
Perl version 5.12.4 documentation - Math::BigFloat

Page 1http://perldoc.perl.org

NAME
Math::BigFloat - Arbitrary size floating point math package

SYNOPSIS
 use Math::BigFloat;

 # Number creation
 my $x = Math::BigFloat->new($str);	 # defaults to 0
 my $y = $x->copy();			 # make a true copy
 my $nan = Math::BigFloat->bnan();	 # create a NotANumber
 my $zero = Math::BigFloat->bzero();	 # create a +0
 my $inf = Math::BigFloat->binf();	 # create a +inf
 my $inf = Math::BigFloat->binf('-');	 # create a -inf
 my $one = Math::BigFloat->bone();	 # create a +1
 my $mone = Math::BigFloat->bone('-');	 # create a -1

 my $pi = Math::BigFloat->bpi(100);	 # PI to 100 digits

 # the following examples compute their result to 100 digits accuracy:
 my $cos = Math::BigFloat->new(1)->bcos(100);		 # cosinus(1)
 my $sin = Math::BigFloat->new(1)->bsin(100);		 # sinus(1)
 my $atan = Math::BigFloat->new(1)->batan(100);	 # arcus tangens(1)

 my $atan2 = Math::BigFloat->new(1)->batan2(1 ,100); # batan(1)
 my $atan2 = Math::BigFloat->new(1)->batan2(8 ,100); # batan(1/8)
 my $atan2 = Math::BigFloat->new(-2)->batan2(1 ,100); # batan(-2)

 # Testing
 $x->is_zero();		 # true if arg is +0
 $x->is_nan();			 # true if arg is NaN
 $x->is_one();			 # true if arg is +1
 $x->is_one('-');		 # true if arg is -1
 $x->is_odd();			 # true if odd, false for even
 $x->is_even();		 # true if even, false for odd
 $x->is_pos();			 # true if >= 0
 $x->is_neg();			 # true if < 0
 $x->is_inf(sign);		 # true if +inf, or -inf (default is '+')

 $x->bcmp($y);			 # compare numbers (undef,<0,=0,>0)
 $x->bacmp($y);		 # compare absolutely (undef,<0,=0,>0)
 $x->sign();			 # return the sign, either +,- or NaN
 $x->digit($n);		 # return the nth digit, counting from right
 $x->digit(-$n);		 # return the nth digit, counting from left

 # The following all modify their first argument. If you want to preserve
 # $x, use $z = $x->copy()->bXXX($y); See under L<CAVEATS> for why this is
 # necessary when mixing $a = $b assignments with non-overloaded math.

 # set
 $x->bzero();			 # set $i to 0
 $x->bnan();			 # set $i to NaN
 $x->bone(); # set $x to +1
 $x->bone('-'); # set $x to -1

Perl version 5.12.4 documentation - Math::BigFloat

Page 2http://perldoc.perl.org

 $x->binf(); # set $x to inf
 $x->binf('-'); # set $x to -inf

 $x->bneg();			 # negation
 $x->babs();			 # absolute value
 $x->bnorm();			 # normalize (no-op)
 $x->bnot();			 # two's complement (bit wise not)
 $x->binc();			 # increment x by 1
 $x->bdec();			 # decrement x by 1

 $x->badd($y);			 # addition (add $y to $x)
 $x->bsub($y);			 # subtraction (subtract $y from $x)
 $x->bmul($y);			 # multiplication (multiply $x by $y)
 $x->bdiv($y);			 # divide, set $x to quotient
				 # return (quo,rem) or quo if scalar

 $x->bmod($y);			 # modulus ($x % $y)
 $x->bpow($y);			 # power of arguments ($x ** $y)
 $x->bmodpow($exp,$mod);	 # modular exponentation (($num**$exp) % $mod))
 $x->blsft($y, $n);		 # left shift by $y places in base $n
 $x->brsft($y, $n);		 # right shift by $y places in base $n
				 # returns (quo,rem) or quo if in scalar context

 $x->blog();			 # logarithm of $x to base e (Euler's number)
 $x->blog($base);		 # logarithm of $x to base $base (f.i. 2)
 $x->bexp();			 # calculate e ** $x where e is Euler's number

 $x->band($y);			 # bit-wise and
 $x->bior($y);			 # bit-wise inclusive or
 $x->bxor($y);			 # bit-wise exclusive or
 $x->bnot();			 # bit-wise not (two's complement)

 $x->bsqrt();			 # calculate square-root
 $x->broot($y);		 # $y'th root of $x (e.g. $y == 3 => cubic root)
 $x->bfac();			 # factorial of $x (1*2*3*4*..$x)

 $x->bround($N); 		 # accuracy: preserve $N digits
 $x->bfround($N);		 # precision: round to the $Nth digit

 $x->bfloor();			 # return integer less or equal than $x
 $x->bceil();			 # return integer greater or equal than $x

 # The following do not modify their arguments:

 bgcd(@values);		 # greatest common divisor
 blcm(@values);		 # lowest common multiplicator

 $x->bstr();			 # return string
 $x->bsstr();			 # return string in scientific notation

 $x->as_int();			 # return $x as BigInt
 $x->exponent();		 # return exponent as BigInt

Perl version 5.12.4 documentation - Math::BigFloat

Page 3http://perldoc.perl.org

 $x->mantissa();		 # return mantissa as BigInt
 $x->parts();			 # return (mantissa,exponent) as BigInt

 $x->length();			 # number of digits (w/o sign and '.')
 ($l,$f) = $x->length();	 # number of digits, and length of fraction

 $x->precision();		 # return P of $x (or global, if P of $x undef)
 $x->precision($n);		 # set P of $x to $n
 $x->accuracy();		 # return A of $x (or global, if A of $x undef)
 $x->accuracy($n);		 # set A $x to $n

 # these get/set the appropriate global value for all BigFloat objects
 Math::BigFloat->precision();	 # Precision
 Math::BigFloat->accuracy();	 # Accuracy
 Math::BigFloat->round_mode();	 # rounding mode

DESCRIPTION
All operators (including basic math operations) are overloaded if you
 declare your big floating point
numbers as

 $i = new Math::BigFloat '12_3.456_789_123_456_789E-2';

Operations with overloaded operators preserve the arguments, which is
 exactly what you expect.

Canonical notation
Input to these routines are either BigFloat objects, or strings of the
 following four forms:

/^[+-]\d+$/

/^[+-]\d+\.\d*$/

/^[+-]\d+E[+-]?\d+$/

/^[+-]\d*\.\d+E[+-]?\d+$/

all with optional leading and trailing zeros and/or spaces. Additionally,
 numbers are allowed to have
an underscore between any two digits.

Empty strings as well as other illegal numbers results in 'NaN'.

bnorm() on a BigFloat object is now effectively a no-op, since the numbers are always stored in
normalized form. On a string, it creates a BigFloat object.

Output
Output values are BigFloat objects (normalized), except for bstr() and bsstr().

The string output will always have leading and trailing zeros stripped and drop
 a plus sign. bstr()
will give you always the form with a decimal point,
 while bsstr() (s for scientific) gives you the
scientific notation.

	 Input			 bstr()		 bsstr()
	 '-0'			 '0'		 '0E1'
 	 ' -123 123 123'	 '-123123123'	 '-123123123E0'
	 '00.0123'		 '0.0123'	 '123E-4'
	 '123.45E-2'		 '1.2345'	 '12345E-4'
	 '10E+3'			 '10000'		 '1E4'

Perl version 5.12.4 documentation - Math::BigFloat

Page 4http://perldoc.perl.org

Some routines (is_odd(), is_even(), is_zero(), is_one(), is_nan()) return true or false,
while others (bcmp(), bacmp())
 return either undef, <0, 0 or >0 and are suited for sort.

Actual math is done by using the class defined with with = Class;> (which
 defaults to BigInts) to
represent the mantissa and exponent.

The sign /^[+-]$/ is stored separately. The string 'NaN' is used to represent the result when input
arguments are not numbers, as well as the result of dividing by zero.

mantissa(), exponent() and parts()
mantissa() and exponent() return the said parts of the BigFloat as BigInts such that:

	 $m = $x->mantissa();
	 $e = $x->exponent();
	 $y = $m * (10 ** $e);
	 print "ok\n" if $x == $y;

($m,$e) = $x->parts(); is just a shortcut giving you both of them.

A zero is represented and returned as 0E1, not 0E0 (after Knuth).

Currently the mantissa is reduced as much as possible, favouring higher
 exponents over lower ones
(e.g. returning 1e7 instead of 10e6 or 10000000e0).
 This might change in the future, so do not
depend on it.

Accuracy vs. Precision
See also: Rounding.

Math::BigFloat supports both precision (rounding to a certain place before or
 after the dot) and
accuracy (rounding to a certain number of digits). For a
 full documentation, examples and tips on
these topics please see the large
 section about rounding in Math::BigInt.

Since things like sqrt(2) or 1 / 3 must presented with a limited
 accuracy lest a operation
consumes all resources, each operation produces
 no more than the requested number of digits.

If there is no gloabl precision or accuracy set, and the operation in
 question was not called with a
requested precision or accuracy, and the
 input $x has no accuracy or precision set, then a fallback
parameter will
 be used. For historical reasons, it is called div_scale and can be accessed
 via:

	 $d = Math::BigFloat->div_scale();		 # query
	 Math::BigFloat->div_scale($n);			 # set to $n digits

The default value for div_scale is 40.

In case the result of one operation has more digits than specified,
 it is rounded. The rounding mode
taken is either the default mode, or the one
 supplied to the operation after the scale:

	 $x = Math::BigFloat->new(2);
	 Math::BigFloat->accuracy(5);		 # 5 digits max
	 $y = $x->copy()->bdiv(3);		 # will give 0.66667
	 $y = $x->copy()->bdiv(3,6);		 # will give 0.666667
	 $y = $x->copy()->bdiv(3,6,undef,'odd');	 # will give 0.666667
	 Math::BigFloat->round_mode('zero');
	 $y = $x->copy()->bdiv(3,6);		 # will also give 0.666667

Note that Math::BigFloat->accuracy() and Math::BigFloat->precision()
 set the global
variables, and thus any newly created number will be subject
 to the global rounding immediately.
This means that in the examples above, the 3 as argument to bdiv() will also get an accuracy of 5.

Perl version 5.12.4 documentation - Math::BigFloat

Page 5http://perldoc.perl.org

It is less confusing to either calculate the result fully, and afterwards
 round it explicitly, or use the
additional parameters to the math
 functions like so:

	 use Math::BigFloat;
	 $x = Math::BigFloat->new(2);
	 $y = $x->copy()->bdiv(3);
	 print $y->bround(5),"\n";		 # will give 0.66667

	 or

	 use Math::BigFloat;
	 $x = Math::BigFloat->new(2);
	 $y = $x->copy()->bdiv(3,5);		 # will give 0.66667
	 print "$y\n";

Rounding
ffround (+$scale)

Rounds to the $scale'th place left from the '.', counting from the dot.
 The first digit is numbered 1.

ffround (-$scale)

Rounds to the $scale'th place right from the '.', counting from the dot.

ffround (0)

Rounds to an integer.

fround (+$scale)

Preserves accuracy to $scale digits from the left (aka significant digits)
 and pads the rest with
zeros. If the number is between 1 and -1, the
 significant digits count from the first non-zero after
the '.'

fround (-$scale) and fround (0)

These are effectively no-ops.

All rounding functions take as a second parameter a rounding mode from one of
 the following: 'even',
'odd', '+inf', '-inf', 'zero', 'trunc' or 'common'.

The default rounding mode is 'even'. By using Math::BigFloat->round_mode($round_mode);
you can get and set the default
 mode for subsequent rounding. The usage of
$Math::BigFloat::$round_mode is
 no longer supported.
 The second parameter to the round
functions then overrides the default
 temporarily.

The as_number() function returns a BigInt from a Math::BigFloat. It uses
 'trunc' as rounding mode to
make it equivalent to:

	 $x = 2.5;
	 $y = int($x) + 2;

You can override this by passing the desired rounding mode as parameter to as_number():

	 $x = Math::BigFloat->new(2.5);
	 $y = $x->as_number('odd');	 # $y = 3

METHODS
Math::BigFloat supports all methods that Math::BigInt supports, except it
 calculates non-integer
results when possible. Please see Math::BigInt
 for a full description of each method. Below are just

Perl version 5.12.4 documentation - Math::BigFloat

Page 6http://perldoc.perl.org

the most important
 differences:

accuracy
 $x->accuracy(5); # local for $x
 CLASS->accuracy(5); # global for all members of CLASS
 # Note: This also applies to new()!

 $A = $x->accuracy(); # read out accuracy that affects $x
 $A = CLASS->accuracy(); # read out global accuracy

Set or get the global or local accuracy, aka how many significant digits the
 results have. If you set a
global accuracy, then this also applies to new()!

Warning! The accuracy sticks, e.g. once you created a number under the
 influence of
CLASS->accuracy($A), all results from math operations with
 that number will also be rounded.

In most cases, you should probably round the results explicitly using one of round(), bround() or
bfround() or by passing the desired accuracy
 to the math operation as additional parameter:

 my $x = Math::BigInt->new(30000);
 my $y = Math::BigInt->new(7);
 print scalar $x->copy()->bdiv($y, 2); # print 4300
 print scalar $x->copy()->bdiv($y)->bround(2); # print 4300

precision()
 $x->precision(-2); # local for $x, round at the second digit
right of the dot
 $x->precision(2); # ditto, round at the second digit left of
the dot

 CLASS->precision(5); # Global for all members of CLASS
 # This also applies to new()!
 CLASS->precision(-5); # ditto

 $P = CLASS->precision(); # read out global precision
 $P = $x->precision(); # read out precision that affects
$x

Note: You probably want to use accuracy() instead. With accuracy you
 set the number of digits each
result should have, with precision you
 set the place where to round!

bexp()
	 $x->bexp($accuracy);		 # calculate e ** X

Calculates the expression e ** $x where e is Euler's number.

This method was added in v1.82 of Math::BigInt (April 2007).

bnok()
	 $x->bnok($y);		 # x over y (binomial coefficient n over k)

Calculates the binomial coefficient n over k, also called the "choose"
 function. The result is equivalent
to:

	 (n) n!

Perl version 5.12.4 documentation - Math::BigFloat

Page 7http://perldoc.perl.org

	 | - | = -------
	 (k) k!(n-k)!

This method was added in v1.84 of Math::BigInt (April 2007).

bpi()
	 print Math::BigFloat->bpi(100), "\n";

Calculate PI to N digits (including the 3 before the dot). The result is
 rounded according to the current
rounding mode, which defaults to "even".

This method was added in v1.87 of Math::BigInt (June 2007).

bcos()
	 my $x = Math::BigFloat->new(1);
	 print $x->bcos(100), "\n";

Calculate the cosinus of $x, modifying $x in place.

This method was added in v1.87 of Math::BigInt (June 2007).

bsin()
	 my $x = Math::BigFloat->new(1);
	 print $x->bsin(100), "\n";

Calculate the sinus of $x, modifying $x in place.

This method was added in v1.87 of Math::BigInt (June 2007).

batan2()
	 my $y = Math::BigFloat->new(2);
	 my $x = Math::BigFloat->new(3);
	 print $y->batan2($x), "\n";

Calculate the arcus tanges of $y divided by $x, modifying $y in place.
 See also batan().

This method was added in v1.87 of Math::BigInt (June 2007).

batan()
	 my $x = Math::BigFloat->new(1);
	 print $x->batan(100), "\n";

Calculate the arcus tanges of $x, modifying $x in place. See also batan2().

This method was added in v1.87 of Math::BigInt (June 2007).

bmuladd()
	 $x->bmuladd($y,$z);

Multiply $x by $y, and then add $z to the result.

This method was added in v1.87 of Math::BigInt (June 2007).

Autocreating constants
After use Math::BigFloat ':constant' all the floating point constants
 in the given scope are
converted to Math::BigFloat. This conversion
 happens at compile time.

Perl version 5.12.4 documentation - Math::BigFloat

Page 8http://perldoc.perl.org

In particular

 perl -MMath::BigFloat=:constant -e 'print 2E-100,"\n"'

prints the value of 2E-100. Note that without conversion of constants the expression 2E-100 will be
calculated as normal floating point number.

Please note that ':constant' does not affect integer constants, nor binary nor hexadecimal constants.
Use bignum or Math::BigInt to get this to
 work.

Math library
Math with the numbers is done (by default) by a module called
 Math::BigInt::Calc. This is equivalent to
saying:

	 use Math::BigFloat lib => 'Calc';

You can change this by using:

	 use Math::BigFloat lib => 'GMP';

Note: General purpose packages should not be explicit about the library
 to use; let the script author
decide which is best.

Note: The keyword 'lib' will warn when the requested library could not be
 loaded. To suppress the
warning use 'try' instead:

	 use Math::BigFloat try => 'GMP';

If your script works with huge numbers and Calc is too slow for them,
 you can also for the loading of
one of these libraries and if none
 of them can be used, the code will die:

 use Math::BigFloat only => 'GMP,Pari';

The following would first try to find Math::BigInt::Foo, then
 Math::BigInt::Bar, and when this also fails,
revert to Math::BigInt::Calc:

	 use Math::BigFloat lib => 'Foo,Math::BigInt::Bar';

See the respective low-level library documentation for further details.

Please note that Math::BigFloat does not use the denoted library itself,
 but it merely passes the lib
argument to Math::BigInt. So, instead of the need
 to do:

	 use Math::BigInt lib => 'GMP';
	 use Math::BigFloat;

you can roll it all into one line:

	 use Math::BigFloat lib => 'GMP';

It is also possible to just require Math::BigFloat:

	 require Math::BigFloat;

This will load the necessary things (like BigInt) when they are needed, and
 automatically.

See Math::BigInt for more details than you ever wanted to know about using
 a different low-level

Perl version 5.12.4 documentation - Math::BigFloat

Page 9http://perldoc.perl.org

library.Using Math::BigInt::Lite
For backwards compatibility reasons it is still possible to
 request a different storage class for use with
Math::BigFloat:

 use Math::BigFloat with => 'Math::BigInt::Lite';

However, this request is ignored, as the current code now uses the low-level
 math libary for directly
storing the number parts.

EXPORTS
Math::BigFloat exports nothing by default, but can export the bpi() method:

	 use Math::BigFloat qw/bpi/;

	 print bpi(10), "\n";

BUGS
Please see the file BUGS in the CPAN distribution Math::BigInt for known bugs.

CAVEATS
Do not try to be clever to insert some operations in between switching
 libraries:

	 require Math::BigFloat;
	 my $matter = Math::BigFloat->bone() + 4;	 # load BigInt and Calc
	 Math::BigFloat->import(lib => 'Pari');	 # load Pari, too
	 my $anti_matter = Math::BigFloat->bone()+4;	 # now use Pari

This will create objects with numbers stored in two different backend libraries,
 and VERY BAD
THINGS will happen when you use these together:

	 my $flash_and_bang = $matter + $anti_matter;	 # Don't do this!

stringify, bstr()

Both stringify and bstr() now drop the leading '+'. The old code would return
 '+1.23', the new returns
'1.23'. See the documentation in Math::BigInt for
 reasoning and details.

bdiv

The following will probably not print what you expect:

	 print $c->bdiv(123.456),"\n";

It prints both quotient and reminder since print works in list context. Also,
 bdiv() will modify $c, so be
careful. You probably want to use

	 print $c / 123.456,"\n";
	 print scalar $c->bdiv(123.456),"\n"; # or if you want to modify $c

instead.

brsft

The following will probably not print what you expect:

	 my $c = Math::BigFloat->new('3.14159');
 print $c->brsft(3,10),"\n";	 # prints 0.00314153.1415

It prints both quotient and remainder, since print calls brsft() in list
 context. Also, $c->brsft()
will modify $c, so be careful.
 You probably want to use

Perl version 5.12.4 documentation - Math::BigFloat

Page 10http://perldoc.perl.org

	 print scalar $c->copy()->brsft(3,10),"\n";
	 # or if you really want to modify $c
 print scalar $c->brsft(3,10),"\n";

instead.

Modifying and =

Beware of:

	 $x = Math::BigFloat->new(5);
	 $y = $x;

It will not do what you think, e.g. making a copy of $x. Instead it just makes
 a second reference to
the same object and stores it in $y. Thus anything
 that modifies $x will modify $y (except
overloaded math operators), and vice
 versa. See Math::BigInt for details and how to avoid that.

bpow

bpow() now modifies the first argument, unlike the old code which left
 it alone and only returned
the result. This is to be consistent with badd() etc. The first will modify $x, the second one won't:

	 print bpow($x,$i),"\n"; 	 # modify $x
	 print $x->bpow($i),"\n"; 	 # ditto
	 print $x ** $i,"\n";		 # leave $x alone

precision() vs. accuracy()

A common pitfall is to use precision() when you want to round a result to
 a certain number of digits:

	 use Math::BigFloat;

	 Math::BigFloat->precision(4);		 # does not do what you think it does
	 my $x = Math::BigFloat->new(12345);	 # rounds $x to "12000"!
	 print "$x\n";				 # print "12000"
	 my $y = Math::BigFloat->new(3);		 # rounds $y to "0"!
	 print "$y\n";				 # print "0"
	 $z = $x / $y;				 # 12000 / 0 => NaN!
	 print "$z\n";
	 print $z->precision(),"\n";		 # 4

Replacing precision with accuracy is probably not what you want, either:

	 use Math::BigFloat;

	 Math::BigFloat->accuracy(4);		 # enables global rounding:
	 my $x = Math::BigFloat->new(123456);	 # rounded immediately to "12350"
	 print "$x\n";				 # print "123500"
	 my $y = Math::BigFloat->new(3);		 # rounded to "3
	 print "$y\n";				 # print "3"
	 print $z = $x->copy()->bdiv($y),"\n";	 # 41170
	 print $z->accuracy(),"\n";		 # 4

What you want to use instead is:

	 use Math::BigFloat;

	 my $x = Math::BigFloat->new(123456);	 # no rounding
	 print "$x\n";				 # print "123456"
	 my $y = Math::BigFloat->new(3);		 # no rounding
	 print "$y\n";				 # print "3"
	 print $z = $x->copy()->bdiv($y,4),"\n";	 # 41150

Perl version 5.12.4 documentation - Math::BigFloat

Page 11http://perldoc.perl.org

	 print $z->accuracy(),"\n";		 # undef

In addition to computing what you expected, the last example also does not
 "taint" the result with an
accuracy or precision setting, which would
 influence any further operation.

SEE ALSO
Math::BigInt, Math::BigRat and Math::Big as well as Math::BigInt::BitVect, Math::BigInt::Pari and
Math::BigInt::GMP.

The pragmas bignum, bigint and bigrat might also be of interest
 because they solve the
autoupgrading/downgrading issue, at least partly.

The package at http://search.cpan.org/~tels/Math-BigInt contains
 more documentation including a full
version history, testcases, empty
 subclass files and benchmarks.

LICENSE
This program is free software; you may redistribute it and/or modify it under
 the same terms as Perl
itself.

AUTHORS
Mark Biggar, overloaded interface by Ilya Zakharevich.
 Completely rewritten by Tels
http://bloodgate.com in 2001 - 2006, and still
 at it in 2007.

