
Perl version 5.12.4 documentation - TAP::Parser::Grammar

Page 1http://perldoc.perl.org

NAME
TAP::Parser::Grammar - A grammar for the Test Anything Protocol.

VERSION
Version 3.17

SYNOPSIS
 use TAP::Parser::Grammar;
 my $grammar = $self->make_grammar({
 stream => $tap_parser_stream,
 parser => $tap_parser,
 version => 12,
 });

 my $result = $grammar->tokenize;

DESCRIPTION
TAP::Parser::Grammar tokenizes lines from a TAP stream and constructs TAP::Parser::Result
subclasses to represent the tokens.

Do not attempt to use this class directly. It won't make sense. It's mainly
 here to ensure that we will be
able to have pluggable grammars when TAP is
 expanded at some future date (plus, this stuff was
really cluttering the
 parser).

METHODS
Class Methods
new

 my $grammar = TAP::Parser::Grammar->new({
 stream => $stream,
 parser => $parser,
 version => $version,
 });

Returns TAP::Parser grammar object that will parse the specified stream.
 Both stream and parser
are required arguments. If version is not set
 it defaults to 12 (see set_version for more details).

Instance Methods
set_version

 $grammar->set_version(13);

Tell the grammar which TAP syntax version to support. The lowest
 supported version is 12. Although
'TAP version' isn't valid version 12
 syntax it is accepted so that higher version numbers may be
parsed.

tokenize

 my $token = $grammar->tokenize;

This method will return a TAP::Parser::Result object representing the
 current line of TAP.

token_types

 my @types = $grammar->token_types;

Returns the different types of tokens which this grammar can parse.

Perl version 5.12.4 documentation - TAP::Parser::Grammar

Page 2http://perldoc.perl.org

syntax_for

 my $syntax = $grammar->syntax_for($token_type);

Returns a pre-compiled regular expression which will match a chunk of TAP
 corresponding to the
token type. For example (not that you should really pay
 attention to this,
$grammar->syntax_for('comment') will return qr/^#(.*)/.

handler_for

 my $handler = $grammar->handler_for($token_type);

Returns a code reference which, when passed an appropriate line of TAP,
 returns the lexed token
corresponding to that line. As a result, the basic
 TAP parsing loop looks similar to the following:

 my @tokens;
 my $grammar = TAP::Grammar->new;
 LINE: while (defined(my $line = $parser->_next_chunk_of_tap)) {
 foreach my $type ($grammar->token_types) {
 my $syntax = $grammar->syntax_for($type);
 if ($line =~ $syntax) {
 my $handler = $grammar->handler_for($type);
 push @tokens => $grammar->$handler($line);
 next LINE;
 }
 }
 push @tokens => $grammar->_make_unknown_token($line);
 }

TAP GRAMMAR
NOTE: This grammar is slightly out of date. There's still some discussion
 about it and a new one will
be provided when we have things better defined.

The TAP::Parser does not use a formal grammar because TAP is essentially a
 stream-based
protocol. In fact, it's quite legal to have an infinite stream.
 For the same reason that we don't apply
regexes to streams, we're not using a
 formal grammar here. Instead, we parse the TAP in lines.

For purposes for forward compatability, any result which does not match the
 following grammar is
currently referred to as TAP::Parser::Result::Unknown. It is not a parse error.

A formal grammar would look similar to the following:

 (*
 For the time being, I'm cheating on the EBNF by allowing
 certain terms to be defined by POSIX character classes by
 using the following syntax:

 digit ::= [:digit:]

 As far as I am aware, that's not valid EBNF. Sue me. I
 didn't know how to write "char" otherwise (Unicode issues).
 Suggestions welcome.
 *)

 tap ::= version? { comment | unknown } leading_plan lines
 |
 lines trailing_plan {comment}

Perl version 5.12.4 documentation - TAP::Parser::Grammar

Page 3http://perldoc.perl.org

 version ::= 'TAP version ' positiveInteger {positiveInteger} "\n"

 leading_plan ::= plan skip_directive? "\n"

 trailing_plan ::= plan "\n"

 plan ::= '1..' nonNegativeInteger

 lines ::= line {line}

 line ::= (comment | test | unknown | bailout) "\n"

 test ::= status positiveInteger? description? directive?

 status ::= 'not '? 'ok '

 description ::= (character - (digit | '#')) {character - '#'}

 directive ::= todo_directive | skip_directive

 todo_directive ::= hash_mark 'TODO' ' ' {character}

 skip_directive ::= hash_mark 'SKIP' ' ' {character}

 comment ::= hash_mark {character}

 hash_mark ::= '#' {' '}

 bailout ::= 'Bail out!' {character}

 unknown ::= { (character - "\n") }

 (* POSIX character classes and other terminals *)

 digit ::= [:digit:]
 character ::= ([:print:] - "\n")
 positiveInteger ::= (digit - '0') {digit}
 nonNegativeInteger ::= digit {digit}

SUBCLASSING
Please see "SUBCLASSING" in TAP::Parser for a subclassing overview.

If you really want to subclass TAP::Parser's grammar the best thing to
 do is read through the code.
There's no easy way of summarizing it here.

SEE ALSO
TAP::Object, TAP::Parser, TAP::Parser::Iterator, TAP::Parser::Result,

