@ Pefl Perl version 5.12.4 documentation - TAP::Parser::lteratorFactory
NAME

TAP::Parser::lteratorFactory - Internal TAP::Parser Iterator

VERSION
Version 3.17

SYNOPSIS

use TAP::Parser::IlteratorFactory;

my $factory = TAP::Parser::lteratorFactory->new;
my $iter = $factory->make_iterator(*TEST);

my $iter = $factory->make_iterator(\@array);

my $iter = $factory->make_iterator(\%hash);

my $line = $iter->next;

DESCRIPTION

This is a factory class for simple iterator wrappers for arrays, filehandles, and hashes. Unless you're
subclassing, you probably won't need to use this module directly.

METHODS
Class Methods
new
Creates a new factory class. Note: You currently don't need to instantiate a factory in order to use it.

make_iterator
Create an iterator. The type of iterator created depends on the arguments to the constructor:

my $iter = TAP::Parser::lterator->make_iterator($filehandle);

Creates a stream iterator (see make_stream_iterator).

my $iter = TAP::Parser::lterator->make_iterator($array_reference);

Creates an array iterator (see make_array_iterator).

my $iter = TAP::Parser::lterator->make_iterator($hash_reference);

Creates a process iterator (see make_process_iterator).

make_stream_iterator
Make a new stream iterator and return it. Passes through any arguments given. Defaults to a
TAP::Parser::lterator::Stream.

make_array_iterator
Make a new array iterator and return it. Passes through any arguments given. Defaults to a
TAP::Parser::lterator::Array.

make_process_iterator
Make a new process iterator and return it. Passes through any arguments given. Defaults to a
TAP::Parser::lterator::Process.

SUBCLASSING
Please see "SUBCLASSING" in TAP::Parser for a subclassing overview.

http://perldoc.perl.org Page 1

@ Pefl Perl version 5.12.4 documentation - TAP::Parser::lteratorFactory
There are a few things to bear in mind when creating your own ResultFactory:

1 The factory itself is never instantiated (this may change in the future). This means that
_initializeis never called.
Example
package MylteratorFactory;

use strict;
use vars "@ISA";

use MyStreamlterator;
use TAP::Parser::IlteratorFactory;

@ISA = gw(TAP::Parser::IlteratorFactory);

override stream iterator
sub make stream_iterator {
my $proto = shift;
MyStreamlterator->new(@);
}

1;

ATTRIBUTION
Originally ripped off from Test::Harness.

SEE ALSO

TAP::Object, TAP::Parser, TAP::Parser::lterator, TAP::Parser::Iterator::Array,
TAP::Parser::lterator::Stream, TAP::Parser::lterator::Process,

http://perldoc.perl.org Page 2

