\n";

To uncompress all files in the directory "/my/home" that match "*.txt.Compressed" and store the
compressed data in the same directory

 use strict ;
 use warnings ;
 use IO::Uncompress::AnyUncompress qw(anyuncompress $AnyUncompressError)
 ;

 anyuncompress '</my/home/*.txt.Compressed>' => '</my/home/#1.txt>'
 or die "anyuncompress failed: $AnyUncompressError\n";

and if you want to compress each file one at a time, this will do the trick

 use strict ;
 use warnings ;
 use IO::Uncompress::AnyUncompress qw(anyuncompress $AnyUncompressError)
 ;

 for my $input (glob "/my/home/*.txt.Compressed")
 {
 my $output = $input;
 $output =~ s/.Compressed// ;
 anyuncompress $input => $output
 or die "Error compressing '$input': $AnyUncompressError\n";
 }

OO Interface
Constructor

The format of the constructor for IO::Uncompress::AnyUncompress is shown below

 my $z = new IO::Uncompress::AnyUncompress $input [OPTS]
 or die "IO::Uncompress::AnyUncompress failed:
$AnyUncompressError\n";

Returns an IO::Uncompress::AnyUncompress object on success and undef on failure.
 The
variable $AnyUncompressError will contain an error message on failure.

Perl version 5.12.4 documentation - IO::Uncompress::AnyUncompress

Page 6http://perldoc.perl.org

If you are running Perl 5.005 or better the object, $z, returned from
 IO::Uncompress::AnyUncompress
can be used exactly like an IO::File filehandle.
 This means that all normal input file operations can be
carried out with $z. For example, to read a line from a compressed file/buffer you can
 use either of
these forms

 $line = $z->getline();
 $line = <$z>;

The mandatory parameter $input is used to determine the source of the
 compressed data. This
parameter can take one of three forms.

A filename

If the $input parameter is a scalar, it is assumed to be a filename. This
 file will be opened
for reading and the compressed data will be read from it.

A filehandle

If the $input parameter is a filehandle, the compressed data will be
 read from it.
 The string
'-' can be used as an alias for standard input.

A scalar reference

If $input is a scalar reference, the compressed data will be read from $$output.

Constructor Options
The option names defined below are case insensitive and can be optionally
 prefixed by a '-'. So all of
the following are valid

 -AutoClose
 -autoclose
 AUTOCLOSE
 autoclose

OPTS is a combination of the following options:

AutoClose => 0|1

This option is only valid when the $input parameter is a filehandle. If
 specified, and the
value is true, it will result in the file being closed once
 either the close method is called or
the IO::Uncompress::AnyUncompress object is
 destroyed.

This parameter defaults to 0.

MultiStream => 0|1

Allows multiple concatenated compressed streams to be treated as a single
 compressed
stream. Decompression will stop once either the end of the
 file/buffer is reached, an error is
encountered (premature eof, corrupt
 compressed data) or the end of a stream is not
immediately followed by the
 start of another stream.

This parameter defaults to 0.

Prime => $string

This option will uncompress the contents of $string before processing the
 input file/buffer.

This option can be useful when the compressed data is embedded in another
 file/data
structure and it is not possible to work out where the compressed
 data begins without having
to read the first few bytes. If this is the
 case, the uncompression can be primed with these
bytes using this
 option.

Transparent => 0|1

If this option is set and the input file/buffer is not compressed data,
 the module will allow

Perl version 5.12.4 documentation - IO::Uncompress::AnyUncompress

Page 7http://perldoc.perl.org

reading of it anyway.

In addition, if the input file/buffer does contain compressed data and
 there is
non-compressed data immediately following it, setting this option
 will make this module treat
the whole file/bufffer as a single data stream.

This option defaults to 1.

BlockSize => $num

When reading the compressed input data, IO::Uncompress::AnyUncompress will read it in

blocks of $num bytes.

This option defaults to 4096.

InputLength => $size

When present this option will limit the number of compressed bytes read
 from the input
file/buffer to $size. This option can be used in the
 situation where there is useful data
directly after the compressed data
 stream and you know beforehand the exact length of the
compressed data
 stream.

This option is mostly used when reading from a filehandle, in which case
 the file pointer will
be left pointing to the first byte directly after the
 compressed data stream.

This option defaults to off.

Append => 0|1

This option controls what the read method does with uncompressed data.

If set to 1, all uncompressed data will be appended to the output parameter
 of the read
method.

If set to 0, the contents of the output parameter of the read method
 will be overwritten by
the uncompressed data.

Defaults to 0.

Strict => 0|1

This option controls whether the extra checks defined below are used when
 carrying out the
decompression. When Strict is on, the extra tests are
 carried out, when Strict is off they are
not.

The default for this option is off.

RawInflate => 0|1

When auto-detecting the compressed format, try to test for raw-deflate (RFC
 1951) content
using the IO::Uncompress::RawInflate module.

The reason this is not default behaviour is because RFC 1951 content can
 only be detected
by attempting to uncompress it. This process is error
 prone and can result is false positives.

Defaults to 0.

UnLzma => 0|1

When auto-detecting the compressed format, try to test for lzma_alone
 content using the
IO::Uncompress::UnLzma module.

The reason this is not default behaviour is because lzma_alone content can
 only be
detected by attempting to uncompress it. This process is error
 prone and can result is false
positives.

Defaults to 0.

Examples
TODO

Perl version 5.12.4 documentation - IO::Uncompress::AnyUncompress

Page 8http://perldoc.perl.org

Methods
read

Usage is

 $status = $z->read($buffer)

Reads a block of compressed data (the size the the compressed block is
 determined by the Buffer
option in the constructor), uncompresses it and
 writes any uncompressed data into $buffer. If the
Append parameter is
 set in the constructor, the uncompressed data will be appended to the $buffer
parameter. Otherwise $buffer will be overwritten.

Returns the number of uncompressed bytes written to $buffer, zero if eof
 or a negative number on
error.

read
Usage is

 $status = $z->read($buffer, $length)
 $status = $z->read($buffer, $length, $offset)

 $status = read($z, $buffer, $length)
 $status = read($z, $buffer, $length, $offset)

Attempt to read $length bytes of uncompressed data into $buffer.

The main difference between this form of the read method and the
 previous one, is that this one will
attempt to return exactly $length
 bytes. The only circumstances that this function will not is if
end-of-file
 or an IO error is encountered.

Returns the number of uncompressed bytes written to $buffer, zero if eof
 or a negative number on
error.

getline
Usage is

 $line = $z->getline()
 $line = <$z>

Reads a single line.

This method fully supports the use of of the variable $/ (or $INPUT_RECORD_SEPARATOR or $RS
when English is in use) to
 determine what constitutes an end of line. Paragraph mode, record mode
and
 file slurp mode are all supported.

getc
Usage is

 $char = $z->getc()

Read a single character.

ungetc
Usage is

 $char = $z->ungetc($string)

Perl version 5.12.4 documentation - IO::Uncompress::AnyUncompress

Page 9http://perldoc.perl.org

getHeaderInfo
Usage is

 $hdr = $z->getHeaderInfo();
 @hdrs = $z->getHeaderInfo();

This method returns either a hash reference (in scalar context) or a list
 or hash references (in array
context) that contains information about each
 of the header fields in the compressed data stream(s).

tell
Usage is

 $z->tell()
 tell $z

Returns the uncompressed file offset.

eof
Usage is

 $z->eof();
 eof($z);

Returns true if the end of the compressed input stream has been reached.

seek
 $z->seek($position, $whence);
 seek($z, $position, $whence);

Provides a sub-set of the seek functionality, with the restriction
 that it is only legal to seek forward in
the input file/buffer.
 It is a fatal error to attempt to seek backward.

The $whence parameter takes one the usual values, namely SEEK_SET,
 SEEK_CUR or
SEEK_END.

Returns 1 on success, 0 on failure.

binmode
Usage is

 $z->binmode
 binmode $z ;

This is a noop provided for completeness.

opened
 $z->opened()

Returns true if the object currently refers to a opened file/buffer.

autoflush
 my $prev = $z->autoflush()
 my $prev = $z->autoflush(EXPR)

If the $z object is associated with a file or a filehandle, this method
 returns the current autoflush

Perl version 5.12.4 documentation - IO::Uncompress::AnyUncompress

Page 10http://perldoc.perl.org

setting for the underlying filehandle. If EXPR is present, and is non-zero, it will enable flushing after
every
 write/print operation.

If $z is associated with a buffer, this method has no effect and always
 returns undef.

Note that the special variable $| cannot be used to set or
 retrieve the autoflush setting.

input_line_number
 $z->input_line_number()
 $z->input_line_number(EXPR)

Returns the current uncompressed line number. If EXPR is present it has
 the effect of setting the line
number. Note that setting the line number
 does not change the current position within the file/buffer
being read.

The contents of $/ are used to to determine what constitutes a line
 terminator.

fileno
 $z->fileno()
 fileno($z)

If the $z object is associated with a file or a filehandle, fileno
 will return the underlying file
descriptor. Once the close method is
 called fileno will return undef.

If the $z object is is associated with a buffer, this method will return undef.

close
 $z->close() ;
 close $z ;

Closes the output file/buffer.

For most versions of Perl this method will be automatically invoked if
 the
IO::Uncompress::AnyUncompress object is destroyed (either explicitly or by the
 variable with the
reference to the object going out of scope). The
 exceptions are Perl versions 5.005 through 5.00504
and 5.8.0. In
 these cases, the close method will be called automatically, but
 not until global
destruction of all live objects when the program is
 terminating.

Therefore, if you want your scripts to be able to run on all versions
 of Perl, you should call close
explicitly and not rely on automatic
 closing.

Returns true on success, otherwise 0.

If the AutoClose option has been enabled when the IO::Uncompress::AnyUncompress
 object was
created, and the object is associated with a file, the
 underlying file will also be closed.

nextStream
Usage is

 my $status = $z->nextStream();

Skips to the next compressed data stream in the input file/buffer. If a new
 compressed data stream is
found, the eof marker will be cleared and $.
 will be reset to 0.

Returns 1 if a new stream was found, 0 if none was found, and -1 if an
 error was encountered.

Perl version 5.12.4 documentation - IO::Uncompress::AnyUncompress

Page 11http://perldoc.perl.org

trailingData
Usage is

 my $data = $z->trailingData();

Returns the data, if any, that is present immediately after the compressed
 data stream once
uncompression is complete. It only makes sense to call
 this method once the end of the compressed
data stream has been
 encountered.

This option can be used when there is useful information immediately
 following the compressed data
stream, and you don't know the length of the
 compressed data stream.

If the input is a buffer, trailingData will return everything from the
 end of the compressed data
stream to the end of the buffer.

If the input is a filehandle, trailingData will return the data that is
 left in the filehandle input buffer
once the end of the compressed data
 stream has been reached. You can then use the filehandle to
read the rest
 of the input file.

Don't bother using trailingData if the input is a filename.

If you know the length of the compressed data stream before you start
 uncompressing, you can avoid
having to use trailingData by setting the InputLength option in the constructor.

Importing
No symbolic constants are required by this IO::Uncompress::AnyUncompress at present.

:all

Imports anyuncompress and $AnyUncompressError.
 Same as doing this

 use IO::Uncompress::AnyUncompress qw(anyuncompress
$AnyUncompressError) ;

EXAMPLES
SEE ALSO

Compress::Zlib, IO::Compress::Gzip, IO::Uncompress::Gunzip, IO::Compress::Deflate,
IO::Uncompress::Inflate, IO::Compress::RawDeflate, IO::Uncompress::RawInflate,
IO::Compress::Bzip2, IO::Uncompress::Bunzip2, IO::Compress::Lzma, IO::Uncompress::UnLzma,
IO::Compress::Xz, IO::Uncompress::UnXz, IO::Compress::Lzop, IO::Uncompress::UnLzop,
IO::Compress::Lzf, IO::Uncompress::UnLzf, IO::Uncompress::AnyInflate

Compress::Zlib::FAQ

File::GlobMapper, Archive::Zip, Archive::Tar, IO::Zlib

AUTHOR
This module was written by Paul Marquess, pmqs@cpan.org.

MODIFICATION HISTORY
See the Changes file.

COPYRIGHT AND LICENSE
Copyright (c) 2005-2010 Paul Marquess. All rights reserved.

This program is free software; you can redistribute it and/or
 modify it under the same terms as Perl
itself.

