
Perl version 5.12.4 documentation - Memoize

Page 1http://perldoc.perl.org

NAME
Memoize - Make functions faster by trading space for time

SYNOPSIS
 # This is the documentation for Memoize 1.01
	 use Memoize;
	 memoize('slow_function');
	 slow_function(arguments); # Is faster than it was before

This is normally all you need to know. However, many options are available:

	 memoize(function, options...);

Options include:

	 NORMALIZER => function
	 INSTALL => new_name

	 SCALAR_CACHE => 'MEMORY'
 SCALAR_CACHE => ['HASH', \%cache_hash]
	 SCALAR_CACHE => 'FAULT'
	 SCALAR_CACHE => 'MERGE'

	 LIST_CACHE => 'MEMORY'
 LIST_CACHE => ['HASH', \%cache_hash]
	 LIST_CACHE => 'FAULT'
	 LIST_CACHE => 'MERGE'

DESCRIPTION
`Memoizing' a function makes it faster by trading space for time. It
 does this by caching the return
values of the function in a table.
 If you call the function again with the same arguments, memoize

jumps in and gives you the value out of the table, instead of letting
 the function compute the value all
over again.

Here is an extreme example. Consider the Fibonacci sequence, defined
 by the following function:

	 # Compute Fibonacci numbers
	 sub fib {
	 my $n = shift;
	 return $n if $n < 2;
	 fib($n-1) + fib($n-2);
	 }

This function is very slow. Why? To compute fib(14), it first wants
 to compute fib(13) and fib(12), and
add the results. But to compute
 fib(13), it first has to compute fib(12) and fib(11), and then it
 comes
back and computes fib(12) all over again even though the answer
 is the same. And both of the times
that it wants to compute fib(12),
 it has to compute fib(11) from scratch, and then it has to do it
 again
each time it wants to compute fib(13). This function does so
 much recomputing of old results that it
takes a really long time to
 run---fib(14) makes 1,200 extra recursive calls to itself, to compute
 and
recompute things that it already computed.

This function is a good candidate for memoization. If you memoize the
 `fib' function above, it will
compute fib(14) exactly once, the first
 time it needs to, and then save the result in a table. Then if you

ask for fib(14) again, it gives you the result out of the table.
 While computing fib(14), instead of
computing fib(12) twice, it does
 it once; the second time it needs the value it gets it from the table.
 It

Perl version 5.12.4 documentation - Memoize

Page 2http://perldoc.perl.org

doesn't compute fib(11) four times; it computes it once, getting it
 from the table the next three times.
Instead of making 1,200
 recursive calls to `fib', it makes 15. This makes the function about
 150 times
faster.

You could do the memoization yourself, by rewriting the function, like
 this:

	 # Compute Fibonacci numbers, memoized version
	 { my @fib;
 	 sub fib {
	 my $n = shift;
	 return $fib[$n] if defined $fib[$n];
	 return $fib[$n] = $n if $n < 2;
	 $fib[$n] = fib($n-1) + fib($n-2);
	 }
 }

Or you could use this module, like this:

	 use Memoize;
	 memoize('fib');

	 # Rest of the fib function just like the original version.

This makes it easy to turn memoizing on and off.

Here's an even simpler example: I wrote a simple ray tracer; the
 program would look in a certain
direction, figure out what it was
 looking at, and then convert the `color' value (typically a string
 like
`red') of that object to a red, green, and blue pixel value, like
 this:

 for ($direction = 0; $direction < 300; $direction++) {
 # Figure out which object is in direction $direction
 $color = $object->{color};
 ($r, $g, $b) = @{&ColorToRGB($color)};
 ...
 }

Since there are relatively few objects in a picture, there are only a
 few colors, which get looked up
over and over again. Memoizing ColorToRGB sped up the program by several percent.

DETAILS
This module exports exactly one function, memoize. The rest of the
 functions in this package are
None of Your Business.

You should say

	 memoize(function)

where function is the name of the function you want to memoize, or
 a reference to it. memoize
returns a reference to the new,
 memoized version of the function, or undef on a non-fatal error.
 At
present, there are no non-fatal errors, but there might be some in
 the future.

If function was the name of a function, then memoize hides the
 old version and installs the new
memoized version under the old name,
 so that &function(...) actually invokes the memoized
version.

Perl version 5.12.4 documentation - Memoize

Page 3http://perldoc.perl.org

OPTIONS
There are some optional options you can pass to memoize to change
 the way it behaves a little. To
supply options, invoke memoize
 like this:

	 memoize(function, NORMALIZER => function,
			 INSTALL => newname,
 SCALAR_CACHE => option,
	 LIST_CACHE => option
);

Each of these options is optional; you can include some, all, or none
 of them.

INSTALL
If you supply a function name with INSTALL, memoize will install
 the new, memoized version of the
function under the name you give.
 For example,

	 memoize('fib', INSTALL => 'fastfib')

installs the memoized version of fib as fastfib; without the INSTALL option it would have
replaced the old fib with the
 memoized version.

To prevent memoize from installing the memoized version anywhere, use INSTALL => undef.

NORMALIZER
Suppose your function looks like this:

	 # Typical call: f('aha!', A => 11, B => 12);
	 sub f {
	 my $a = shift;
	 my %hash = @_;
	 $hash{B} ||= 2; # B defaults to 2
	 $hash{C} ||= 7; # C defaults to 7

	 # Do something with $a, %hash
	 }

Now, the following calls to your function are all completely equivalent:

	 f(OUCH);
	 f(OUCH, B => 2);
	 f(OUCH, C => 7);
	 f(OUCH, B => 2, C => 7);
	 f(OUCH, C => 7, B => 2);
	 (etc.)

However, unless you tell Memoize that these calls are equivalent,
 it will not know that, and it will
compute the values for these
 invocations of your function separately, and store them separately.

To prevent this, supply a NORMALIZER function that turns the
 program arguments into a string in a
way that equivalent arguments
 turn into the same string. A NORMALIZER function for f above
 might
look like this:

	 sub normalize_f {
	 my $a = shift;
	 my %hash = @_;
	 $hash{B} ||= 2;

Perl version 5.12.4 documentation - Memoize

Page 4http://perldoc.perl.org

	 $hash{C} ||= 7;

	 join(',', $a, map ($_ => $hash{$_}) sort keys %hash);
	 }

Each of the argument lists above comes out of the normalize_f
 function looking exactly the same,
like this:

	 OUCH,B,2,C,7

You would tell Memoize to use this normalizer this way:

	 memoize('f', NORMALIZER => 'normalize_f');

memoize knows that if the normalized version of the arguments is
 the same for two argument lists,
then it can safely look up the value
 that it computed for one argument list and return it as the result of

calling the function with the other argument list, even if the
 argument lists look different.

The default normalizer just concatenates the arguments with character
 28 in between. (In ASCII, this
is called FS or control-\.) This
 always works correctly for functions with only one string argument,
 and
also when the arguments never contain character 28. However, it
 can confuse certain argument lists:

	 normalizer("a\034", "b")
	 normalizer("a", "\034b")
	 normalizer("a\034\034b")

for example.

Since hash keys are strings, the default normalizer will not
 distinguish between undef and the empty
string. It also won't work
 when the function's arguments are references. For example, consider a

function g which gets two arguments: A number, and a reference to
 an array of numbers:

	 g(13, [1,2,3,4,5,6,7]);

The default normalizer will turn this into something like "13\034ARRAY(0x436c1f)". That would be
all right, except that a
 subsequent array of numbers might be stored at a different location
 even
though it contains the same data. If this happens, Memoize
 will think that the arguments are different,
even though they are
 equivalent. In this case, a normalizer like this is appropriate:

	 sub normalize { join ' ', $_[0], @{$_[1]} }

For the example above, this produces the key "13 1 2 3 4 5 6 7".

Another use for normalizers is when the function depends on data other
 than those in its arguments.
Suppose you have a function which
 returns a value which depends on the current hour of the day:

	 sub on_duty {
 my ($problem_type) = @_;
	 my $hour = (localtime)[2];
 open my $fh, "$DIR/$problem_type" or die...;
 my $line;
 while ($hour-- > 0)
 $line = <$fh>;
 }
	 return $line;
	 }

Perl version 5.12.4 documentation - Memoize

Page 5http://perldoc.perl.org

At 10:23, this function generates the 10th line of a data file; at
 3:45 PM it generates the 15th line
instead. By default, Memoize
 will only see the $problem_type argument. To fix this, include the

current hour in the normalizer:

 sub normalize { join ' ', (localtime)[2], @_ }

The calling context of the function (scalar or list context) is
 propagated to the normalizer. This means
that if the memoized
 function will treat its arguments differently in list context than it
 would in scalar
context, you can have the normalizer function select
 its behavior based on the results of wantarray.
Even if called in
 a list context, a normalizer should still return a single string.

SCALAR_CACHE, LIST_CACHE
Normally, Memoize caches your function's return values into an
 ordinary Perl hash variable.
However, you might like to have the
 values cached on the disk, so that they persist from one run of
your
 program to the next, or you might like to associate some other
 interesting semantics with the
cached values.

There's a slight complication under the hood of Memoize: There are
 actually two caches, one for
scalar values and one for list values.
 When your function is called in scalar context, its return value is

cached in one hash, and when your function is called in list context,
 its value is cached in the other
hash. You can control the caching
 behavior of both contexts independently with these options.

The argument to LIST_CACHE or SCALAR_CACHE must either be one of
 the following four strings:

	 MEMORY
	 FAULT
	 MERGE
 HASH

or else it must be a reference to a list whose first element is one of
 these four strings, such as
[HASH, arguments...].

MEMORY

MEMORY means that return values from the function will be cached in
 an ordinary Perl hash
variable. The hash variable will not persist
 after the program exits. This is the default.

HASH

HASH allows you to specify that a particular hash that you supply
 will be used as the cache.
You can tie this hash beforehand to give
 it any behavior you want.

A tied hash can have any semantics at all. It is typically tied to an
 on-disk database, so that
cached values are stored in the database and
 retrieved from it again when needed, and the
disk file typically
 persists after your program has exited. See perltie for more
 complete
details about tie.

A typical example is:

 use DB_File;
 tie my %cache => 'DB_File', $filename, O_RDWR|O_CREAT, 0666;
 memoize 'function', SCALAR_CACHE => [HASH => \%cache];

This has the effect of storing the cache in a DB_File database
 whose name is in $filename
. The cache will persist after the
 program has exited. Next time the program runs, it will find
the
 cache already populated from the previous run of the program. Or you
 can forcibly
populate the cache by constructing a batch program that
 runs in the background and
populates the cache file. Then when you
 come to run your real program the memoized
function will be fast
 because all its results have been precomputed.

TIE

Perl version 5.12.4 documentation - Memoize

Page 6http://perldoc.perl.org

This option is no longer supported. It is still documented only to
 aid in the debugging of old
programs that use it. Old programs should
 be converted to use the HASH option instead.

 memoize ... [TIE, PACKAGE, ARGS...]

is merely a shortcut for

 require PACKAGE;
	 { my %cache;
 tie %cache, PACKAGE, ARGS...;
	 }
 memoize ... [HASH => \%cache];

FAULT

FAULT means that you never expect to call the function in scalar
 (or list) context, and that if
Memoize detects such a call, it
 should abort the program. The error message is one of

	 `foo' function called in forbidden list context at line ...
	 `foo' function called in forbidden scalar context at line ...

MERGE

MERGE normally means the function does not distinguish between list
 and sclar context, and
that return values in both contexts should be
 stored together. LIST_CACHE => MERGE
means that list context
 return values should be stored in the same hash that is used for
 scalar
context returns, and SCALAR_CACHE => MERGE means the
 same, mutatis mutandis. It is an
error to specify MERGE for both,
 but it probably does something useful.

Consider this function:

	 sub pi { 3; }

Normally, the following code will result in two calls to pi:

 $x = pi();
 ($y) = pi();
 $z = pi();

The first call caches the value 3 in the scalar cache; the second
 caches the list (3) in the list
cache. The third call doesn't call
 the real pi function; it gets the value from the scalar cache.

Obviously, the second call to pi is a waste of time, and storing
 its return value is a waste of
space. Specifying LIST_CACHE =>
 MERGE will make memoize use the same cache for
scalar and list
 context return values, so that the second call uses the scalar cache
 that was
populated by the first call. pi ends up being called only
 once, and both subsequent calls
return 3 from the cache, regardless
 of the calling context.

Another use for MERGE is when you want both kinds of return values
 stored in the same disk
file; this saves you from having to deal with
 two disk files instead of one. You can use a
normalizer function to
 keep the two sets of return values separate. For example:

 tie my %cache => 'MLDBM', 'DB_File', $filename, ...;

	 memoize 'myfunc',
	 NORMALIZER => 'n',
	 SCALAR_CACHE => [HASH => \%cache],
	 LIST_CACHE => MERGE,
	 ;

	 sub n {
	 my $context = wantarray() ? 'L' : 'S';
	 # ... now compute the hash key from the arguments ...

Perl version 5.12.4 documentation - Memoize

Page 7http://perldoc.perl.org

	 $hashkey = "$context:$hashkey";
	 }

This normalizer function will store scalar context return values in
 the disk file under keys that
begin with S:, and list context
 return values under keys that begin with L:.

OTHER FACILITIES
unmemoize

There's an unmemoize function that you can import if you want to.
 Why would you want to? Here's an
example: Suppose you have your cache
 tied to a DBM file, and you want to make sure that the cache
is
 written out to disk if someone interrupts the program. If the program
 exits normally, this will happen
anyway, but if someone types
 control-C or something then the program will terminate immediately

without synchronizing the database. So what you can do instead is

 $SIG{INT} = sub { unmemoize 'function' };

unmemoize accepts a reference to, or the name of a previously
 memoized function, and undoes
whatever it did to provide the memoized
 version in the first place, including making the name refer to
the
 unmemoized version if appropriate. It returns a reference to the
 unmemoized version of the
function.

If you ask it to unmemoize a function that was never memoized, it
 croaks.

flush_cache
flush_cache(function) will flush out the caches, discarding all
 the cached data. The argument
may be a function name or a reference
 to a function. For finer control over when data is discarded or

expired, see the documentation for Memoize::Expire, included in
 this package.

Note that if the cache is a tied hash, flush_cache will attempt to
 invoke the CLEAR method on the
hash. If there is no CLEAR
 method, this will cause a run-time error.

An alternative approach to cache flushing is to use the HASH option
 (see above) to request that
Memoize use a particular hash variable
 as its cache. Then you can examine or modify the hash at
any time in
 any way you desire. You may flush the cache by using %hash = ().

CAVEATS
Memoization is not a cure-all:

Do not memoize a function whose behavior depends on program
 state other than its own
arguments, such as global variables, the time
 of day, or file input. These functions will not
produce correct
 results when memoized. For a particularly easy example:

	 sub f {
	 time;
	 }

This function takes no arguments, and as far as Memoize is
 concerned, it always returns the
same result. Memoize is wrong, of
 course, and the memoized version of this function will call
time once
 to get the current time, and it will return that same time
 every time you call it after
that.

Do not memoize a function with side effects.

	 sub f {
	 my ($a, $b) = @_;
 my $s = $a + $b;
	 print "$a + $b = $s.\n";
	 }

Perl version 5.12.4 documentation - Memoize

Page 8http://perldoc.perl.org

This function accepts two arguments, adds them, and prints their sum.
 Its return value is the
numuber of characters it printed, but you
 probably didn't care about that. But Memoize doesn't
understand
 that. If you memoize this function, you will get the result you
 expect the first time
you ask it to print the sum of 2 and 3, but
 subsequent calls will return 1 (the return value of
print) without actually printing anything.

Do not memoize a function that returns a data structure that is
 modified by its caller.

Consider these functions: getusers returns a list of users somehow,
 and then main throws
away the first user on the list and prints the
 rest:

	 sub main {
	 my $userlist = getusers();
	 shift @$userlist;
	 foreach $u (@$userlist) {
	 print "User $u\n";
	 }
	 }

	 sub getusers {
	 my @users;
	 # Do something to get a list of users;
	 \@users; # Return reference to list.
	 }

If you memoize getusers here, it will work right exactly once. The
 reference to the users list
will be stored in the memo table. main
 will discard the first element from the referenced list.
The next
 time you invoke main, Memoize will not call getusers; it will
 just return the same
reference to the same list it got last time. But
 this time the list has already had its head
removed; main will
 erroneously remove another element from it. The list will get shorter
 and
shorter every time you call main.

Similarly, this:

	 $u1 = getusers();
	 $u2 = getusers();
	 pop @$u1;

will modify $u2 as well as $u1, because both variables are references
 to the same array. Had
getusers not been memoized, $u1 and $u2
 would have referred to different arrays.

Do not memoize a very simple function.

Recently someone mentioned to me that the Memoize module made his
 program run slower
instead of faster. It turned out that he was
 memoizing the following function:

 sub square {
 $_[0] * $_[0];
 }

I pointed out that Memoize uses a hash, and that looking up a
 number in the hash is
necessarily going to take a lot longer than a
 single multiplication. There really is no way to
speed up the square function.

Memoization is not magical.

PERSISTENT CACHE SUPPORT
You can tie the cache tables to any sort of tied hash that you want
 to, as long as it supports TIEHASH,
FETCH, STORE, and EXISTS. For example,

 tie my %cache => 'GDBM_File', $filename, O_RDWR|O_CREAT, 0666;
 memoize 'function', SCALAR_CACHE => [HASH => \%cache];

Perl version 5.12.4 documentation - Memoize

Page 9http://perldoc.perl.org

works just fine. For some storage methods, you need a little glue.

SDBM_File doesn't supply an EXISTS method, so included in this
 package is a glue module called
Memoize::SDBM_File which does
 provide one. Use this instead of plain SDBM_File to store your

cache table on disk in an SDBM_File database:

 tie my %cache => 'Memoize::SDBM_File', $filename, O_RDWR|O_CREAT,
0666;
 memoize 'function', SCALAR_CACHE => [HASH => \%cache];

NDBM_File has the same problem and the same solution. (Use Memoize::NDBM_File instead
of plain NDBM_File.)

Storable isn't a tied hash class at all. You can use it to store a
 hash to disk and retrieve it again, but
you can't modify the hash while
 it's on the disk. So if you want to store your cache table in a
Storable database, use Memoize::Storable, which puts a hashlike
 front-end onto Storable.
The hash table is actually kept in
 memory, and is loaded from your Storable file at the time you

memoize the function, and stored back at the time you unmemoize the
 function (or when your
program exits):

 tie my %cache => 'Memoize::Storable', $filename;
	 memoize 'function', SCALAR_CACHE => [HASH => \%cache];

 tie my %cache => 'Memoize::Storable', $filename, 'nstore';
	 memoize 'function', SCALAR_CACHE => [HASH => \%cache];

Include the `nstore' option to have the Storable database written
 in `network order'. (See Storable
for more details about this.)

The flush_cache() function will raise a run-time error unless the
 tied package provides a CLEAR
method.

EXPIRATION SUPPORT
See Memoize::Expire, which is a plug-in module that adds expiration
 functionality to Memoize. If you
don't like the kinds of policies
 that Memoize::Expire implements, it is easy to write your own plug-in

module to implement whatever policy you desire. Memoize comes with
 several examples. An
expiration manager that implements a LRU policy
 is available on CPAN as Memoize::ExpireLRU.

BUGS
The test suite is much better, but always needs improvement.

There is some problem with the way goto &f works under threaded
 Perl, perhaps because of the
lexical scoping of @_. This is a bug
 in Perl, and until it is resolved, memoized functions will see a

slightly different caller() and will perform a little more slowly
 on threaded perls than unthreaded
perls.

Some versions of DB_File won't let you store data under a key of
 length 0. That means that if you
have a function f which you
 memoized and the cache is in a DB_File database, then the value of
f() (f called with no arguments) will not be memoized. If this
 is a big problem, you can supply a
normalizer function that prepends "x" to every key.

MAILING LIST
To join a very low-traffic mailing list for announcements about Memoize, send an empty note to
mjd-perl-memoize-request@plover.com.

Perl version 5.12.4 documentation - Memoize

Page 10http://perldoc.perl.org

AUTHOR
Mark-Jason Dominus (mjd-perl-memoize+@plover.com), Plover Systems co.

See the Memoize.pm Page at http://www.plover.com/~mjd/perl/Memoize/
 for news and upgrades.
Near this page, at
 http://www.plover.com/~mjd/perl/MiniMemoize/ there is an article about

memoization and about the internals of Memoize that appeared in The
 Perl Journal, issue #13. (This
article is also included in the
 Memoize distribution as `article.html'.)

The author's book Higher Order Perl (2005, ISBN 1558607013, published
 by Morgan Kaufmann)
discusses memoization (and many other fascinating
 topics) in tremendous detail. It will also be
available on-line for free.
 For more information, visit http://perl.plover.com/book/ .

To join a mailing list for announcements about Memoize, send an
 empty message to
mjd-perl-memoize-request@plover.com. This mailing
 list is for announcements only and has
extremely low traffic---about
 two messages per year.

COPYRIGHT AND LICENSE
Copyright 1998, 1999, 2000, 2001 by Mark Jason Dominus

This library is free software; you may redistribute it and/or modify
 it under the same terms as Perl
itself.

THANK YOU
Many thanks to Jonathan Roy for bug reports and suggestions, to
 Michael Schwern for other bug
reports and patches, to Mike Cariaso for
 helping me to figure out the Right Thing to Do About
Expiration, to
 Joshua Gerth, Joshua Chamas, Jonathan Roy (again), Mark D. Anderson,
 and Andrew
Johnson for more suggestions about expiration, to Brent
 Powers for the Memoize::ExpireLRU
module, to Ariel Scolnicov for
 delightful messages about the Fibonacci function, to Dion Almaer for

thought-provoking suggestions about the default normalizer, to Walt
 Mankowski and Kurt Starsinic for
much help investigating problems
 under threaded Perl, to Alex Dudkevich for reporting the bug in

prototyped functions and for checking my patch, to Tony Bass for many
 helpful suggestions, to
Jonathan Roy (again) for finding a use for unmemoize(), to Philippe Verdret for enlightening
discussion of Hook::PrePostCall, to Nat Torkington for advice I ignored, to Chris
 Nandor for
portability advice, to Randal Schwartz for suggesting the
 'flush_cache function, and to Jenda
Krynicky for being a light in
 the world.

Special thanks to Jarkko Hietaniemi, the 5.8.0 pumpking, for including
 this module in the core and for
his patient and helpful guidance
 during the integration process.

