
Perl version 5.12.4 documentation - Pod::InputObjects

Page 1http://perldoc.perl.org

NAME
Pod::InputObjects - objects representing POD input paragraphs, commands, etc.

SYNOPSIS
 use Pod::InputObjects;

REQUIRES
perl5.004, Carp

EXPORTS
Nothing.

DESCRIPTION
This module defines some basic input objects used by Pod::Parser when
 reading and parsing POD
text from an input source. The following objects
 are defined:

package Pod::InputSource

An object corresponding to a source of POD input text. It is mostly a
 wrapper around a
filehandle or IO::Handle-type object (or anything
 that implements the getline() method)
which keeps track of some
 additional information relevant to the parsing of PODs.

package Pod::Paragraph

An object corresponding to a paragraph of POD input text. It may be a
 plain paragraph, a
verbatim paragraph, or a command paragraph (see perlpod).

package Pod::InteriorSequence

An object corresponding to an interior sequence command from the POD
 input text (see
perlpod).

package Pod::ParseTree

An object corresponding to a tree of parsed POD text. Each "node" in
 a parse-tree (or ptree) is
either a text-string or a reference to
 a Pod::InteriorSequence object. The nodes appear in
the parse-tree
 in the order in which they were parsed from left-to-right.

Each of these input objects are described in further detail in the
 sections which follow.

Pod::InputSource
This object corresponds to an input source or stream of POD
 documentation. When parsing PODs, it
is necessary to associate and store
 certain context information with each input source. All of this

information is kept together with the stream itself in one of these Pod::InputSource objects. Each
such object is merely a wrapper around
 an IO::Handle object of some kind (or at least something
that
 implements the getline() method). They have the following
 methods/attributes:

new()
 my $pod_input1 = Pod::InputSource->new(-handle => $filehandle);
 my $pod_input2 = new Pod::InputSource(-handle => $filehandle,
 -name => $name);
 my $pod_input3 = new Pod::InputSource(-handle => *STDIN);
 my $pod_input4 = Pod::InputSource->new(-handle => *STDIN,
 -name => "(STDIN)");

This is a class method that constructs a Pod::InputSource object and
 returns a reference to the
new input source object. It takes one or more
 keyword arguments in the form of a hash. The keyword
-handle is
 required and designates the corresponding input handle. The keyword -name is optional
and specifies the name associated with the input
 handle (typically a file name).

Perl version 5.12.4 documentation - Pod::InputObjects

Page 2http://perldoc.perl.org

name()
 my $filename = $pod_input->name();
 $pod_input->name($new_filename_to_use);

This method gets/sets the name of the input source (usually a filename).
 If no argument is given, it
returns a string containing the name of
 the input source; otherwise it sets the name of the input
source to the
 contents of the given argument.

handle()
 my $handle = $pod_input->handle();

Returns a reference to the handle object from which input is read (the
 one used to contructed this
input source object).

was_cutting()
 print "Yes.\n" if ($pod_input->was_cutting());

The value of the cutting state (that the cutting() method would
 have returned) immediately before
any input was read from this input
 stream. After all input from this stream has been read, the
cutting
 state is restored to this value.

Pod::Paragraph
An object representing a paragraph of POD input text.
 It has the following methods/attributes:

Pod::Paragraph->new()
 my $pod_para1 = Pod::Paragraph->new(-text => $text);
 my $pod_para2 = Pod::Paragraph->new(-name => $cmd,
 -text => $text);
 my $pod_para3 = new Pod::Paragraph(-text => $text);
 my $pod_para4 = new Pod::Paragraph(-name => $cmd,
 -text => $text);
 my $pod_para5 = Pod::Paragraph->new(-name => $cmd,
 -text => $text,
 -file => $filename,
 -line => $line_number);

This is a class method that constructs a Pod::Paragraph object and
 returns a reference to the new
paragraph object. It may be given one or
 two keyword arguments. The -text keyword indicates the
corresponding
 text of the POD paragraph. The -name keyword indicates the name of
 the
corresponding POD command, such as head1 or item (it should not contain the = prefix); this is
needed only if the POD
 paragraph corresponds to a command paragraph. The -file and -line

keywords indicate the filename and line number corresponding to the
 beginning of the paragraph

$pod_para->cmd_name()
 my $para_cmd = $pod_para->cmd_name();

If this paragraph is a command paragraph, then this method will return the name of the command (
without any leading = prefix).

$pod_para->text()
 my $para_text = $pod_para->text();

This method will return the corresponding text of the paragraph.

Perl version 5.12.4 documentation - Pod::InputObjects

Page 3http://perldoc.perl.org

$pod_para->raw_text()
 my $raw_pod_para = $pod_para->raw_text();

This method will return the raw text of the POD paragraph, exactly
 as it appeared in the input.

$pod_para->cmd_prefix()
 my $prefix = $pod_para->cmd_prefix();

If this paragraph is a command paragraph, then this method will return the prefix used to denote the
command (which should be the string "="
 or "==").

$pod_para->cmd_separator()
 my $separator = $pod_para->cmd_separator();

If this paragraph is a command paragraph, then this method will return
 the text used to separate the
command name from the rest of the
 paragraph (if any).

$pod_para->parse_tree()
 my $ptree = $pod_parser->parse_text($pod_para->text());
 $pod_para->parse_tree($ptree);
 $ptree = $pod_para->parse_tree();

This method will get/set the corresponding parse-tree of the paragraph's text.

$pod_para->file_line()
 my ($filename, $line_number) = $pod_para->file_line();
 my $position = $pod_para->file_line();

Returns the current filename and line number for the paragraph
 object. If called in a list context, it
returns a list of two
 elements: first the filename, then the line number. If called in
 a scalar context, it
returns a string containing the filename, followed
 by a colon (':'), followed by the line number.

Pod::InteriorSequence
An object representing a POD interior sequence command.
 It has the following methods/attributes:

Pod::InteriorSequence->new()
 my $pod_seq1 = Pod::InteriorSequence->new(-name => $cmd
 -ldelim => $delimiter);
 my $pod_seq2 = new Pod::InteriorSequence(-name => $cmd,
 -ldelim => $delimiter);
 my $pod_seq3 = new Pod::InteriorSequence(-name => $cmd,
 -ldelim => $delimiter,
 -file => $filename,
 -line => $line_number);

 my $pod_seq4 = new Pod::InteriorSequence(-name => $cmd, $ptree);
 my $pod_seq5 = new Pod::InteriorSequence($cmd, $ptree);

This is a class method that constructs a Pod::InteriorSequence object
 and returns a reference
to the new interior sequence object. It should
 be given two keyword arguments. The -ldelim
keyword indicates the
 corresponding left-delimiter of the interior sequence (e.g. '<').
 The -name
keyword indicates the name of the corresponding interior
 sequence command, such as I or B or C.
The -file and -line keywords indicate the filename and line number corresponding
 to the

Perl version 5.12.4 documentation - Pod::InputObjects

Page 4http://perldoc.perl.org

beginning of the interior sequence. If the $ptree argument is
 given, it must be the last argument, and
it must be either string, or
 else an array-ref suitable for passing to Pod::ParseTree::new (or
 it may be
a reference to a Pod::ParseTree object).

$pod_seq->cmd_name()
 my $seq_cmd = $pod_seq->cmd_name();

The name of the interior sequence command.

$pod_seq->prepend()
 $pod_seq->prepend($text);
 $pod_seq1->prepend($pod_seq2);

Prepends the given string or parse-tree or sequence object to the parse-tree
 of this interior sequence.

$pod_seq->append()
 $pod_seq->append($text);
 $pod_seq1->append($pod_seq2);

Appends the given string or parse-tree or sequence object to the parse-tree
 of this interior sequence.

$pod_seq->nested()
 $outer_seq = $pod_seq->nested || print "not nested";

If this interior sequence is nested inside of another interior
 sequence, then the outer/parent sequence
that contains it is
 returned. Otherwise undef is returned.

$pod_seq->raw_text()
 my $seq_raw_text = $pod_seq->raw_text();

This method will return the raw text of the POD interior sequence,
 exactly as it appeared in the input.

$pod_seq->left_delimiter()
 my $ldelim = $pod_seq->left_delimiter();

The leftmost delimiter beginning the argument text to the interior
 sequence (should be "<").

$pod_seq->right_delimiter()
The rightmost delimiter beginning the argument text to the interior
 sequence (should be ">").

$pod_seq->parse_tree()
 my $ptree = $pod_parser->parse_text($paragraph_text);
 $pod_seq->parse_tree($ptree);
 $ptree = $pod_seq->parse_tree();

This method will get/set the corresponding parse-tree of the interior
 sequence's text.

$pod_seq->file_line()
 my ($filename, $line_number) = $pod_seq->file_line();
 my $position = $pod_seq->file_line();

Returns the current filename and line number for the interior sequence
 object. If called in a list
context, it returns a list of two
 elements: first the filename, then the line number. If called in
 a scalar

Perl version 5.12.4 documentation - Pod::InputObjects

Page 5http://perldoc.perl.org

context, it returns a string containing the filename, followed
 by a colon (':'), followed by the line
number.

Pod::InteriorSequence::DESTROY()
This method performs any necessary cleanup for the interior-sequence.
 If you override this method
then it is imperative that you invoke
 the parent method from within your own method, otherwise
interior-sequence storage will not be reclaimed upon destruction!

Pod::ParseTree
This object corresponds to a tree of parsed POD text. As POD text is
 scanned from left to right, it is
parsed into an ordered list of
 text-strings and Pod::InteriorSequence objects (in order of

appearance). A Pod::ParseTree object corresponds to this list of
 strings and sequences. Each
interior sequence in the parse-tree may
 itself contain a parse-tree (since interior sequences may be
nested).

Pod::ParseTree->new()
 my $ptree1 = Pod::ParseTree->new;
 my $ptree2 = new Pod::ParseTree;
 my $ptree4 = Pod::ParseTree->new($array_ref);
 my $ptree3 = new Pod::ParseTree($array_ref);

This is a class method that constructs a Pod::Parse_tree object and
 returns a reference to the
new parse-tree. If a single-argument is given,
 it must be a reference to an array, and is used to
initialize the root
 (top) of the parse tree.

$ptree->top()
 my $top_node = $ptree->top();
 $ptree->top($top_node);
 $ptree->top(@children);

This method gets/sets the top node of the parse-tree. If no arguments are
 given, it returns the topmost
node in the tree (the root), which is also
 a Pod::ParseTree. If it is given a single argument that is a
reference,
 then the reference is assumed to a parse-tree and becomes the new top node.
 Otherwise,
if arguments are given, they are treated as the new list of
 children for the top node.

$ptree->children()
This method gets/sets the children of the top node in the parse-tree.
 If no arguments are given, it
returns the list (array) of children
 (each of which should be either a string or a Pod::InteriorSequence
.
 Otherwise, if arguments are given, they are treated as the new list of
 children for the top node.

$ptree->prepend()
This method prepends the given text or parse-tree to the current parse-tree.
 If the first item on the
parse-tree is text and the argument is also text,
 then the text is prepended to the first item (not added
as a separate string).
 Otherwise the argument is added as a new string or parse-tree before
 the
current one.

$ptree->append()
This method appends the given text or parse-tree to the current parse-tree.
 If the last item on the
parse-tree is text and the argument is also text,
 then the text is appended to the last item (not added
as a separate string).
 Otherwise the argument is added as a new string or parse-tree after
 the current
one.

$ptree->raw_text()
 my $ptree_raw_text = $ptree->raw_text();

Perl version 5.12.4 documentation - Pod::InputObjects

Page 6http://perldoc.perl.org

This method will return the raw text of the POD parse-tree
 exactly as it appeared in the input.

Pod::ParseTree::DESTROY()
This method performs any necessary cleanup for the parse-tree.
 If you override this method then it is
imperative
 that you invoke the parent method from within your own method,
 otherwise parse-tree
storage will not be reclaimed upon destruction!

SEE ALSO
See Pod::Parser, Pod::Select

AUTHOR
Please report bugs using http://rt.cpan.org.

Brad Appleton <bradapp@enteract.com>

