@ Pefl Perl version 5.12.4 documentation - perlapi

NAME

perlapi - autogenerated documentation for the perl public API

DESCRIPTION

This file contains the documentation of the perl public APl generated by embed.pl, specifically a listing
of functions, macros, flags, and variables that may be used by extension writers. The interfaces of any
functions that are not listed here are subject to change without notice. For this reason, blindly using
functions listed in proto.h is to be avoided when writing extensions.

Note that all Perl API global variables must be referenced with the PL__ prefix. Some macros are
provided for compatibility with the older, unadorned names, but this support may be disabled in a
future release.

Perl was originally written to handle US-ASCII only (that is characters whose ordinal numbers are in
the range 0 - 127). And documentation and comments may still use the term ASCII, when sometimes
in fact the entire range from 0 - 255 is meant.

Note that Perl can be compiled and run under EBCDIC (See perlebcdic) or ASCII. Most of the
documentation (and even comments in the code) ignore the EBCDIC possibility. For almost all
purposes the differences are transparent. As an example, under EBCDIC, instead of UTF-8,
UTF-EBCDIC is used to encode Unicode strings, and so whenever this documentation refers to utf8
(and variants of that name, including in function names), it also (essentially transparently) means
UTF-EBCDIC. But the ordinals of characters differ between ASCII, EBCDIC, and the UTF- encodings,
and a string encoded in UTF-EBCDIC may occupy more bytes than in UTF-8.

Also, on some EBCDIC machines, functions that are documented as operating on US-ASCII (or Basic
Latin in Unicode terminology) may in fact operate on all 256 characters in the EBCDIC range, not just
the subset corresponding to US-ASCII.

The listing below is alphabetical, case insensitive.

"Gimme" Values

GIMME
A backward-compatible version of GIMME_V which can only return G_SCALAR or
G_ARRAY; in a void context, it returns G_SCALAR. Deprecated. Use GIMME_V instead.
U32 GIMME
GIMME_V
The XSUB-writer's equivalent to Perl's wantarray. Returns G_VOID, G_SCALAR or
G_ARRAY for void, scalar or list context, respectively.
U32 GIMME_V
G_ARRAY
Used to indicate list context. See GIMME_V, GIMME and perlcall.
G_DISCARD
Indicates that arguments returned from a callback should be discarded. See pericall.
G_EVAL
Used to force a Perl eval wrapper around a callback. See perlcall.
G_NOARGS
Indicates that no arguments are being sent to a callback. See perlcall.
G_SCALAR

http://perldoc.perl.org Page 1

O Perl

Perl version 5.12.4 documentation - perlapi

G_VOID

Used to indicate scalar context. See GIMME_V, GIMME, and perlcall.

Used to indicate void context. See GIMME_V and perlcall.

Array Manipulation Functions

AvFILL

av_clear

Same as av_len(). Deprecated, use av_len() instead.
int AVFILLCAV* av)

Clears an array, making it empty. Does not free the memory used by the array itself.
void av_clear(AV *av)

av_create_and_push

Push an SV onto the end of the array, creating the array if necessary. A small internal
helper function to remove a commonly duplicated idiom.

NOTE: this function is experimental and may change or be removed without notice.
void av_create_and push(AV **const avp, SV *const val)

av_create_and_unshift_one

av_delete

av_exists

av_extend

av_fetch

Unshifts an SV onto the beginning of the array, creating the array if necessary. A small
internal helper function to remove a commonly duplicated idiom.

NOTE: this function is experimental and may change or be removed without notice.
SV** av_create_and_unshift_one(AV **const avp, SV *const val)

Deletes the element indexed by key from the array. Returns the deleted element. If
flags equals G_DISCARD, the element is freed and null is returned.

SV* av_delete(AV *av, 132 key, 132 flags)

Returns true if the element indexed by key has been initialized.
This relies on the fact that uninitialized array elements are set to &PL_sv_undefF.
bool av_exists(AV *av, 132 key)

Pre-extend an array. The key is the index to which the array should be extended.
void av_extend(AV *av, 132 key)

Returns the SV at the specified index in the array. The key is the index. If Ival is set
then the fetch will be part of a store. Check that the return value is non-null before
dereferencing it to a SV*.

See "Understanding the Magic of Tied Hashes and Arrays" in perlguts for more
information on how to use this function on tied arrays.

Sv** av_fetch(AV *av, 132 key, 132 lval)

http://perldoc.perl.org

Page 2

O Perl

Perl version 5.12.4 documentation - perlapi

av_fill

av_len

av_make

av_pop

av_push

av_shift

av_store

av_undef

Set the highest index in the array to the given number, equivalent to Perl's $#array =
$Fill;.

The number of elements in the an array will be Fill + 1 after av_fill() returns. If the
array was previously shorter then the additional elements appended are set to
PL_sv_undef. If the array was longer, then the excess elements are freed.
av_fill(av, -1) isthe same as av_clear(av).

void av_FTill(AV *av, 132 fill)

Returns the highest index in the array. The number of elements in the array is
av_len(av) + 1.Returns -1 if the array is empty.

132 av_len(AV *av)

Creates a new AV and populates it with a list of SVs. The SVs are copied into the
array, so they may be freed after the call to av_make. The new AV will have a
reference count of 1.

AV* av_make(132 size, SV **strp)

Pops an SV off the end of the array. Returns &PL_sv_undef if the array is empty.
SV* av_pop(AV *av)

Pushes an SV onto the end of the array. The array will grow automatically to
accommodate the addition. Like av_store, this takes ownership of one reference
count.

void av_push(AV *av, SV *val)

Shifts an SV off the beginning of the array. Returns &PL_sv_undef if the array is
empty.

SV* av_shift(AV *av)

Stores an SV in an array. The array index is specified as key. The return value will be
NULL if the operation failed or if the value did not need to be actually stored within the
array (as in the case of tied arrays). Otherwise it can be dereferenced to get the
original SV*. Note that the caller is responsible for suitably incrementing the reference
count of val before the call, and decrementing it if the function returned NULL.

See "Understanding the Magic of Tied Hashes and Arrays" in perlguts for more
information on how to use this function on tied arrays.

SV** av_store(AV *av, 132 key, SV *val)

Undefines the array. Frees the memory used by the array itself.
void av_undef(AV *av)

http://perldoc.perl.org

Page 3

O Perl

Perl version 5.12.4 documentation - perlapi

av_unshift

get_av

newAvV

sortsv

sortsv_flags

Callback Functions
call_argv

call_method

call_pv

Unshift the given number of undef values onto the beginning of the array. The array
will grow automatically to accommodate the addition. You must then use av_store to
assign values to these new elements.

void av_unshift(AV *av, 132 num)

Returns the AV of the specified Perl array. flags are passed to gv_fetchpv. If
GV_ADD is set and the Perl variable does not exist then it will be created. If flags is
zero and the variable does not exist then NULL is returned.

NOTE: the perl_ form of this function is deprecated.
AV* get_av(const char *name, 132 flags)

Creates a new AV. The reference count is set to 1.
AV* newAV(Q)

Sort an array. Here is an example:
sortsv(AvARRAY(av), av_len(av)+1l, Perl_sv_cmp_locale);

Currently this always uses mergesort. See sortsv_flags for a more flexible routine.
void sortsv(SV** array, size_t num_elts, SVCOMPARE_t cmp)

Sort an array, with various options.

void sortsv_flags(SV** array, size_ t num_elts, SVCOMPARE_t cmp,
U322 flags)

Performs a callback to the specified Perl sub. See perlcall.
NOTE: the perl_ form of this function is deprecated.
132 call_argv(const char* sub_name, 132 flags, char** argv)

Performs a callback to the specified Perl method. The blessed object must be on the
stack. See perlcall.

NOTE: the perl_ form of this function is deprecated.
132 call_method(const char* methname, 132 flags)

Performs a callback to the specified Perl sub. See perlcall.
NOTE: the perl_ form of this function is deprecated.
132 call_pv(const char* sub _name, 132 flags)

http://perldoc.perl.org

Page 4

@ Pefl Perl version 5.12.4 documentation - perlapi

call_sv
Performs a callback to the Perl sub whose name is in the SV. See perlcall.
NOTE: the perl_ form of this function is deprecated.
132 call_sv(SV* sv, VOL 132 flags)
ENTER
Opening bracket on a callback. See LEAVE and perlcall.
ENTER;
eval_pv
Tells Perl to eval the given string and return an SV* result.
NOTE: the perl_ form of this function is deprecated.
Sv* eval_pv(const char* p, 132 croak on_error)
eval_sv
Tells Perl to eval the string in the SV.
NOTE: the perl_ form of this function is deprecated.
132 eval _sv(SV* sv, 132 flags)
FREETMPS
Closing bracket for temporaries on a callback. See SAVETMPS and perlcall.
FREETMPS;
LEAVE
Closing bracket on a callback. See ENTER and perlcall.
LEAVE;
SAVETMPS

Opening bracket for temporaries on a callback. See FREETMPS and perlcall.
SAVETMPS;

Character classes

iSALNUM
Returns a boolean indicating whether the C char is a US-ASCII (Basic Latin)
alphanumeric character (including underscore) or digit.
bool isALNUM(char ch)
iSALPHA
Returns a boolean indicating whether the C char is a US-ASCII (Basic Latin)
alphabetic character.
bool isALPHA(char ch)
isDIGIT

Returns a boolean indicating whether the C char is a US-ASCII (Basic Latin) digit.
bool isDIGIT(char ch)

http://perldoc.perl.org Page 5

O Perl

Perl version 5.12.4 documentation - perlapi

iISLOWER

iISSPACE

iSUPPER

toLOWER

toUPPER

Returns a boolean indicating whether the C char is a US-ASCII (Basic Latin)
lowercase character.

bool isLOWER(char ch)

Returns a boolean indicating whether the C char is a US-ASCII (Basic Latin)
whitespace.

bool isSPACE(char ch)

Returns a boolean indicating whether the C char is a US-ASCII (Basic Latin)
uppercase character.

bool isUPPER(char ch)

Converts the specified character to lowercase. Characters outside the US-ASCII
(Basic Latin) range are viewed as not having any case.

char toLOWER(char ch)

Converts the specified character to uppercase. Characters outside the US-ASCII
(Basic Latin) range are viewed as not having any case.

char toUPPER(char ch)

Cloning an interpreter

perl_clone

Create and return a new interpreter by cloning the current one.
perl_clone takes these flags as parameters:

CLONEf_COPY_STACKS - is used to, well, copy the stacks also, without it we only
clone the data and zero the stacks, with it we copy the stacks and the new perl
interpreter is ready to run at the exact same point as the previous one. The
pseudo-fork code uses COPY_STACKS while the threads->create doesn't.

CLONEf_KEEP_PTR_TABLE perl_clone keeps a ptr_table with the pointer of the old
variable as a key and the new variable as a value, this allows it to check if something
has been cloned and not clone it again but rather just use the value and increase the
refcount. If KEEP_PTR_TABLE is not set then perl_clone will kill the ptr_table using
the function ptr_table_ free(PL_ptr_table); PL_ptr_table = NULL;,
reason to keep it around is if you want to dup some of your own variable who are
outside the graph perl scans, example of this code is in threads.xs create

CLONEf_CLONE_HOST This is a win32 thing, it is ignored on uni, it tells perls
win32host code (which is c++) to clone itself, this is needed on win32 if you want to run
two threads at the same time, if you just want to do some stuff in a separate perl
interpreter and then throw it away and return to the original one, you don't need to do
anything.

PerliInterpreter* perl_clone(PerlInterpreter *proto_perl, UV
flags)

http://perldoc.perl.org

Page 6

@ Pefl Perl version 5.12.4 documentation - perlapi

CV Manipulation Functions
CVvSTASH

Returns the stash of the CV.
HV* CvSTASH(CV* cv)

get_cv
Uses strlen to get the length of name, then calls get_cvn_flags.
NOTE: the perl_ form of this function is deprecated.
Cv* get_cv(const char* name, 132 flags)

get_cvn_flags

Returns the CV of the specified Perl subroutine. flags are passed to
gv_Tetchpvn_flags. If GV_ADD is set and the Perl subroutine does not exist then it
will be declared (which has the same effect as saying sub name;). If GV_ADD is not
set and the subroutine does not exist then NULL is returned.

NOTE: the perl_ form of this function is deprecated.
Cv* get_cvn_flags(const char* name, STRLEN len, 132 flags)

Embedding Functions
cv_undef

Clear out all the active components of a CV. This can happen either by an explicit
undef &fFoo, or by the reference count going to zero. In the former case, we keep the
CvOUTSIDE pointer, so that any anonymous children can still follow the full lexical
scope chain.

void cv_undef(CV* cv)

load_module

Loads the module whose name is pointed to by the string part of name. Note that the
actual module name, not its filename, should be given. Eg, "Foo::Bar" instead of
"Foo/Bar.pm". flags can be any of PERL_LOADMOD_DENY,
PERL_LOADMOD_NOIMPORT, or PERL_LOADMOD_IMPORT_OPS (or 0 for no
flags). ver, if specified, provides version semantics similar to use Foo: :Bar
VERSION. The optional trailing SV* arguments can be used to specify arguments to
the module's import() method, similar to use Foo::Bar VERSION LIST. They must
be terminated with a final NULL pointer. Note that this list can only be omitted when
the PERL_LOADMOD_NOIMPORT flag has been used. Otherwise at least a single
NULL pointer to designate the default import list is required.

void load module(U32 flags, SV* name, SV* ver, ...)

nothreadhook
Stub that provides thread hook for perl_destruct when there are no threads.
int nothreadhook()

perl_alloc
Allocates a new Perl interpreter. See perlembed.
PerlInterpreter* perl_alloc(Q)

perl_construct

http://perldoc.perl.org Page 7

O Perl

Perl version 5.12.4 documentation - perlapi

perl_destruct

perl_free

perl_parse

perl_run

require_pv

Initializes a new Perl interpreter. See perlembed.
void perl_construct(PerlInterpreter *my_perl)

Shuts down a Perl interpreter. See perlembed.
int perl_destruct(PerliInterpreter *my_perl)

Releases a Perl interpreter. See perlembed.
void perl_free(PerlInterpreter *my perl)

Tells a Perl interpreter to parse a Perl script. See perlembed.

int perl_parse(PerliInterpreter *my_perl, XSINIT_t xsinit, int
argc, char** argv, char** env)

Tells a Perl interpreter to run. See perlembed.
int perl_run(PerliInterpreter *my_ perl)

Tells Perl to require the file named by the string argument. It is analogous to the Perl
code eval "require "$file"". It's even implemented that way; consider using
load_module instead.

NOTE: the perl_ form of this function is deprecated.
void require_pv(const char* pv)

Functions in file dump.c

pv_display

pv_escape

Similar to
pv_escape(dsv, pv,cur,pvlim,PERL_PV_ESCAPE QUOTE);

except that an additional "\0" will be appended to the string when len > cur and pv|[cur]
is "\0".
Note that the final string may be up to 7 chars longer than pvlim.

char* pv_display(SV *dsv, const char *pv, STRLEN cur, STRLEN
len, STRLEN pvlim)

Escapes at most the first "count" chars of pv and puts the results into dsv such that the
size of the escaped string will not exceed "max" chars and will not contain any
incomplete escape sequences.

If flags contains PERL_PV_ESCAPE_QUOTE then any double quotes in the string will
also be escaped.

Normally the SV will be cleared before the escaped string is prepared, but when
PERL_PV_ESCAPE_NOCLEAR is set this will not occur.

If PERL_PV_ESCAPE_UNI is set then the input string is treated as Unicode, if

http://perldoc.perl.org

Page 8

@ Pefl Perl version 5.12.4 documentation - perlapi

PERL_PV_ESCAPE_UNI_DETECT is set then the input string is scanned using
is_utf8_string() to determine if it is Unicode.

If PERL_PV_ESCAPE_ALL is set then all input chars will be output using \x01F1
style escapes, otherwise only chars above 255 will be escaped using this style, other
non printable chars will use octal or common escaped patterns like \n. If
PERL_PV_ESCAPE_NOBACKSLASH then all chars below 255 will be treated as
printable and will be output as literals.

If PERL_PV_ESCAPE_FIRSTCHAR is set then only the first char of the string will be
escaped, regardles of max. If the string is utf8 and the chars value is >255 then it will
be returned as a plain hex sequence. Thus the output will either be a single char, an

octal escape sequence, a special escape like \n or a 3 or more digit hex value.

If PERL_PV_ESCAPE_RE is set then the escape char used will be a '%' and not a "\\'.
This is because regexes very often contain backslashed sequences, whereas '%' is
not a particularly common character in patterns.

Returns a pointer to the escaped text as held by dsv.

char* pv_escape(SV *dsv, char const * const str, const STRLEN
count, const STRLEN max, STRLEN * const escaped, const U32
flags)

pv_pretty
Converts a string into something presentable, handling escaping via pv_escape() and
supporting quoting and ellipses.

If the PERL_PV_PRETTY_QUOTE flag is set then the result will be double quoted
with any double quotes in the string escaped. Otherwise if the
PERL_PV_PRETTY_LTGT flag is set then the result be wrapped in angle brackets.

If the PERL_PV_PRETTY_ELLIPSES flag is set and not all characters in string were
output then an ellipsis . . . will be appended to the string. Note that this happens
AFTER it has been quoted.

If start_color is non-null then it will be inserted after the opening quote (if there is one)
but before the escaped text. If end_color is non-null then it will be inserted after the
escaped text but before any quotes or ellipses.

Returns a pointer to the prettified text as held by dsv.

char* pv_pretty(SV *dsv, char const * const str, const STRLEN
count, const STRLEN max, char const * const start_color, char
const * const end _color, const U32 flags)

Functions in file mathoms.c
gv_fetchmethod
See gv_fetchmethod autoload.
Gv* gv_fetchmethod(HV* stash, const char* name)

pack_cat

The engine implementing pack() Perl function. Note: parameters next_in_list and flags
are not used. This call should not be used; use packlist instead.

void pack_cat(SV *cat, const char *pat, const char *patend, SV
peglist, SV **endlist, SV *next_in_list, U32 flags)

sv_2pvbyte nolen
Return a pointer to the byte-encoded representation of the SV. May cause the SV to

http://perldoc.perl.org Page 9

@ Pefl Perl version 5.12.4 documentation - perlapi

be downgraded from UTF-8 as a side-effect.

Usually accessed via the SvPVbyte_nolen macro.
char* sv_2pvbyte nolen(SV* sv)

sv_2pvutf8_nolen

Return a pointer to the UTF-8-encoded representation of the SV. May cause the SV to
be upgraded to UTF-8 as a side-effect.

Usually accessed via the SvPVutf8_nolen macro.
char* sv_2pvutf8_nolen(SV* sv)

Ssv_2pv_nolen
Like sv_2pv(), but doesn't return the length too. You should usually use the macro
wrapper SvPV_nolen(sv) instead. char* sv_2pv_nolen(SV* sv)
sv_catpvn_mg
Like sv_catpvn, but also handles 'set' magic.
void sv_catpvn_mg(SV *sv, const char *ptr, STRLEN len)

sv_catsv_mg
Like sv_catsv, but also handles 'set' magic.
void sv_catsv_mg(SV *dsv, SV *ssv)

sv_force_normal

Undo various types of fakery on an SV: if the PV is a shared string, make a private
copy; if we're a ref, stop refing; if we're a glob, downgrade to an xpvmg. See also
sv_force _normal_flags.

void sv_force normal (SV *sv)

SV_iv

A private implementation of the Sv1Vx macro for compilers which can't cope with
complex macro expressions. Always use the macro instead.

IV sv_iv(SV* sv)

sv_nolocking

Dummy routine which "locks" an SV when there is no locking module present. Exists to
avoid test for a NULL function pointer and because it could potentially warn under
some level of strict-ness.

"Superseded" by sv_nosharing().
void sv_nolocking(SV *sv)

sv_nounlocking

Dummy routine which "unlocks" an SV when there is no locking module present. Exists
to avoid test for a NULL function pointer and because it could potentially warn under
some level of strict-ness.

"Superseded" by sv_nosharing().
void sv_nounlocking(SV *sv)

http://perldoc.perl.org Page 10

O Perl

Perl version 5.12.4 documentation - perlapi

sv_nv

SV_pv

SvV_pvhbyte

sv_pvbyten

sv_pvn

sv_pvutf8

sv_pvutf8n

sv_taint

sv_unref

Sv_usepvn

A private implementation of the SYNVx macro for compilers which can't cope with
complex macro expressions. Always use the macro instead.

NV sv_nv(SV* sv)

Use the SvPV_nolen macro instead
char* sv_pv(SV *sv)

Use SvPVbyte_ nolen instead.
char* sv_pvbyte(SV *sv)

A private implementation of the SvPVbyte macro for compilers which can't cope with
complex macro expressions. Always use the macro instead.

char* sv_pvbyten(SV *sv, STRLEN *Ip)

A private implementation of the SvPV macro for compilers which can't cope with
complex macro expressions. Always use the macro instead.

char* sv_pvn(SV *sv, STRLEN *Ip)

Use the SvPVutf8 nolen macro instead
char* sv_pvutf8(SV *sv)

A private implementation of the SvPVutf8 macro for compilers which can't cope with
complex macro expressions. Always use the macro instead.

char* sv_pvutf8n(SV *sv, STRLEN *Ip)

Taint an SV. Use SVTAINTED_on instead. void sv_taint(SV* sv)

Unsets the RV status of the SV, and decrements the reference count of whatever was
being referenced by the RV. This can almost be thought of as a reversal of newSVrv.
This is sv_unref_flags with the flag being zero. See SVROK_off.

void sv_unref(SV* sv)

Tells an SV to use ptr to find its string value. Implemented by calling
sv_usepvn_Tflags with Flags of 0, hence does not handle 'set' magic. See
sv_usepvn_flags.

void sv_usepvn(SV* sv, char* ptr, STRLEN len)

http://perldoc.perl.org

Page 11

@ Pefl Perl version 5.12.4 documentation - perlapi

Sv_usepvn_mg

Like sv_usepvn, but also handles 'set' magic.
void sv_usepvn_mg(SV *sv, char *ptr, STRLEN len)

SV_uv
A private implementation of the SvUVx macro for compilers which can't cope with
complex macro expressions. Always use the macro instead.

UV sv_uv(SV* sv)
unpack_str

The engine implementing unpack() Perl function. Note: parameters strbeg, new_s and
ocnt are not used. This call should not be used, use unpackstring instead.

132 unpack_str(const char *pat, const char *patend, const char
*s, const char *strbeg, const char *strend, char **new_s, 132
ocnt, U32 flags)

Functions in file perl.h
PERL_SYS_INIT

Provides system-specific tune up of the C runtime environment necessary to run Perl
interpreters. This should be called only once, before creating any Perl interpreters.

void PERL_SYS_INIT(int argc, char** argv)

PERL_SYS_INIT3

Provides system-specific tune up of the C runtime environment necessary to run Perl
interpreters. This should be called only once, before creating any Perl interpreters.

void PERL_SYS_INIT3(int argc, char** argv, char** env)

PERL_SYS_TERM

Provides system-specific clean up of the C runtime environment after running Perl
interpreters. This should be called only once, after freeing any remaining Perl
interpreters.

void PERL_SYS_TERM()

Functions in file pp_ctl.c
find_runcv

Locate the CV corresponding to the currently executing sub or eval. If db_seqp is
non_null, skip CVs that are in the DB package and populate *db_seqp with the cop
sequence number at the point that the DB:: code was entered. (allows debuggers to
eval in the scope of the breakpoint rather than in the scope of the debugger itself).

Cv* find_runcv(U32 *db_seqp)

Functions in file pp_pack.c
packlist
The engine implementing pack() Perl function.

void packlist(SV *cat, const char *pat, const char *patend, SV
**peglist, SV **endlist)

http://perldoc.perl.org Page 12

O Perl

Perl version 5.12.4 documentation - perlapi

unpackstring

The engine implementing unpack() Perl function. unpackstring puts the extracted
list items on the stack and returns the number of elements. Issue PUTBACK before and
SPAGAIN after the call to this function.

132 unpackstring(const char *pat, const char *patend, const
char *s, const char *strend, U32 flags)

Functions in file pp_sys.c

setdefout

Global Variables

Sets PL_defoutgv, the default file handle for output, to the passed in typeglob. As
PL_defoutgv "owns" a reference on its typeglob, the reference count of the passed in
typeglob is increased by one, and the reference count of the typeglob that
PL_defoutgv points to is decreased by one.

void setdefout(GV* gv)

PL_keyword_plugin

Function pointer, pointing at a function used to handle extended keywords. The
function should be declared as

int keyword_plugin_function(pTHX_
char *keyword_ptr, STRLEN keyword_len,
OP **op_ptr)

The function is called from the tokeniser, whenever a possible keyword is seen.
keyword_ptr points at the word in the parser's input buffer, and keyword_len gives
its length; it is not null-terminated. The function is expected to examine the word, and
possibly other state such as %"H, to decide whether it wants to handle it as an
extended keyword. If it does not, the function should return
KEYWORD_PLUGIN_DECLINE, and the normal parser process will continue.

If the function wants to handle the keyword, it first must parse anything following the
keyword that is part of the syntax introduced by the keyword. See Lexer interface for
details.

When a keyword is being handled, the plugin function must build a tree of OP
structures, representing the code that was parsed. The root of the tree must be stored
in *op_ptr. The function then returns a contant indicating the syntactic role of the
construct that it has parsed: KEYWORD_PLUGIN_STMT if it is a complete statement, or
KEYWORD_PLUGIN_EXPR if it is an expression. Note that a statement construct cannot
be used inside an expression (except via do BLOCK and similar), and an expression is
not a complete statement (it requires at least a terminating semicolon).

When a keyword is handled, the plugin function may also have (compile-time) side
effects. It may modify %"H, define functions, and so on. Typically, if side effects are the
main purpose of a handler, it does not wish to generate any ops to be included in the
normal compilation. In this case it is still required to supply an op tree, but it suffices to
generate a single null op.

That's how the *PL_keyword_plugin function needs to behave overall.
Conventionally, however, one does not completely replace the existing handler
function. Instead, take a copy of PL_keyword_plugin before assigning your own
function pointer to it. Your handler function should look for keywords that it is
interested in and handle those. Where it is not interested, it should call the saved
plugin function, passing on the arguments it received. Thus PL_keyword_plugin
actually points at a chain of handler functions, all of which have an opportunity to

http://perldoc.perl.org

Page 13

O Perl

Perl version 5.12.4 documentation - perlapi

GV Functions
GvVSV

gv_const_sv

gv_fetchmeth

handle keywords, and only the last function in the chain (built into the Perl core) will
normally return KEYWORD_PLUGIN_DECLINE.

NOTE: this function is experimental and may change or be removed without notice.

Return the SV from the GV.
SV* GvSV(GV* gv)

If gv is a typeglob whose subroutine entry is a constant sub eligible for inlining, or gv
is a placeholder reference that would be promoted to such a typeglob, then returns the
value returned by the sub. Otherwise, returns NULL.

SV* gv_const_sv(GV* gv)

Returns the glob with the given name and a defined subroutine or NULL. The glob lives
in the given stash, or in the stashes accessible via @ISA and UNIVERSAL.:..

The argument level should be either 0 or -1. If level==0, as a side-effect creates a
glob with the given name in the given stash which in the case of success contains an
alias for the subroutine, and sets up caching info for this glob.

This function grants ""SUPER"" token as a postfix of the stash name. The GV returned
from gv_fetchmeth may be a method cache entry, which is not visible to Perl code.
So when calling cal 1 _sv, you should not use the GV directly; instead, you should use
the method's CV, which can be obtained from the GV with the GvCV macro.

GV* gv_fetchmeth(HV* stash, const char* name, STRLEN len, 132
level)

gv_fetchmethod_autoload

Returns the glob which contains the subroutine to call to invoke the method on the
stash. In fact in the presence of autoloading this may be the glob for "AUTOLOAD".
In this case the corresponding variable SAUTOLOAD is already setup.

The third parameter of gv_fetchmethod_autoload determines whether
AUTOLOAD lookup is performed if the given method is not present: non-zero means
yes, look for AUTOLOAD; zero means no, don't look for AUTOLOAD. Calling
gv_fetchmethod is equivalent to calling gv_fetchmethod autoload with a
non-zero autoload parameter.

These functions grant "*'SUPER"" token as a prefix of the method name. Note that if you
want to keep the returned glob for a long time, you need to check for it being
"AUTOLOAD", since at the later time the call may load a different subroutine due to
$AUTOLOAD changing its value. Use the glob created via a side effect to do this.

These functions have the same side-effects and as gv_fetchmeth with level==0.
name should be writable if contains *:- " or * * . The warning against passing the GV
returned by gv_fetchmeth to cal l_sv apply equally to these functions.

GV* gv_fetchmethod_autoload(HV* stash, const char* name, 132
autoload)

gv_fetchmeth_autoload

Same as gv_fetchmeth(), but looks for autoloaded subroutines too. Returns a glob for
the subroutine.

http://perldoc.perl.org

Page 14

O Perl

Perl version 5.12.4 documentation - perlapi

gv_stashpv

gv_stashpvn

gv_stashpvs

gv_stashsv

Handy Values
Nullav

Nullch

Nullcv

Nullhv

Nullsv

For an autoloaded subroutine without a GV, will create a GV even if level < 0. For
an autoloaded subroutine without a stub, GvCV() of the result may be zero.

Gv* gv_fetchmeth_autoload(HV* stash, const char* name, STRLEN
len, 132 level)

Returns a pointer to the stash for a specified package. Uses strlen to determine the
length of name, then calls gv_stashpvn().

HV* gv_stashpv(const char* name, 132 flags)

Returns a pointer to the stash for a specified package. The namelen parameter
indicates the length of the name, in bytes. flags is passed to
gv_Tetchpvn_flags(), so if set to GV_ADD then the package will be created if it
does not already exist. If the package does not exist and flags is O (or any other
setting that does not create packages) then NULL is returned.

HV* gv_stashpvn(const char* name, U32 namelen, 132 flags)

Like gv_stashpvn, but takes a literal string instead of a string/length pair.
HV* gv_stashpvs(const char* name, 132 create)

Returns a pointer to the stash for a specified package. See gv_stashpvn.
HV* gv_stashsv(SV* sv, 132 flags)

Null AV pointer.
(deprecated - use (AV *)NULL instead)

Null character pointer. (No longer available when PERL_CORE is defined.)

Null CV pointer.
(deprecated - use (CV *)NULL instead)

Null HV pointer.
(deprecated - use (HV *)NULL instead)

Null SV pointer. (No longer available when PERL_CORE is defined.)

Hash Manipulation Functions

get_hv

Returns the HV of the specified Perl hash. Flags are passed to gv_fetchpv. If
GV_ADD is set and the Perl variable does not exist then it will be created. If Flags is

http://perldoc.perl.org

Page 15

O Perl

Perl version 5.12.4 documentation - perlapi

HEf_SVKEY

HeHASH

HeKEY

HeKLEN

HePV

HeSVKEY

zero and the variable does not exist then NULL is returned.
NOTE: the perl_ form of this function is deprecated.
HV* get_hv(const char *name, 132 flags)

This flag, used in the length slot of hash entries and magic structures, specifies the
structure contains an SV* pointer where a char™ pointer is to be expected. (For
information only--not to be used).

Returns the computed hash stored in the hash entry.
U32 HeHASH(HE* he)

Returns the actual pointer stored in the key slot of the hash entry. The pointer may be
either char* or SV*, depending on the value of HeKLEN(). Can be assigned to. The
HePV() or HeSVKEY () macros are usually preferable for finding the value of a key.

void* HeKEY(HE* he)

If this is negative, and amounts to HEF_SVKEY, it indicates the entry holds an SV* key.
Otherwise, holds the actual length of the key. Can be assigned to. The HePV() macro
is usually preferable for finding key lengths.

STRLEN HeKLEN(HE* he)

Returns the key slot of the hash entry as a char* value, doing any necessary
dereferencing of possibly SV* keys. The length of the string is placed in Ien (this is a
macro, so do not use &len). If you do not care about what the length of the key is, you
may use the global variable PL_na, though this is rather less efficient than using a
local variable. Remember though, that hash keys in perl are free to contain embedded
nulls, so using strilen() or similar is not a good way to find the length of hash keys.
This is very similar to the SvPV() macro described elsewhere in this document. See
also HeUTFS8.

If you are using HePV to get values to pass to newSVpvn() to create a new SV, you
should consider using newSVhek(HeKEY_hek(he)) as it is more efficient.

char* HePV(HE* he, STRLEN len)

Returns the key as an SV*, or NULL if the hash entry does not contain an SV* key.
SV* HeSVKEY(HE* he)

HeSVKEY _force

HeSVKEY _set

Returns the key as an SV*. Will create and return a temporary mortal SV* if the hash
entry contains only a char™ key.

SV* HeSVKEY_force(HE* he)

http://perldoc.perl.org

Page 16

O Perl

Perl version 5.12.4 documentation - perlapi

HeUTF8

HeVAL

HVNAME

hv_assert

hv_clear

Sets the key to a given SV*, taking care to set the appropriate flags to indicate the
presence of an SV* key, and returns the same SV*.

SV* HeSVKEY_set(HE* he, SV* sv)

Returns whether the char * value returned by HePV is encoded in UTF-8, doing any
necessary dereferencing of possibly SV* keys. The value returned will be 0 or non-0,
not necessarily 1 (or even a value with any low bits set), so do not blindly assign this
to a bool variable, as bool may be a typedef for char.

char* HeUTF8(HE* he)

Returns the value slot (type SV*) stored in the hash entry.
SV* HeVAL(HE* he)

Returns the package name of a stash, or NULL if stash isn't a stash. See SVSTASH,
CvSTASH.

char* HvNAME(HV* stash)

Check that a hash is in an internally consistent state.
void hv_assert(HV *hv)

Clears a hash, making it empty.
void hv_clear(HV *hv)

hv_clear_placeholders

hv_delete

hv_delete_ent

Clears any placeholders from a hash. If a restricted hash has any of its keys marked
as readonly and the key is subsequently deleted, the key is not actually deleted but is
marked by assigning it a value of &PL_sv_placeholder. This tags it so it will be ignored
by future operations such as iterating over the hash, but will still allow the hash to have
a value reassigned to the key at some future point. This function clears any such
placeholder keys from the hash. See Hash::Util::lock_keys() for an example of its use.

void hv_clear_placeholders(HV *hv)

Deletes a key/value pair in the hash. The value SV is removed from the hash and
returned to the caller. The kllen is the length of the key. The Flags value will normally
be zero; if set to G_DISCARD then NULL will be returned.

SV* hv_delete(HV *hv, const char *key, 132 klen, 132 flags)

Deletes a key/value pair in the hash. The value SV is removed from the hash and
returned to the caller. The flags value will normally be zero; if set to G_DISCARD
then NULL will be returned. hash can be a valid precomputed hash value, or 0 to ask
for it to be computed.

http://perldoc.perl.org

Page 17

O Perl

Perl version 5.12.4 documentation - perlapi

hv_exists

hv_exists_ent

hv_fetch

hv_fetchs

hv_fetch_ent

hv_iterinit

hv_iterkey

SV* hv_delete_ent(HV *hv, SV *keysv, 132 flags, U32 hash)

Returns a boolean indicating whether the specified hash key exists. The klen is the
length of the key.

bool hv_exists(HV *hv, const char *key, 132 klen)

Returns a boolean indicating whether the specified hash key exists. hash can be a
valid precomputed hash value, or 0 to ask for it to be computed.

bool hv_exists _ent(HV *hv, SV *keysv, U32 hash)

Returns the SV which corresponds to the specified key in the hash. The klen is the
length of the key. If Ival is set then the fetch will be part of a store. Check that the
return value is non-null before dereferencing it to an SV*.

See "Understanding the Magic of Tied Hashes and Arrays" in perlguts for more
information on how to use this function on tied hashes.

SV** hv_fetch(HV *hv, const char *key, 132 klen, 132 lval)

Like hv_TFetch, but takes a literal string instead of a string/length pair.
SV** hv_fetchs(HV* tb, const char* key, 132 lIval)

Returns the hash entry which corresponds to the specified key in the hash. hash must
be a valid precomputed hash number for the given key, or 0 if you want the function to
compute it. IF I'val is set then the fetch will be part of a store. Make sure the return
value is non-null before accessing it. The return value when tb is a tied hash is a
pointer to a static location, so be sure to make a copy of the structure if you need to
store it somewhere.

See "Understanding the Magic of Tied Hashes and Arrays" in perlguts for more
information on how to use this function on tied hashes.

HE* hv_fetch_ent(HV *hv, SV *keysv, 132 lval, U32 hash)

Prepares a starting point to traverse a hash table. Returns the number of keys in the
hash (i.e. the same as HVKEYS(tb)). The return value is currently only meaningful for
hashes without tie magic.

NOTE: Before version 5.004_65, hv_iterinit used to return the number of hash
buckets that happen to be in use. If you still need that esoteric value, you can get it
through the macro HvFILL(tb).

132 hv_iterinit(HV *hv)

Returns the key from the current position of the hash iterator. See hv_iterinit.
char* hv_iterkey(HE* entry, 132* retlen)

http://perldoc.perl.org

Page 18

O Perl

Perl version 5.12.4 documentation - perlapi

hv_iterkeysv

hv_iternext

hv_iternextsv

Returns the key as an SV* from the current position of the hash iterator. The return
value will always be a mortal copy of the key. Also see hv_iterinit.

SV* hv_iterkeysv(HE* entry)

Returns entries from a hash iterator. See hv_iterinit.

You may call hv_delete or hv_delete_ent on the hash entry that the iterator
currently points to, without losing your place or invalidating your iterator. Note that in
this case the current entry is deleted from the hash with your iterator holding the last
reference to it. Your iterator is flagged to free the entry on the next call to
hv_iternext, so you must not discard your iterator immediately else the entry will
leak - call hv_iternext to trigger the resource deallocation.

HE* hv_iternext(HV *hv)

Performs an hv_iternext, hv_iterkey, and hv_iterval in one operation.
SV* hv_iternextsv(HV *hv, char **key, 132 *retlen)

hv_iternext_flags

hv_iterval

hv_magic

hv_scalar

hv_store

Returns entries from a hash iterator. See hv_iterinit and hv_iternext. The
flags value will normally be zero; if HV_ITERNEXT WANTPLACEHOLDERS is set
the placeholders keys (for restricted hashes) will be returned in addition to normal
keys. By default placeholders are automatically skipped over. Currently a placeholder
is implemented with a value that is &Perl_sv_placeholder. Note that the
implementation of placeholders and restricted hashes may change, and the
implementation currently is insufficiently abstracted for any change to be tidy.

NOTE: this function is experimental and may change or be removed without notice.
HE* hv_iternext_flags(HV *hv, 132 flags)

Returns the value from the current position of the hash iterator. See hv_iterkey.
SV* hv_iterval(HV *hv, HE *entry)

Adds magic to a hash. See sv_magic.
void hv_magic(HV *hv, GV *gv, int how)

Evaluates the hash in scalar context and returns the result. Handles magic when the
hash is tied.

SV* hv_scalar(HV *hv)

Stores an SV in a hash. The hash key is specified as key and klen is the length of
the key. The hash parameter is the precomputed hash value; if it is zero then Perl will
compute it. The return value will be NULL if the operation failed or if the value did not
need to be actually stored within the hash (as in the case of tied hashes). Otherwise it

http://perldoc.perl.org

Page 19

O Perl

Perl version 5.12.4 documentation - perlapi

hv_stores

hv_store_ent

hv_undef

newHV

can be dereferenced to get the original SV*. Note that the caller is responsible for
suitably incrementing the reference count of val before the call, and decrementing it if
the function returned NULL. Effectively a successful hv_store takes ownership of one
reference to val. This is usually what you want; a newly created SV has a reference
count of one, so if all your code does is create SVs then store them in a hash, hv_store
will own the only reference to the new SV, and your code doesn't need to do anything
further to tidy up. hv_store is not implemented as a call to hv_store_ent, and does not
create a temporary SV for the key, so if your key data is not already in SV form then
use hv_store in preference to hv_store_ent.

See "Understanding the Magic of Tied Hashes and Arrays" in perlguts for more
information on how to use this function on tied hashes.

SV** hv_store(HV *hv, const char *key, 132 klen, SV *val, U32
hash)

Like hv_store, but takes a literal string instead of a string/length pair and omits the
hash parameter.

SV** hv_stores(HV* tb, const char* key, NULLOK SV* val)

Stores val in a hash. The hash key is specified as key. The hash parameter is the
precomputed hash value; if it is zero then Perl will compute it. The return value is the
new hash entry so created. It will be NULL if the operation failed or if the value did not
need to be actually stored within the hash (as in the case of tied hashes). Otherwise
the contents of the return value can be accessed using the He? macros described
here. Note that the caller is responsible for suitably incrementing the reference count
of val before the call, and decrementing it if the function returned NULL. Effectively a
successful hv_store_ent takes ownership of one reference to val. This is usually what
you want; a newly created SV has a reference count of one, so if all your code does is
create SVs then store them in a hash, hv_store will own the only reference to the new
SV, and your code doesn't need to do anything further to tidy up. Note that
hv_store_ent only reads the key; unlike val it does not take ownership of it, so
maintaining the correct reference count on key is entirely the caller's responsibility.
hv_store is not implemented as a call to hv_store_ent, and does not create a
temporary SV for the key, so if your key data is not already in SV form then use
hv_store in preference to hv_store_ent.

See "Understanding the Magic of Tied Hashes and Arrays" in perlguts for more
information on how to use this function on tied hashes.

HE* hv_store_ent(HV *hv, SV *key, SV *val, U32 hash)

Undefines the hash.
void hv_undef(HV *hv)

Creates a new HV. The reference count is set to 1.
HV* newHV(Q)

http://perldoc.perl.org

Page 20

O Perl

Perl version 5.12.4 documentation - perlapi

Lexer interface
lex_bufutf8

lex_discard_to

Indicates whether the octets in the lexer buffer (PL_parser->linestr) should be
interpreted as the UTF-8 encoding of Unicode characters. If not, they should be
interpreted as Latin-1 characters. This is analogous to the SvUTF8 flag for scalars.

In UTF-8 mode, it is not guaranteed that the lexer buffer actually contains valid UTF-8.
Lexing code must be robust in the face of invalid encoding.

The actual SVUTF8 flag of the PL_parser->linestr scalar is significant, but not the
whole story regarding the input character encoding. Normally, when a file is being
read, the scalar contains octets and its SVUTF8 flag is off, but the octets should be
interpreted as UTF-8 if the use utf8 pragma is in effect. During a string eval,
however, the scalar may have the SVUTF8 flag on, and in this case its octets should
be interpreted as UTF-8 unless the use bytes pragma is in effect. This logic may
change in the future; use this function instead of implementing the logic yourself.

NOTE: this function is experimental and may change or be removed without notice.
bool lex_ bufutf8()

Discards the first part of the PL_parser->linestr buffer, up to ptr. The remaining content
of the buffer will be moved, and all pointers into the buffer updated appropriately. ptr
must not be later in the buffer than the position of PL_parser->bufptr: it is not permitted
to discard text that has yet to be lexed.

Normally it is not necessarily to do this directly, because it suffices to use the implicit
discarding behaviour of lex_next_chunk and things based on it. However, if a token
stretches across multiple lines, and the lexing code has kept multiple lines of text in the
buffer fof that purpose, then after completion of the token it would be wise to explicitly
discard the now-unneeded earlier lines, to avoid future multi-line tokens growing the
buffer without bound.

NOTE: this function is experimental and may change or be removed without notice.
void lex_discard_to(char *ptr)

lex_grow_linestr

Reallocates the lexer buffer (PL_parser->linestr) to accommodate at least len octets
(including terminating NUL). Returns a pointer to the reallocated buffer. This is
necessary before making any direct modification of the buffer that would increase its
length. lex_stuff_pvn provides a more convenient way to insert text into the buffer.

Do not use SVGROW or sv_grow directly on PL_parser->linestr; this function
updates all of the lexer's variables that point directly into the buffer.

NOTE: this function is experimental and may change or be removed without notice.
char * lex_grow_linestr(STRLEN len)

lex_next_chunk

Reads in the next chunk of text to be lexed, appending it to PL_parser->linestr. This
should be called when lexing code has looked to the end of the current chunk and
wants to know more. It is usual, but not necessary, for lexing to have consumed the
entirety of the current chunk at this time.

If PL_parser->bufptr is pointing to the very end of the current chunk (i.e., the current
chunk has been entirely consumed), normally the current chunk will be discarded at
the same time that the new chunk is read in. If flags includes LEX_KEEP_PREVI0US,
the current chunk will not be discarded. If the current chunk has not been entirely

http://perldoc.perl.org

Page 21

O Perl

Perl version 5.12.4 documentation - perlapi

consumed, then it will not be discarded regardless of the flag.

Returns true if some new text was added to the buffer, or false if the buffer has
reached the end of the input text.

NOTE: this function is experimental and may change or be removed without notice.
bool lex_next_chunk(U32 flags)

lex_peek_unichar

Looks ahead one (Unicode) character in the text currently being lexed. Returns the
codepoint (unsigned integer value) of the next character, or -1 if lexing has reached
the end of the input text. To consume the peeked character, use lex_read_unichar.

If the next character is in (or extends into) the next chunk of input text, the next chunk
will be read in. Normally the current chunk will be discarded at the same time, but if
flags includes LEX_KEEP_PREVIOUS then the current chunk will not be discarded.

If the input is being interpreted as UTF-8 and a UTF-8 encoding error is encountered,
an exception is generated.

NOTE: this function is experimental and may change or be removed without notice.
132 lex_peek_unichar(U32 flags)

lex_read_space

lex_read_to

Reads optional spaces, in Perl style, in the text currently being lexed. The spaces may
include ordinary whitespace characters and Perl-style comments. #l ine directives are
processed if encountered. PL_parser->bufptr is moved past the spaces, so that it
points at a non-space character (or the end of the input text).

If spaces extend into the next chunk of input text, the next chunk will be read in.
Normally the current chunk will be discarded at the same time, but if flags includes
LEX_KEEP_PREVI0US then the current chunk will not be discarded.

NOTE: this function is experimental and may change or be removed without notice.
void lex_read _space(U32 flags)

Consume text in the lexer buffer, from PL_parser->bufptr up to ptr. This advances
PL_parser->bufptr to match ptr, performing the correct bookkeeping whenever a
newline character is passed. This is the normal way to consume lexed text.

Interpretation of the buffer's octets can be abstracted out by using the slightly
higher-level functions lex_peek_unichar and lex_read_unichar.

NOTE: this function is experimental and may change or be removed without notice.
void lex_read_to(char *ptr)

lex_read_unichar

Reads the next (Unicode) character in the text currently being lexed. Returns the
codepoint (unsigned integer value) of the character read, and moves PL_parser->
bufptr past the character, or returns -1 if lexing has reached the end of the input text.
To non-destructively examine the next character, use lex_peek_unichar instead.

If the next character is in (or extends into) the next chunk of input text, the next chunk
will be read in. Normally the current chunk will be discarded at the same time, but if
flags includes LEX_KEEP_PREVI0US then the current chunk will not be discarded.

If the input is being interpreted as UTF-8 and a UTF-8 encoding error is encountered,
an exception is generated.

http://perldoc.perl.org

Page 22

O Perl

Perl version 5.12.4 documentation - perlapi

lex_stuff_pvn

lex_stuff sv

lex_unstuff

PL_parser

NOTE: this function is experimental and may change or be removed without notice.
132 lex_read_unichar(U32 flags)

Insert characters into the lexer buffer (PL_parser->linestr), immediately after the
current lexing point (PL_parser->bufptr), reallocating the buffer if necessary. This
means that lexing code that runs later will see the characters as if they had appeared
in the input. It is not recommended to do this as part of normal parsing, and most uses
of this facility run the risk of the inserted characters being interpreted in an unintended
manner.

The string to be inserted is represented by len octets starting at pv. These octets are
interpreted as either UTF-8 or Latin-1, according to whether the LEX_STUFF_UTF8
flag is set in flags. The characters are recoded for the lexer buffer, according to how
the buffer is currently being interpreted (lex_bufutf8). If a string to be interpreted is
available as a Perl scalar, the lex_stuff _sv function is more convenient.

NOTE: this function is experimental and may change or be removed without notice.
void lex_stuff_pvn(char *pv, STRLEN len, U32 flags)

Insert characters into the lexer buffer (PL_parser->linestr), immediately after the
current lexing point (PL_parser->bufptr), reallocating the buffer if necessary. This
means that lexing code that runs later will see the characters as if they had appeared
in the input. It is not recommended to do this as part of normal parsing, and most uses
of this facility run the risk of the inserted characters being interpreted in an unintended
manner.

The string to be inserted is the string value of sv. The characters are recoded for the
lexer buffer, according to how the buffer is currently being interpreted (lex_bufutf8). If a
string to be interpreted is not already a Perl scalar, the lex_stuff _pvn function avoids
the need to construct a scalar.

NOTE: this function is experimental and may change or be removed without notice.

void lex_stuff _sv(SV *sv, U32 flags)

Discards text about to be lexed, from PL_parser->bufptr up to ptr. Text following ptr will
be moved, and the buffer shortened. This hides the discarded text from any lexing
code that runs later, as if the text had never appeared.

This is not the normal way to consume lexed text. For that, use lex_read_to.
NOTE: this function is experimental and may change or be removed without notice.
void lex_unstuff(char *ptr)

Pointer to a structure encapsulating the state of the parsing operation currently in
progress. The pointer can be locally changed to perform a nested parse without
interfering with the state of an outer parse. Individual members of PL_parser have
their own documentation.

PL_parser->bufend

Direct pointer to the end of the chunk of text currently being lexed, the end of the lexer
buffer. This is equal to SVPVX(PL_parser->linestr) + SvCUR(PL_parser->
linestr). A NUL character (zero octet) is always located at the end of the buffer,

http://perldoc.perl.org

Page 23

O Perl

Perl version 5.12.4 documentation - perlapi

and does not count as part of the buffer's contents.
NOTE: this function is experimental and may change or be removed without notice.

PL_parser->bufptr

Points to the current position of lexing inside the lexer buffer. Characters around this
point may be freely examined, within the range delimited by SvPVX(PL_parser->
linestr) and PL_parser->bufend. The octets of the buffer may be intended to be
interpreted as either UTF-8 or Latin-1, as indicated by lex_bufutf8.

Lexing code (whether in the Perl core or not) moves this pointer past the characters
that it consumes. It is also expected to perform some bookkeeping whenever a
newline character is consumed. This movement can be more conveniently performed
by the function lex_read_to, which handles newlines appropriately.

Interpretation of the buffer's octets can be abstracted out by using the slightly
higher-level functions lex_peek_unichar and lex_read_unichar.

NOTE: this function is experimental and may change or be removed without notice.

PL_parser->linestart

Points to the start of the current line inside the lexer buffer. This is useful for indicating
at which column an error occurred, and not much else. This must be updated by any
lexing code that consumes a newline; the function lex_read_to handles this detail.

NOTE: this function is experimental and may change or be removed without notice.

PL_parser->linestr

Magical Functions
mg_clear

mg_copy

Buffer scalar containing the chunk currently under consideration of the text currently
being lexed. This is always a plain string scalar (for which SvPOK is true). It is not
intended to be used as a scalar by normal scalar means; instead refer to the buffer
directly by the pointer variables described below.

The lexer maintains various char™ pointers to things in the PL_parser->linestr
buffer. If PL_parser->l1inestr is ever reallocated, all of these pointers must be
updated. Don't attempt to do this manually, but rather use lex_grow_linestr if you need
to reallocate the buffer.

The content of the text chunk in the buffer is commonly exactly one complete line of
input, up to and including a newline terminator, but there are situations where it is
otherwise. The octets of the buffer may be intended to be interpreted as either UTF-8
or Latin-1. The function lex_bufutf8 tells you which. Do not use the SVUTF8 flag on this
scalar, which may disagree with it.

For direct examination of the buffer, the variable PL_parser->bufend points to the end
of the buffer. The current lexing position is pointed to by PL_parser->bufptr. Direct use
of these pointers is usually preferable to examination of the scalar through normal
scalar means.

NOTE: this function is experimental and may change or be removed without notice.

Clear something magical that the SV represents. See sv_magic.
int mg_clear(SV* sv)

Copies the magic from one SV to another. See sv_magic.
int mg_copy(SV *sv, SV *nsv, const char *key, 132 klen)

http://perldoc.perl.org

Page 24

@ Pefl Perl version 5.12.4 documentation - perlapi

mg_find
Finds the magic pointer for type matching the SV. See sv_magic.
MAGIC* mg_Ffind(const SV* sv, int type)
mg_free
Free any magic storage used by the SV. See sv_magic.
int mg_free(SV* sv)
mg_get
Do magic after a value is retrieved from the SV. See sv_magic.
int mg_get(SV* sv)
mg_length
Report on the SV's length. See sv_magic.
U32 mg_length(SV* sv)
mg_magical
Turns on the magical status of an SV. See sv_magic.
void mg_magical (SV* sv)
mg_set
Do magic after a value is assigned to the SV. See sv_magic.
int mg_set(SV* sv)
SVGETMAGIC
Invokes mg_get on an SV if it has 'get' magic. This macro evaluates its argument
more than once.
void SVGETMAGIC(SV* sv)
SvLOCK
Arranges for a mutual exclusion lock to be obtained on sv if a suitable module has
been loaded.
void SvLOCK(SV* sv)
SVSETMAGIC
Invokes mg_set on an SV if it has 'set' magic. This macro evaluates its argument
more than once.
void SVSETMAGIC(SV* sv)
SvSetMagicSV

Like SvSetSV, but does any set magic required afterwards.
void SvSetMagicSV(SV* dsh, SV* ssv)

SvSetMagicSV_nosteal
Like SvSetSV_nosteal, but does any set magic required afterwards.

http://perldoc.perl.org Page 25

@ Pefl Perl version 5.12.4 documentation - perlapi

void SvSetMagicSV_nosteal (SV* dsv, SV* ssv)

SvSetSV

Calls sv_setsv if dsv is not the same as ssv. May evaluate arguments more than
once.

void SvSetSV(SV* dsb, SV* ssv)

SvSetSV_nosteal

Calls a non-destructive version of sv_setsyv if dsv is not the same as ssv. May
evaluate arguments more than once.

void SvSetSV_nosteal (SV* dsv, SV* ssv)

SvSHARE
Arranges for sv to be shared between threads if a suitable module has been loaded.
void SvSHARE(SV* sv)

SVUNLOCK
Releases a mutual exclusion lock on sv if a suitable module has been loaded.
void SvUNLOCK(SV* sv)

Memory Management
Copy

The XSUB-writer's interface to the C memcpy function. The src is the source, dest is
the destination, nitems is the number of items, and type is the type. May fail on
overlapping copies. See also Move.

void Copy(void* src, void* dest, int nitems, type)

CopyD
Like Copy but returns dest. Useful for encouraging compilers to tail-call optimise.
void * CopyD(void* src, void* dest, int nitems, type)

Move

The XSUB-writer's interface to the C memmove function. The src is the source, dest
is the destination, nitems is the number of items, and type is the type. Can do
overlapping moves. See also Copy.

void Move(void* src, void* dest, int nitems, type)

MoveD
Like Move but returns dest. Useful for encouraging compilers to tail-call optimise.
void * MoveD(void* src, void* dest, int nitems, type)

Newx
The XSUB-writer's interface to the C mal loc function.

In 5.9.3, Newx() and friends replace the older New() API, and drops the first
parameter, x, a debug aid which allowed callers to identify themselves. This aid has
been superseded by a new build option, PERL_MEM_LOG (see "PERL_MEM_LOG"
in perlhack). The older API is still there for use in XS modules supporting older perls.

http://perldoc.perl.org Page 26

O Perl

Perl version 5.12.4 documentation - perlapi

Newxc

Newxz

Poison

PoisonFree

PoisonNew

PoisonWith

Renew

Renewc

Safefree

savepv

void Newx(void* ptr, int nitems, type)

The XSUB-writer's interface to the C mal loc function, with cast. See also Newx.
void Newxc(void* ptr, int nitems, type, cast)

The XSUB-writer's interface to the C mal loc function. The allocated memory is
zeroed with memzero. See also Newx.

void Newxz(void* ptr, int nitems, type)

PoisonWith(OXEF) for catching access to freed memory.
void Poison(void* dest, int nitems, type)

PoisonWith(OXEF) for catching access to freed memory.
void PoisonFree(void* dest, int nitems, type)

PoisonWith(0OxAB) for catching access to allocated but uninitialized memory.
void PoisonNew(void* dest, int nitems, type)

Fill up memory with a byte pattern (a byte repeated over and over again) that hopefully
catches attempts to access uninitialized memory.

void PoisonWith(void* dest, int nitems, type, U8 byte)

The XSUB-writer's interface to the C real loc function.
void Renew(void* ptr, int nitems, type)

The XSUB-writer's interface to the C real loc function, with cast.
void Renewc(void* ptr, int nitems, type, cast)

The XSUB-writer's interface to the C free function.
void Safefree(void* ptr)

Perl's version of strdup(). Returns a pointer to a newly allocated string which is a
duplicate of pv. The size of the string is determined by strien(). The memory
allocated for the new string can be freed with the Safefree() function.

char* savepv(const char* pv)

http://perldoc.perl.org

Page 27

O Perl

Perl version 5.12.4 documentation - perlapi

savepvn
Perl's version of what strndup () would be if it existed. Returns a pointer to a newly
allocated string which is a duplicate of the first len bytes from pv, plus a trailing NUL
byte. The memory allocated for the new string can be freed with the Safefree()
function.
char* savepvn(const char* pv, 132 len)
savepvs
Like savepvn, but takes a literal string instead of a string/length pair.
char* savepvs(const char* s)
savesharedpv
A version of savepv() which allocates the duplicate string in memory which is shared
between threads.
char* savesharedpv(const char* pv)
savesharedpvn
A version of savepvn() which allocates the duplicate string in memory which is
shared between threads. (With the specific difference that a NULL pointer is not
acceptable)
char* savesharedpvn(const char *const pv, const STRLEN len)
savesvpv
A version of savepv()/savepvn() which gets the string to duplicate from the passed
in SV using SVPVQ)
char* savesvpv(SV* sv)
StructCopy
This is an architecture-independent macro to copy one structure to another.
void StructCopy(type src, type dest, type)
Zero
The XSUB-writer's interface to the C memzero function. The dest is the destination,
nitems is the number of items, and type is the type.
void Zero(void* dest, int nitems, type)
ZeroD

Like Zero but returns dest. Useful for encouraging compilers to tail-call optimise.
void * ZeroD(void* dest, int nitems, type)

Miscellaneous Functions

fom_compile

fom_instr

Analyses the string in order to make fast searches on it using fom_instr() -- the
Boyer-Moore algorithm.

void fbm_compile(SV* sv, U32 flags)

http://perldoc.perl.org

Page 28

O Perl

Perl version 5.12.4 documentation - perlapi

form

getcwd_sv

my_snprintf

my_sprintf

my_vsnprintf

new_version

Returns the location of the SV in the string delimited by str and strend. It returns
NULL if the string can't be found. The sv does not have to be fom_compiled, but the
search will not be as fast then.

char* fbm_instr(unsigned char* big, unsigned char* bigend, SV*
littlestr, U32 flags)

Takes a sprintf-style format pattern and conventional (non-SV) arguments and returns
the formatted string.

(char *) Perl_form(pTHX_ const char* pat, ...)

can be used any place a string (char *) is required:
char * s = Perl_form("%d.%d",major,minor);

Uses a single private buffer so if you want to format several strings you must explicitly
copy the earlier strings away (and free the copies when you are done).

char* form(const char* pat, ...)

Fill the sv with current working directory
int getcwd _sv(SV* sv)

The C library snprintf functionality, if available and standards-compliant (uses
vsnprintf, actually). However, if the vsnprintf is not available, will unfortunately
use the unsafe vsprintf which can overrun the buffer (there is an overrun check, but
that may be too late). Consider using sv_vcatpvT instead, or getting vsnprintf.

int my_snprintf(char *buffer, const Size_t len, const char
*format, ...)

The C library sprintf, wrapped if necessary, to ensure that it will return the length of
the string written to the buffer. Only rare pre-ANSI systems need the wrapper function -
usually this is a direct call to sprintf.

int my_sprintf(char *buffer, const char *pat, ...)

The C library vsnprintf if available and standards-compliant. However, if if the
vsnprintfis not available, will unfortunately use the unsafe vsprintf which can
overrun the buffer (there is an overrun check, but that may be too late). Consider using
sv_vcatpvT instead, or getting vsnprintf.

int my_vsnprintf(char *buffer, const Size_t len, const char
*format, va_list ap)

Returns a new version object based on the passed in SV:
SV *sv = new_version(SV *ver);

Does not alter the passed in ver SV. See "upg_version" if you want to upgrade the SV.

http://perldoc.perl.org

Page 29

O Perl

Perl version 5.12.4 documentation - perlapi

SV* new_version(SV *ver)

prescan_version

scan_version

StrEQ

strGE

strGT

strLE

StrLT

strNE

const char* prescan_version(const char *s, bool strict, const
char** errstr, bool *sqv, int *ssaw_decimal, int *swidth, bool
*salpha)

Returns a pointer to the next character after the parsed version string, as well as
upgrading the passed in SV to an RV.

Function must be called with an already existing SV like

sv = newSV(0);
s = scan_version(s, SV *sv, bool qv);

Performs some preprocessing to the string to ensure that it has the correct
characteristics of a version. Flags the object if it contains an underscore (which
denotes this is an alpha version). The boolean qv denotes that the version should be
interpreted as if it had multiple decimals, even if it doesn't.

const char* scan_version(const char *s, SV *rv, bool qv)

Test two strings to see if they are equal. Returns true or false.
bool strEQ(char* sl1l, char* s2)

Test two strings to see if the first, s1, is greater than or equal to the second, s2.
Returns true or false.

bool strGE(char* sl1l, char* s2)

Test two strings to see if the first, s1, is greater than the second, s2. Returns true or
false.

bool strGT(char* sl1l, char* s2)

Test two strings to see if the first, s1, is less than or equal to the second, s2. Returns
true or false.

bool strLE(char* sl1l, char* s2)

Test two strings to see if the first, s1, is less than the second, s2. Returns true or
false.

bool strLT(char* sl1l, char* s2)

Test two strings to see if they are different. Returns true or false.
bool strNE(char* sl1l, char* s2)

http://perldoc.perl.org

Page 30

O Perl

Perl version 5.12.4 documentation - perlapi

StrnEQ

strnNE

Test two strings to see if they are equal. The len parameter indicates the number of
bytes to compare. Returns true or false. (A wrapper for strncmp).

bool strnEQ(char* sl1, char* s2, STRLEN len)

Test two strings to see if they are different. The Ien parameter indicates the number of
bytes to compare. Returns true or false. (A wrapper for strncmp).

bool strnNE(char* sl1, char* s2, STRLEN len)

sv_destroyable

Sv_nosharing

upg_version

vemp

vhormal

vnumify

Dummy routine which reports that object can be destroyed when there is no sharing
module present. It ignores its single SV argument, and returns 'true’. Exists to avoid
test for a NULL function pointer and because it could potentially warn under some level
of strict-ness.

bool sv_destroyable(SV *sv)

Dummy routine which "shares" an SV when there is no sharing module present. Or
"locks" it. Or "unlocks" it. In other words, ignores its single SV argument. Exists to
avoid test for a NULL function pointer and because it could potentially warn under
some level of strict-ness.

void sv_nosharing(SV *sv)

In-place upgrade of the supplied SV to a version object.
SV *sv = upg_version(SV *sv, bool qv);

Returns a pointer to the upgraded SV. Set the boolean qv if you want to force this SV
to be interpreted as an "extended" version.

SV* upg_version(SV *ver, bool qv)

Version object aware cmp. Both operands must already have been converted into
version objects.

int vemp(SV *lhv, SV *rhv)

Accepts a version object and returns the normalized string representation. Call like:
sv = vnormal(rv);

NOTE: you can pass either the object directly or the SV contained within the RV.
SV* vnormal (SV *vs)

Accepts a version object and returns the normalized floating point representation. Call
like:

sv = vnumify(rv);

http://perldoc.perl.org

Page 31

O Perl

Perl version 5.12.4 documentation - perlapi

vstringify

vverify

MRO Functions

NOTE: you can pass either the object directly or the SV contained within the RV.
SV* vnumify(SV *vs)

In order to maintain maximum compatibility with earlier versions of Perl, this function
will return either the floating point notation or the multiple dotted notation, depending
on whether the original version contained 1 or more dots, respectively

SV* vstringify(SV *vs)

Validates that the SV contains a valid version object.
bool vverify(SV *vobj);

Note that it only confirms the bare minimum structure (so as not to get confused by
derived classes which may contain additional hash entries):

bool vverify(SV *vs)

mro_get_linear_isa

Returns either mro_get linear_isa c3 ormro_get linear_isa_dfs for the
given stash, dependant upon which MRO is in effect for that stash. The return value is
a read-only AV*,

You are responsible for SYREFCNT_inc() on the return value if you plan to store it
anywhere semi-permanently (otherwise it might be deleted out from under you the next
time the cache is invalidated).

AV* mro_get_linear_isa(HV* stash)

mro_method_changed_in

Multicall Functions
dMULTICALL

Invalidates method caching on any child classes of the given stash, so that they might
notice the changes in this one.

Ideally, all instances of PL_sub_generation++ in perl source outside of mro.c
should be replaced by calls to this.

Perl automatically handles most of the common ways a method might be redefined.
However, there are a few ways you could change a method in a stash without the
cache code noticing, in which case you need to call this method afterwards:

1) Directly manipulating the stash HV entries from XS code.

2) Assigning a reference to a readonly scalar constant into a stash entry in order to
create a constant subroutine (like constant.pm does).

This same method is available from pure perl via,
mro: :method_changed_in(classname).

void mro_method_changed_ in(HV* stash)

Declare local variables for a multicall. See "Lightweight Callbacks" in perlcall.
dMULTICALL;

http://perldoc.perl.org

Page 32

O Perl

Perl version 5.12.4 documentation - perlapi

MULTICALL

Make a lightweight callback. See "Lightweight Callbacks" in perlicall.
MULTICALL;

POP_MULTICALL

Closing bracket for a lightweight callback. See "Lightweight Callbacks" in perlcall.
POP_MULTICALL;

PUSH_MULTICALL

Numeric functions
grok_bin

grok_hex

Opening bracket for a lightweight callback. See "Lightweight Callbacks" in perlcall.
PUSH_MULTICALL;

converts a string representing a binary number to numeric form.

On entry start and *len give the string to scan, *flags gives conversion flags, and result
should be NULL or a pointer to an NV. The scan stops at the end of the string, or the
first invalid character. Unless PERL_SCAN_SILENT_ILLDIGIT is set in *flags,
encountering an invalid character will also trigger a warning. On return *len is set to the
length of the scanned string, and *flags gives output flags.

If the value is <= UV_MAX it is returned as a UV, the output flags are clear, and nothing
is written to *result. If the value is > UV_MAX grok_bin returns UV_MAX, sets
PERL_SCAN_GREATER_THAN_UV_MAX in the output flags, and writes the value to
*result (or the value is discarded if result is NULL).

The binary number may optionally be prefixed with "Ob" or "b" unless
PERL_SCAN_DISALLOW_PREFIX is set in *flags on entry. If
PERL_SCAN_ALLOW_UNDERSCORES is set in *flags then the binary number may use
' 'characters to separate digits.

UV grok_bin(const char* start, STRLEN* len_p, 132* flags, NV
*result)

converts a string representing a hex number to numeric form.

On entry start and *len give the string to scan, *flags gives conversion flags, and result
should be NULL or a pointer to an NV. The scan stops at the end of the string, or the
first invalid character. Unless PERL_SCAN_SILENT_ILLDIGIT is set in *flags,
encountering an invalid character will also trigger a warning. On return *len is set to the
length of the scanned string, and *flags gives output flags.

If the value is <= UV_MAX it is returned as a UV, the output flags are clear, and
nothing is written to *result. If the value is > UV_MAX grok_hex returns UV_MAX,
sets PERL_SCAN_GREATER_THAN_UV_MAX in the output flags, and writes the value to
*result (or the value is discarded if result is NULL).

The hex number may optionally be prefixed with "0x" or "x" unless
PERL_SCAN_DISALLOW_PREFIX is set in *flags on entry. If
PERL_SCAN_ALLOW_UNDERSCORES is set in *flags then the hex number may use ' '
characters to separate digits.

UV grok_hex(const char* start, STRLEN* len_p, 132* flags, NV
*result)

http://perldoc.perl.org

Page 33

O Perl

Perl version 5.12.4 documentation - perlapi

grok_number

grok_numeric_|

grok_oct

Perl_signbit

Recognise (or not) a number. The type of the number is returned (0 if unrecognised),
otherwise it is a bit-ORed combination of IS_ NUMBER_IN_UV,
IS_NUMBER_GREATER_THAN_UV_MAX, IS_NUMBER_NOT_INT,
IS_NUMBER_NEG, IS_NUMBER_INFINITY, IS_NUMBER_NAN (defined in perl.h).

If the value of the number can fit an in UV, it is returned in the *valuep
IS_NUMBER_IN_UV will be set to indicate that *valuep is valid, IS_ NUMBER_IN_UV
will never be set unless *valuep is valid, but *valuep may have been assigned to during
processing even though IS NUMBER_IN_UV is not set on return. If valuep is NULL,
IS_ NUMBER_IN_UV will be set for the same cases as when valuep is non-NULL, but
no actual assignment (or SEGV) will occur.

IS_NUMBER_NOT_INT will be set with IS_NUMBER_IN_UV if trailing decimals were
seen (in which case *valuep gives the true value truncated to an integer), and
IS_NUMBER_NEG if the number is negative (in which case *valuep holds the absolute
value). IS_NUMBER_IN_UV is not set if e notation was used or the number is larger
than a UV.

int grok_number(const char *pv, STRLEN len, UV *valuep)

radix
Scan and skip for a numeric decimal separator (radix).
bool grok numeric_radix(const char **sp, const char *send)

converts a string representing an octal number to numeric form.

On entry start and *len give the string to scan, *flags gives conversion flags, and result
should be NULL or a pointer to an NV. The scan stops at the end of the string, or the
first invalid character. Unless PERL_SCAN_SILENT_ILLDIGIT is set in *flags,
encountering an invalid character will also trigger a warning. On return *len is set to the
length of the scanned string, and *flags gives output flags.

If the value is <= UV_MAX it is returned as a UV, the output flags are clear, and
nothing is written to *result. If the value is > UV_MAX grok_oct returns UV_MAX,
sets PERL_SCAN_GREATER_THAN_UV_MAX in the output flags, and writes the value to
*result (or the value is discarded if result is NULL).

If PERL_SCAN_ALLOW_UNDERSCORES is set in *flags then the octal number may use
"' characters to separate digits.

UV grok_oct(const char* start, STRLEN* len_p, 132* flags, NV
*result)

Return a non-zero integer if the sign bit on an NV is set, and 0 if it is not.

If Configure detects this system has a signbit() that will work with our NVs, then we just
use it via the #define in perl.h. Otherwise, fall back on this implementation. As a first
pass, this gets everything right except -0.0. Alas, catching -0.0 is the main use for this
function, so this is not too helpful yet. Still, at least we have the scaffolding in place to
support other systems, should that prove useful.

Configure notes: This function is called 'Perl_signbit' instead of a plain 'signbit’
because it is easy to imagine a system having a signbit() function or macro that doesn't
happen to work with our particular choice of NVs. We shouldn't just re-#define signbit
as Perl_signbit and expect the standard system headers to be happy. Also, this is a
no-context function (no pTHX) because Perl_signbit() is usually re-#defined in perl.h

http://perldoc.perl.org

Page 34

O Perl

Perl version 5.12.4 documentation - perlapi

scan_bin

scan_hex

scan_oct

as a simple macro call to the system's signbit(). Users should just always call
Perl_signbit().

NOTE: this function is experimental and may change or be removed without notice.
int Perl_signbit(NV f)

For backwards compatibility. Use grok_bin instead.
NV scan_bin(const char* start, STRLEN len, STRLEN* retlen)

For backwards compatibility. Use grok_hex instead.
NV scan_hex(const char* start, STRLEN len, STRLEN* retlen)

For backwards compatibility. Use grok_oct instead.
NV scan_oct(const char* start, STRLEN len, STRLEN* retlen)

Optree Manipulation Functions

cv_const_sv

If cv is a constant sub eligible for inlining. returns the constant value returned by the
sub. Otherwise, returns NULL.

Constant subs can be created with newCONSTSUB or as described in "Constant
Functions" in perlsub.

SV* cv_const_sv(const CV *const cv)

newCONSTSUB

newxs

Pad Data Structures

pad_findmy

pad_sv

Creates a constant sub equivalent to Perl sub FOO () { 123 } which is eligible for
inlining at compile-time.

Passing NULL for SV creates a constant sub equivalent to sub BAR () {}, which
won't be called if used as a destructor, but will suppress the overhead of a call to
AUTOLOAD. (This form, however, isn't eligible for inlining at compile time.)

CV* newCONSTSUB(HV* stash, const char* name, SV* sv)

Used by xsubpp to hook up XSUBs as Perl subs. filename needs to be static storage,
as it is used directly as CvFILE(), without a copy being made.

Given a lexical name, try to find its offset, first in the current pad, or failing that, in the
pads of any lexically enclosing subs (including the complications introduced by eval). If
the name is found in an outer pad, then a fake entry is added to the current pad.
Returns the offset in the current pad, or NOT_IN_PAD on failure.

NOTE: this function is experimental and may change or be removed without notice.
PADOFFSET pad_findmy(const char* name, STRLEN len, U32 flags)

http://perldoc.perl.org

Page 35

@ Pefl Perl version 5.12.4 documentation - perlapi

Get the value at offset po in the current pad. Use macro PAD_SV instead of calling this
function directly.

SV* pad_sv(PADOFFSET po)

Per-Interpreter Variables

PL_modglobal
PL_modglobal is a general purpose, interpreter global HV for use by extensions that
need to keep information on a per-interpreter basis. In a pinch, it can also be used as a
symbol table for extensions to share data among each other. It is a good idea to use
keys prefixed by the package name of the extension that owns the data.
HV* PL_modglobal
PL_na

A convenience variable which is typically used with SvPV when one doesn't care about
the length of the string. It is usually more efficient to either declare a local variable and
use that instead or to use the SvPV_nolen macro.

STRLEN PL_na

PL_opfreehook

When non-NULL, the function pointed by this variable will be called each time an OP is
freed with the corresponding OP as the argument. This allows extensions to free any
extra attribute they have locally attached to an OP. It is also assured to first fire for the
parent OP and then for its kids.

When you replace this variable, it is considered a good practice to store the possibly
previously installed hook and that you recall it inside your own.

Perl_ophook t PL_opfreehook

PL_sv_no
This is the false SV. See PL_sv_yes. Always refer to this as &PL_sv_no.
SV PL_sv_no
PL_sv_undef
This is the undef SV. Always refer to this as &PL_sv_undef.
SV PL_sv_undef
PL_sv_yes

This is the true SV. See PL_sv_no. Always refer to this as &PL_sv_yes.
SV PL_sv_yes

REGEXP Functions
SVRX

Convenience macro to get the REGEXP from a SV. This is approximately equivalent to
the following snippet:

it (SYMAGICAL(sV))
mg_get(sv);

if (SVROK(sv) &&
(tmpsv = (SV*)SVRV(sVv)) &&
SVTYPE(tmpsv) == SVt_PVMG &&

http://perldoc.perl.org Page 36

@ Pefl Perl version 5.12.4 documentation - perlapi

(tmpmg = mg_Ffind(tmpsv, PERL_MAGIC_qr)))

return (REGEXP *)tmpmg->mg_obj;
}

NULL will be returned if a REGEXP* is not found.
REGEXP * SvRX(SV *sv)

SVRXOK
Returns a boolean indicating whether the SV contains gr magic (PERL_MAGIC_qr).

If you want to do something with the REGEXP* later use SvRX instead and check for
NULL.

bool SVRXOK(SV* sv)

Simple Exception Handling Macros

dXCPT
Set up necessary local variables for exception handling. See "Exception Handling" in
perlguts.
dXCPT;
XCPT_CATCH

Introduces a catch block. See "Exception Handling" in perlguts.

XCPT_RETHROW
Rethrows a previously caught exception. See "Exception Handling" in perlguts.
XCPT_RETHROW;

XCPT_TRY_END
Ends a try block. See "Exception Handling" in perlguts.

XCPT_TRY_START
Starts a try block. See "Exception Handling" in perlguts.

Stack Manipulation Macros

dMARK
Declare a stack marker variable, mark, for the XSUB. See MARK and dOR I GMARK.
dMARK;
dORIGMARK
Saves the original stack mark for the XSUB. See ORI1GMARK.
dORIGMARK;
dspP
Declares a local copy of perl's stack pointer for the XSUB, available via the SP macro.
See SP.
dSP;
EXTEND

http://perldoc.perl.org Page 37

O Perl

Perl version 5.12.4 documentation - perlapi

MARK

mPUSHIi

mPUSHnN

mPUSHp

mPUSHs

mPUSHuU

MXPUSHIi

mMXPUSHnN

mXPUSHp

Used to extend the argument stack for an XSUB's return values. Once used,
guarantees that there is room for at least nitems to be pushed onto the stack.

void EXTEND(SP, int nitems)

Stack marker variable for the XSUB. See dMARK.

Push an integer onto the stack. The stack must have room for this element. Does not
use TARG. See also PUSHiI, mXPUSHi and XPUSHi.

void mPUSHI(IV iv)

Push a double onto the stack. The stack must have room for this element. Does not
use TARG. See also PUSHNn, mXPUSHN and XPUSHnN.

void mPUSHN(NV nv)

Push a string onto the stack. The stack must have room for this element. The len
indicates the length of the string. Does not use TARG. See also PUSHp, mXPUSHp and
XPUSHp.

void mPUSHp(char* str, STRLEN len)

Push an SV onto the stack and mortalizes the SV. The stack must have room for this
element. Does not use TARG. See also PUSHs and mXPUSHSs.

void mPUSHs(SV* sv)

Push an unsigned integer onto the stack. The stack must have room for this element.
Does not use TARG. See also PUSHu, mXPUSHu and XPUSHu.

void mPUSHu(UV uv)

Push an integer onto the stack, extending the stack if necessary. Does not use TARG.
See also XPUSHi, mPUSHi and PUSHi.

void mXPUSHi(lV iv)

Push a double onto the stack, extending the stack if necessary. Does not use TARG.
See also XPUSHNn, mPUSHN and PUSHN.

void mXPUSHN(NV nv)

Push a string onto the stack, extending the stack if necessary. The len indicates the
length of the string. Does not use TARG. See also XPUSHp, mPUSHp and PUSHp.

void mXPUSHp(char* str, STRLEN len)

http://perldoc.perl.org

Page 38

O Perl

Perl version 5.12.4 documentation - perlapi

MXPUSHSs

MXPUSHu

ORIGMARK

POPI

POPI

POPN

POPp

POPpbytex

POPpx

POPs

PUSHi

Push an SV onto the stack, extending the stack if necessary and mortalizes the SV.
Does not use TARG. See also XPUSHs and mPUSHSs.

void mXPUSHs(SV* sv)

Push an unsigned integer onto the stack, extending the stack if necessary. Does not
use TARG. See also XPUSHu, mPUSHu and PUSHu.

void mXPUSHu(UV uv)

The original stack mark for the XSUB. See dORIGMARK.

Pops an integer off the stack.
IV POPi

Pops a long off the stack.
long POPI

Pops a double off the stack.
NV POPnN

Pops a string off the stack. Deprecated. New code should use POPpx.
char* POPp

Pops a string off the stack which must consist of bytes i.e. characters < 256.
char* POPpbytex

Pops a string off the stack.
char* POPpx

Pops an SV off the stack.
SV* POPs

Push an integer onto the stack. The stack must have room for this element. Handles
'set' magic. Uses TARG, so dTARGET or dXSTARG should be called to declare it. Do not
call multiple TARG-oriented macros to return lists from XSUB's - see mPUSH1 instead.
See also XPUSHi1 and mXPUSH1.

http://perldoc.perl.org

Page 39

O Perl

Perl version 5.12.4 documentation - perlapi

PUSHMARK

PUSHmortal

PUSHnN

PUSHp

PUSHSs

PUSHuU

PUTBACK

SP

SPAGAIN

void PUSHi(lV iv)

Opening bracket for arguments on a callback. See PUTBACK and perlcall.
void PUSHMARK(SP)

Push a new mortal SV onto the stack. The stack must have room for this element.
Does not use TARG. See also PUSHs, XPUSHmortal and XPUSHSs.

void PUSHmortal ()

Push a double onto the stack. The stack must have room for this element. Handles
'set' magic. Uses TARG, so dTARGET or dXSTARG should be called to declare it. Do not
call multiple TARG-oriented macros to return lists from XSUB's - see mPUSHnN instead.
See also XPUSHn and mXPUSHnN.

void PUSHN(NV nv)

Push a string onto the stack. The stack must have room for this element. The len
indicates the length of the string. Handles 'set' magic. Uses TARG, so dTARGET or
dXSTARG should be called to declare it. Do not call multiple TARG-oriented macros to
return lists from XSUB's - see mPUSHp instead. See also XPUSHp and mXPUSHp.

void PUSHp(char* str, STRLEN len)

Push an SV onto the stack. The stack must have room for this element. Does not
handle 'set’ magic. Does not use TARG. See also PUSHmortal, XPUSHs and
XPUSHmortal.

void PUSHs(SV* sv)

Push an unsigned integer onto the stack. The stack must have room for this element.
Handles 'set' magic. Uses TARG, so dTARGET or dXSTARG should be called to declare
it. Do not call multiple TARG-oriented macros to return lists from XSUB's - see mPUSHu
instead. See also XPUSHu and mXPUSHu.

void PUSHu(UV uv)

Closing bracket for XSUB arguments. This is usually handled by xsubpp. See
PUSHMARK and perlcall for other uses.

PUTBACK;

Stack pointer. This is usually handled by xsubpp. See dSP and SPAGAIN.

Refetch the stack pointer. Used after a callback. See perlcall.

http://perldoc.perl.org

Page 40

O Perl

Perl version 5.12.4 documentation - perlapi

XPUSHi

XPUSHmortal

XPUSHnN

XPUSHp

XPUSHSs

XPUSHu

XSRETURN

SPAGAIN;

Push an integer onto the stack, extending the stack if necessary. Handles 'set’ magic.
Uses TARG, so dTARGET or dXSTARG should be called to declare it. Do not call
multiple TARG-oriented macros to return lists from XSUB's - see mXPUSH1 instead. See
also PUSHiI and mPUSHI.

void XPUSHi(IV iv)

Push a new mortal SV onto the stack, extending the stack if necessary. Does not use
TARG. See also XPUSHs, PUSHmortal and PUSHs.

void XPUSHmortal ()

Push a double onto the stack, extending the stack if necessary. Handles 'set' magic.
Uses TARG, so dTARGET or dXSTARG should be called to declare it. Do not call
multiple TARG-oriented macros to return lists from XSUB's - see mXPUSHn instead. See
also PUSHN and mPUSHN.

void XPUSHNn(NV nv)

Push a string onto the stack, extending the stack if necessary. The len indicates the
length of the string. Handles 'set' magic. Uses TARG, so dTARGET or dXSTARG should
be called to declare it. Do not call multiple TARG-oriented macros to return lists from
XSUB's - see mXPUSHp instead. See also PUSHp and mPUSHp.

void XPUSHp(char* str, STRLEN len)

Push an SV onto the stack, extending the stack if necessary. Does not handle 'set’
magic. Does not use TARG. See also XPUSHmortal, PUSHs and PUSHmortal.

void XPUSHs(SV* sv)

Push an unsigned integer onto the stack, extending the stack if necessary. Handles
'set' magic. Uses TARG, so dTARGET or dXSTARG should be called to declare it. Do not
call multiple TARG-oriented macros to return lists from XSUB's - see mXPUSHu instead.
See also PUSHuU and mPUSHu.

void XPUSHu(UV uv)

Return from XSUB, indicating number of items on the stack. This is usually handled by
xsubpp.

void XSRETURN(int nitems)

XSRETURN_EMPTY

Return an empty list from an XSUB immediately.
XSRETURN_EMPTY;

http://perldoc.perl.org

Page 41

O Perl

Perl version 5.12.4 documentation - perlapi

XSRETURN_

XSRETURN_|

XSRETURN_|

XSRETURN_|

XSRETURN_

XSRETURN_

XSRETURN_

XST_mIV

XST_mNO

XST_mNV

XST_mPV

v
Return an integer from an XSUB immediately. Uses XST_mlV.
void XSRETURN_IV(IV iv)

NO
Return &PL_sv_no from an XSUB immediately. Uses XST_mNO.
XSRETURN_NO;

NV
Return a double from an XSUB immediately. Uses XST_mNV.
void XSRETURN_NV(NV nv)

PV
Return a copy of a string from an XSUB immediately. Uses XST_mPV.
void XSRETURN_PV(char* str)

UNDEF
Return &PL_sv_undeTf from an XSUB immediately. Uses XST_mUNDEF.
XSRETURN_UNDEF;

uv
Return an integer from an XSUB immediately. Uses XST_mUV.
void XSRETURN_UV(IV uv)

YES
Return &PL_sv_yes from an XSUB immediately. Uses XST_mYES.
XSRETURN_YES;

Place an integer into the specified position pos on the stack. The value is stored in a
new mortal SV.

void XST_mlIV(int pos, 1V iv)

Place &PL_sv_no into the specified position pos on the stack.
void XST_mNO(int pos)

Place a double into the specified position pos on the stack. The value is stored in a
new mortal SV.

void XST_mNV({int pos, NV nv)

Place a copy of a string into the specified position pos on the stack. The value is
stored in a new mortal SV.

http://perldoc.perl.org

Page 42

@ Pefl Perl version 5.12.4 documentation - perlapi

void XST_mPV(int pos, char* str)

XST_mUNDEF
Place &PL_sv_undef into the specified position pos on the stack.
void XST_mUNDEF(int pos)

XST_mYES
Place &PL_sv_yes into the specified position pos on the stack.
void XST_mYES(int pos)
SV Flags
svtype
An enum of flags for Perl types. These are found in the file sv.h in the svtype enum.
Test these flags with the SVTYPE macro.
SVt_IV
Integer type flag for scalars. See svtype.
SVt_NV
Double type flag for scalars. See svtype.
Svt_PV
Pointer type flag for scalars. See svtype.
SVt_PVAV
Type flag for arrays. See svtype.
SVt_PVCV
Type flag for code refs. See svtype.
SVt_PVHV
Type flag for hashes. See svtype.
SVt_PVMG

Type flag for blessed scalars. See svtype.

SV Manipulation Functions
croak xs_usage
A specialised variant of croak() for emitting the usage message for xsubs
croak xs_usage(cv, "'eee_yow');

works out the package name and subroutine name from cv, and then calls croak().
Hence if cv is &ouch: zawk, it would call croak as:

Perl_croak(aTHX_ "Usage %s::%s(%s)', 'ouch™ "awk™,

"eee_yow');

void croak_xs_usage(const CV *const cv, const char *const
params)

get_sv
Returns the SV of the specified Perl scalar. Flags are passed to gv_fetchpv. If

http://perldoc.perl.org Page 43

O Perl

Perl version 5.12.4 documentation - perlapi

newRV_inc

GV_ADD is set and the Perl variable does not exist then it will be created. If Flags is
zero and the variable does not exist then NULL is returned.

NOTE: the perl_ form of this function is deprecated.
SV* get_sv(const char *name, 132 flags)

Creates an RV wrapper for an SV. The reference count for the original SV is
incremented.

SV* newRV_inc(SV* sv)

newSVpvn_utf8

SvCUR

SVCUR_set

SVEND

SVGAMAGIC

SVvGROW

SvIOK

SvIOKp

Creates a new SV and copies a string into it. If utf8 is true, calls SYVUTF8_on on the
new SV. Implemented as a wrapper around newSVpvn_flags.

SV* newSVpvn_utf8(NULLOK const char* s, STRLEN len, U32 utf8)

Returns the length of the string which is in the SV. See SvLEN.
STRLEN SvCUR(SV* sv)

Set the current length of the string which is in the SV. See SVCUR and SvIV_set.
void SvCUR_set(SV* sv, STRLEN len)

Returns a pointer to the last character in the string which is in the SV. See SvCUR.
Access the character as *(SVEND(sv)).

char* SvEND(SV* sv)

Returns true if the SV has get magic or overloading. If either is true then the scalar is
active data, and has the potential to return a new value every time it is accessed.
Hence you must be careful to only read it once per user logical operation and work
with that returned value. If neither is true then the scalar's value cannot change unless
written to.

U32 SVGAMAGIC(SV* sv)

Expands the character buffer in the SV so that it has room for the indicated number of
bytes (remember to reserve space for an extra trailing NUL character). Calls sv_grow
to perform the expansion if necessary. Returns a pointer to the character buffer.

char * SvGROW(SV* sv, STRLEN len)

Returns a U32 value indicating whether the SV contains an integer.
U32 SvIOK(SV* sv)

http://perldoc.perl.org

Page 44

@ Pefl Perl version 5.12.4 documentation - perlapi

Returns a U32 value indicating whether the SV contains an integer. Checks the
private setting. Use SvIOK instead.

U32 SvIOKp(SV* sv)

SvIOK_notUV
Returns a boolean indicating whether the SV contains a signed integer.
bool SvIOK_notUV(SV* sv)
SvIOK_off
Unsets the IV status of an SV.
void SvIOK _off(SV* sv)
SvIOK_on
Tells an SV that it is an integer.
void SvIOK _on(SV* sv)
SvIOK _only

Tells an SV that it is an integer and disables all other OK bits.
void SvIOK only(SV* sv)

SvIOK _only_UV
Tells and SV that it is an unsigned integer and disables all other OK bits.
void SvIOK only UV(SV* sv)

SvIOK_UV
Returns a boolean indicating whether the SV contains an unsigned integer.
bool SvIOK_UV(SV* sv)

SvisCOW

Returns a boolean indicating whether the SV is Copy-On-Write. (either shared hash
key scalars, or full Copy On Write scalars if 5.9.0 is configured for COW)

bool SvIsCOW(SV* sv)

SvIsCOW_shared_hash

Returns a boolean indicating whether the SV is Copy-On-Write shared hash key
scalar.

bool SvIsCOW_shared_hash(SV* sv)

Sviv
Coerces the given SV to an integer and returns it. See SvI1Vx for a version which
guarantees to evaluate sv only once.
IV SvIV(SV* sv)
SvIVX

Returns the raw value in the SV's IV slot, without checks or conversions. Only use
when you are sure SvIOK is true. See also SvIV().

http://perldoc.perl.org Page 45

@ Pefl Perl version 5.12.4 documentation - perlapi

IV SVIVX(SV* sv)

SvIVx
Coerces the given SV to an integer and returns it. Guarantees to evaluate sv only
once. Only use this if sv is an expression with side effects, otherwise use the more
efficient SvIV.
IV SvIVX(SV* sv)
SvIV_nomg
Like SvI1V but doesn't process magic.
IV SvIV_nomg(SV* sv)
SvlV_set
Set the value of the IV pointer in sv to val. It is possible to perform the same function of
this macro with an Ivalue assignment to SvIVX. With future Perls, however, it will be
more efficient to use SvIV_set instead of the lvalue assignment to SvIVX.
void SvIV_set(SV* sv, IV val)
SvLEN
Returns the size of the string buffer in the SV, not including any part attributable to
SvOOK. See SvCUR.
STRLEN SVLEN(SV* sv)
SVLEN_set
Set the actual length of the string which is in the SV. See SvIV_set.
void SvLEN_set(SV* sv, STRLEN len)
SVMAGIC_set
Set the value of the MAGIC pointer in sv to val. See SvIV_set.
void SvMAGIC_set(SV* sv, MAGIC* val)
SvNIOK
Returns a U32 value indicating whether the SV contains a humber, integer or double.
U32 SvNIOK(SV* sv)
SvNIOKp
Returns a U32 value indicating whether the SV contains a humber, integer or double.
Checks the private setting. Use SVNIOK instead.
U32 SvNIOKp(SV* sv)
SVNIOK _off
Unsets the NV/IV status of an SV.
void SvNIOK_off(SV* sv)
SvNOK

Returns a U32 value indicating whether the SV contains a double.

http://perldoc.perl.org Page 46

O Perl

Perl version 5.12.4 documentation - perlapi

SvVvNOKp

SVNOK_off

SVNOK on

SvNOK_only

SvNV

SVNVX

SVNVX

SVNV_set

SvOK

SvOOK

U32 SVNOK(SV* sv)

Returns a U32 value indicating whether the SV contains a double. Checks the private
setting. Use SvNOK instead.

U32 SvNOKp(SV* sv)

Unsets the NV status of an SV.
void SvNOK_offF(SV* sv)

Tells an SV that it is a double.
void SvNOK_on(SV* sv)

Tells an SV that it is a double and disables all other OK bits.
void SvNOK_only(SV* sv)

Coerce the given SV to a double and return it. See SvNVx for a version which
guarantees to evaluate sv only once.

NV SvNV(SV* sv)

Returns the raw value in the SV's NV slot, without checks or conversions. Only use
when you are sure SVNOK is true. See also SVNV().

NV SVNVX(SV* sv)

Coerces the given SV to a double and returns it. Guarantees to evaluate sv only once.
Only use this if sv is an expression with side effects, otherwise use the more efficient
SvNV.

NV SvNVX(SV* sv)

Set the value of the NV pointer in sv to val. See SvIV_set.
void SvNV_set(SV* sv, NV val)

Returns a U32 value indicating whether the value is defined. This is only meaningful
for scalars.

U32 SvOK(SV* sv)

Returns a U32 indicating whether the pointer to the string buffer is offset. This hack is

http://perldoc.perl.org

Page 47

O Perl

Perl version 5.12.4 documentation - perlapi

SvOOK _offset

SvPOK

SVPOKp

SVPOK_off

SvPOK_on

SvPOK_only

used internally to speed up removal of characters from the beginning of a SvPV. When
SvOOK is true, then the start of the allocated string buffer is actually
SVOOK_offset() bytes before SvPVX. This offset used to be stored in SvIVX, but is
now stored within the spare part of the buffer.

U32 SVOOK(SV* sv)

Reads into len the offset from SvPVX back to the true start of the allocated buffer,
which will be non-zero if sv_chop has been used to efficiently remove characters from
start of the buffer. Implemented as a macro, which takes the address of len, which
must be of type STRLEN. Evaluates sv more than once. Sets len to 0 if SYOOK(sV) is
false.

void SvOOK offset(NN SV*sv, STRLEN len)

Returns a U32 value indicating whether the SV contains a character string.
U32 SvPOK(SV* sv)

Returns a U32 value indicating whether the SV contains a character string. Checks the
private setting. Use SvPOK instead.

U32 SvPOKp(SV* sv)

Unsets the PV status of an SV.
void SvPOK_off(SV* sv)

Tells an SV that it is a string.
void SvPOK _on(SV* sv)

Tells an SV that it is a string and disables all other OK bits. Will also turn off the UTF-8
status.

void SvPOK _only(SV* sv)

SVPOK_only_UTF8

SvPV

Tells an SV that it is a string and disables all other OK bits, and leaves the UTF-8
status as it was.

void SvPOK only UTF8(SV* sv)

Returns a pointer to the string in the SV, or a stringified form of the SV if the SV does
not contain a string. The SV may cache the stringified version becoming SvPOK.
Handles 'get' magic. See also SvPVx for a version which guarantees to evaluate sv
only once.

char* SvPV(SV* sv, STRLEN len)

http://perldoc.perl.org

Page 48

@ Pefl Perl version 5.12.4 documentation - perlapi

SvPVbyte

Like SvPV, but converts sv to byte representation first if necessary.
char* SvPVbyte(SV* sv, STRLEN len)

SvPVbytex

Like SvPV, but converts sv to byte representation first if necessary. Guarantees to
evaluate sv only once; use the more efficient SvPVbyte otherwise.

char* SvPVbytex(SV* sv, STRLEN len)

SvPVbytex force

Like SvPV_force, but converts sv to byte representation first if necessary.
Guarantees to evaluate sv only once; use the more efficient SvPVbyte force
otherwise.

char* SvPVbytex_ force(SV* sv, STRLEN len)

SvPVbyte force
Like SvPV_force, but converts sv to byte representation first if necessary.
char* SvPVbyte force(SV* sv, STRLEN len)

SvPVbyte_nolen
Like SvPV_nolen, but converts sv to byte representation first if necessary.
char* SvPVbyte nolen(SV* sv)

SvPVutf8
Like SvPV, but converts sv to utf8 first if necessary.
char* SvPVutf8(SVv* sv, STRLEN len)

SvPVutf8x

Like SvPV, but converts sv to utf8 first if necessary. Guarantees to evaluate sv only
once; use the more efficient SvPVutf8 otherwise.

char* SvPVutf8x(SV* sv, STRLEN len)

SvPVutf8x_force

Like SvPV_force, but converts sv to utf8 first if necessary. Guarantees to evaluate sv
only once; use the more efficient SvPVutf8_force otherwise.

char* SvPVutf8x_force(SV* sv, STRLEN len)

SvPVutf8_force
Like SvPV_force, but converts sv to utf8 first if necessary.
char* SvPVutf8 force(SV* sv, STRLEN len)

SvPVutf8_nolen
Like SVPV_nolen, but converts sv to utf8 first if necessary.
char* SvPVutf8 nolen(SV* sv)

SvPVX

http://perldoc.perl.org Page 49

@ Pefl Perl version 5.12.4 documentation - perlapi

Returns a pointer to the physical string in the SV. The SV must contain a string.
char* SvPVX(SV* sv)

SvPVX
A version of SvPV which guarantees to evaluate sv only once. Only use this if sv is an
expression with side effects, otherwise use the more efficient SvPVX.
char* SvPVx(SV* sv, STRLEN len)
SvPV_force

Like SvPV but will force the SV into containing just a string (SVPOK_only). You want
force if you are going to update the SvPVX directly.

char* SvPV_force(SV* sv, STRLEN len)

SvPV_force_nomg

Like SvPV but will force the SV into containing just a string (SVPOK_only). You want
force if you are going to update the SvPVX directly. Doesn't process magic.

char* SvPV_force_nomg(SV* sv, STRLEN len)

SvPV_nolen

Returns a pointer to the string in the SV, or a stringified form of the SV if the SV does
not contain a string. The SV may cache the stringified form becoming SvPOK. Handles
‘get' magic.

char* SvPV_nolen(SV* sv)

SvPV_nomg
Like SvPV but doesn't process magic.
char* SvPV_nomg(SV* sv, STRLEN len)

SvPV_set
Set the value of the PV pointer in sv to val. See SvIV_set.
void SvPV_set(SV* sv, char* val)

SVREFCNT
Returns the value of the object's reference count.
U32 SVREFCNT(SV* sv)

SVREFCNT_dec
Decrements the reference count of the given SV.
void SVREFCNT_dec(SV* sv)

SVREFCNT _inc
Increments the reference count of the given SV.

All of the following SYREFCNT _inc* macros are optimized versions of SYREFCNT _inc,
and can be replaced with SYREFCNT _inc.

SV* SVREFCNT_inc(SV* sv)

http://perldoc.perl.org Page 50

O Perl

Perl version 5.12.4 documentation - perlapi

SVREFCNT _

SVREFCNT _

SVREFCNT _

SVREFCNT _

SVREFCNT _

SVREFCNT _

SVREFCNT _

SVROK

SVROK_off

SVROK_on

inc_NN

Same as SVREFCNT _inc, but can only be used if you know sv is not NULL. Since we
don't have to check the NULLness, it's faster and smaller.

SV* SVREFCNT_inc_NN(SV* sv)

inc_simple

Same as SVREFCNT _inc, but can only be used with expressions without side effects.
Since we don't have to store a temporary value, it's faster.

SV* SVREFCNT_inc_simple(SV* sv)

inc_simple_NN

Same as SVREFCNT _inc_simple, but can only be used if you know sv is not NULL.
Since we don't have to check the NULLness, it's faster and smaller.

SV* SVREFCNT_inc_simple NN(SV* sv)

inc_simple_void

Same as SVREFCNT _inc_simple, but can only be used if you don't need the return
value. The macro doesn't need to return a meaningful value.

void SVREFCNT inc_simple_void(SV* sv)

inc_simple_void_NN

Same as SVREFCNT _inc, but can only be used if you don't need the return value, and
you know that sv is not NULL. The macro doesn't need to return a meaningful value, or
check for NULLness, so it's smaller and faster.

void SVREFCNT inc_simple_void NN(SV* sv)

inc_void

Same as SVREFCNT _inc, but can only be used if you don't need the return value. The
macro doesn't need to return a meaningful value.

void SVREFCNT_inc_void(SV* sv)

inc_void_NN

Same as SVREFCNT _inc, but can only be used if you don't need the return value, and
you know that sv is not NULL. The macro doesn't need to return a meaningful value, or
check for NULLness, so it's smaller and faster.

void SVREFCNT inc_void NN(SV* sv)

Tests if the SV is an RV.
U32 SVROK(SV* sv)

Unsets the RV status of an SV.
void SvROK off(SV* sv)

Tells an SV that it is an RV.

http://perldoc.perl.org

Page 51

@ Pefl Perl version 5.12.4 documentation - perlapi

void SvROK_on(SV* sv)

SvRV
Dereferences an RV to return the SV.
SV* SVRV(SV* sv)
SVRV_set
Set the value of the RV pointer in sv to val. See SvIV_set.
void SvRV_set(SV* sv, SV* val)
SvSTASH

Returns the stash of the SV.
HV* SVvSTASH(SV* sv)

SVSTASH_set
Set the value of the STASH pointer in sv to val. See SvIV_set.
void SvSTASH set(SV* sv, HV* val)

SvTAINT
Taints an SV if tainting is enabled.
void SvTAINT(SV* sv)

SVTAINTED
Checks to see if an SV is tainted. Returns TRUE if it is, FALSE if not.
bool SVTAINTED(SV* sv)

SVTAINTED_off

Untaints an SV. Be very careful with this routine, as it short-circuits some of Perl's
fundamental security features. XS module authors should not use this function unless
they fully understand all the implications of unconditionally untainting the value.
Untainting should be done in the standard perl fashion, via a carefully crafted regexp,
rather than directly untainting variables.

void SvTAINTED_off(SV* sv)

SvTAINTED_on
Marks an SV as tainted if tainting is enabled.
void SvTAINTED_on(SV* sv)

SVTRUE
Returns a boolean indicating whether Perl would evaluate the SV as true or false. See
SvOK() for a defined/undefined test. Does not handle 'get' magic.
bool SVTRUE(SV* sv)
SVTYPE

Returns the type of the SV. See svtype.
svtype SVTYPE(SV* sv)

http://perldoc.perl.org Page 52

O Perl

Perl version 5.12.4 documentation - perlapi

SvUOK

SVUPGRADE

SVUTFS8

SVUTF8_off

SVvUTF8_on

Svuv

SvUVX

SvUVX

SvUV_nomg

SvUV_set

Returns a boolean indicating whether the SV contains an unsigned integer.
bool SvUOK(SV* sv)

Used to upgrade an SV to a more complex form. Uses sv_upgrade to perform the
upgrade if necessary. See svtype.

void SvUPGRADE(SV* sv, svtype type)

Returns a U32 value indicating whether the SV contains UTF-8 encoded data. Call this
after SvPV() in case any call to string overloading updates the internal flag.

U32 SVUTF8(SV* sv)

Unsets the UTF-8 status of an SV.
void SvUTF8_off(SV *sv)

Turn on the UTF-8 status of an SV (the data is not changed, just the flag). Do not use
frivolously.

void SvUTF8_on(SV *sv)

Coerces the given SV to an unsigned integer and returns it. See SvUVx for a version
which guarantees to evaluate sv only once.

UV SVUV(SV* sv)

Returns the raw value in the SV's UV slot, without checks or conversions. Only use
when you are sure SvIOK is true. See also SVUV().

UV SVUVX(SV* sv)

Coerces the given SV to an unsigned integer and returns it. Guarantees to sv only
once. Only use this if sv is an expression with side effects, otherwise use the more
efficient SvUV.

UV SVUVX(SV* sv)

Like SvUV but doesn't process magic.
UV SvUV_nomg(SV* sv)

Set the value of the UV pointer in sv to val. See SvIV_set.
void SvUV_set(SV* sv, UV val)

http://perldoc.perl.org

Page 53

@ Pefl Perl version 5.12.4 documentation - perlapi

SvWOK

Returns a boolean indicating whether the SV contains a v-string.
bool SvVOK(SV* sv)

Sv_catpvn_nomg
Like sv_catpvn but doesn't process magic.
void sv_catpvn_nomg(SV* sv, const char* ptr, STRLEN len)

Sv_catsv_nomg
Like sv_catsv but doesn't process magic.
void sv_catsv_nomg(SV* dsv, SV* ssv)

sv_derived_from

Returns a boolean indicating whether the SV is derived from the specified class at the
C level. To check derivation at the Perl level, call isa() as a normal Perl method.

bool sv_derived from(SV* sv, const char *const name)

sv_does

Returns a boolean indicating whether the SV performs a specific, named role. The SV
can be a Perl object or the name of a Perl class.

bool sv_does(SV* sv, const char *const name)

sv_report_used
Dump the contents of all SVs not yet freed. (Debugging aid).
void sv_report_used()

Sv_setsv_nomg
Like sv_setsv but doesn't process magic.
void sv_setsv_nomg(SV* dsv, SV* ssv)

sv_utf8_upgrade_nomg
Like sv_utf8_upgrade, but doesn't do magic on sv
STRLEN sv_utf8 upgrade nomg(NN SV *sv)

SV-Body Allocation
looks_like_number

Test if the content of an SV looks like a number (or is a number). Infand Infinity
are treated as numbers (so will not issue a non-numeric warning), even if your atof()
doesn't grok them.

132 looks_like_number(SV *const sv)

newRV_noinc

Creates an RV wrapper for an SV. The reference count for the original SV is not
incremented.

SV* newRV_noinc(SV *const sv)

http://perldoc.perl.org Page 54

O Perl

Perl version 5.12.4 documentation - perlapi

newSV

newSVhek

newSViv

newSVnv

newSVpv

newSVpvf

newSVpvn

Creates a new SV. A non-zero len parameter indicates the number of bytes of
preallocated string space the SV should have. An extra byte for a trailing NUL is also
reserved. (SVPOK is not set for the SV even if string space is allocated.) The reference
count for the new SV is set to 1.

In 5.9.3, newSV() replaces the older NEWSV() API, and drops the first parameter, x, a
debug aid which allowed callers to identify themselves. This aid has been superseded
by a new build option, PERL_MEM_LOG (see "PERL_MEM_LOG" in perlhack). The
older APl is still there for use in XS modules supporting older perls.

SV* newSV(const STRLEN len)

Creates a new SV from the hash key structure. It will generate scalars that point to the
shared string table where possible. Returns a new (undefined) SV if the hek is NULL.

SV* newSVhek(const HEK *const hek)

Creates a new SV and copies an integer into it. The reference count for the SV is set
to 1.

SV* newSViv(const IV i)

Creates a new SV and copies a floating point value into it. The reference count for the
SVissetto 1.

SV* newSVnv(const NV n)

Creates a new SV and copies a string into it. The reference count for the SV is set to
1. If lenis zero, Perl will compute the length using strlen(). For efficiency, consider
using newSVpvn instead.

SV* newSVpv(const char *const s, const STRLEN len)

Creates a new SV and initializes it with the string formatted like sprintf.
SV* newSVpvf(const char *const pat, ...)

Creates a new SV and copies a string into it. The reference count for the SV is set to
1. Note that if Ien is zero, Perl will create a zero length string. You are responsible for
ensuring that the source string is at least Ien bytes long. If the s argument is NULL
the new SV will be undefined.

SV* newSVpvn(const char *const s, const STRLEN len)

newSVpvn_flags

Creates a new SV and copies a string into it. The reference count for the SV is set to
1. Note that if Ien is zero, Perl will create a zero length string. You are responsible for
ensuring that the source string is at least Ien bytes long. If the s argument is NULL
the new SV will be undefined. Currently the only flag bits accepted are SVf_UTF8 and

http://perldoc.perl.org

Page 55

O Perl

Perl version 5.12.4 documentation - perlapi

SVs_TEMP. If SVs_TEMP is set, then sv2mortal () is called on the result before
returning. If SVF_UTF8 is set, s is considered to be in UTF-8 and the SVF_UTF8 flag
will be set on the new SV. newSVpvn_utf8() is a convenience wrapper for this
function, defined as

#define newSVpvn_utf8(s, len, u) \
newSVpvn_flags((s), (len), (u) ? SVFf_UTF8 : 0)

SV* newSVpvn_flags(const char *const s, const STRLEN len, const
U322 flags)

newSVpvn_share

newSVpvs

Creates a new SV with its SYPVX_const pointing to a shared string in the string table.
If the string does not already exist in the table, it is created first. Turns on READONLY
and FAKE. If the hash parameter is non-zero, that value is used; otherwise the hash is
computed. The string's hash can be later be retrieved from the SV with the
SVSHARED_HASH() macro. The idea here is that as the string table is used for shared
hash keys these strings will have SvPVX_const == HeKEY and hash lookup will avoid
string compare.

SV* newSVpvn_share(const char* s, 132 len, U32 hash)

Like newSVpvn, but takes a literal string instead of a string/length pair.
SV* newSVpvs(const char* s)

newSVpvs_flags

Like newSVpvn_Tflags, but takes a literal string instead of a string/length pair.
SV* newSVpvs_flags(const char* s, U32 flags)

newSVpvs_share

newSVrv

newSVsv

newSVuv

Like newSVpvn_share, but takes a literal string instead of a string/length pair and
omits the hash parameter.

SV* newSVpvs_share(const char* s)

Creates a new SV for the RV, rv, to point to. If rv is not an RV then it will be upgraded
to one. If classname is non-null then the new SV will be blessed in the specified
package. The new SV is returned and its reference count is 1.

SV* newSVrv(SV *const rv, const char *const classname)

Creates a new SV which is an exact duplicate of the original SV. (Uses sv_setsv).
SV* newSVsv(SV *const old)

Creates a new SV and copies an unsigned integer into it. The reference count for the
SVissetto 1.

SV* newSVuv(const UV u)

http://perldoc.perl.org

Page 56

O Perl

Perl version 5.12.4 documentation - perlapi

newSV_type

sv_2bool

Sv_2cv

sv_2io

sv_2iv_flags

sv_2mortal

sv_2nv

sv_2pvbyte

sv_2pvutf8

Creates a new SV, of the type specified. The reference count for the new SV is set to
1.

SV* newSV_type(const svtype type)

This function is only called on magical items, and is only used by sv_true() or its macro
equivalent.

bool sv_2bool(SV *const sv)

Using various gambits, try to get a CV from an SV; in addition, try if possible to set *st
and *gvp to the stash and GV associated with it. The flags in Iref are passed to
gv_fetchsv.

Cv* sv_2cv(SV* sv, HV **const st, GV **const gvp, const 132
Iref)

Using various gambits, try to get an IO from an SV: the IO slot if its a GV; or the
recursive result if we're an RV; or the 10 slot of the symbol named after the PV if we're
a string.

10* sv_2i0o(SV *const sv)

Return the integer value of an SV, doing any necessary string conversion. If flags
includes SV_GMAGIC, does an mg_get() first. Normally used via the Sv1V(sv) and
SvIVx(sv) macros.

1V sv_2iv_flags(SV *const sv, const 132 flags)

Marks an existing SV as mortal. The SV will be destroyed "soon", either by an explicit
call to FREETMPS, or by an implicit call at places such as statement boundaries.
SVTEMP() is turned on which means that the SV's string buffer can be "stolen" if this
SV is copied. See also sv_newmortal and sv_mortalcopy.

SV* sv_2mortal (SV *const sv)

Return the num value of an SV, doing any necessary string or integer conversion,
magic etc. Normally used via the SVNV(sv) and SvNVx(sv) macros.

NV sv_2nv(SV *const sv)

Return a pointer to the byte-encoded representation of the SV, and set *Ip to its length.
May cause the SV to be downgraded from UTF-8 as a side-effect.

Usually accessed via the SvPVbyte macro.
char* sv_2pvbyte(SV *const sv, STRLEN *const Ip)

http://perldoc.perl.org

Page 57

O Perl

Perl version 5.12.4 documentation - perlapi

sv_2pv_flags

sv_2uv_flags

sv_backoff

sv_bless

Sv_catpv

sv_catpvf

sv_catpvf_mg

Return a pointer to the UTF-8-encoded representation of the SV, and set *Ip to its
length. May cause the SV to be upgraded to UTF-8 as a side-effect.

Usually accessed via the SvPVutf8 macro.
char* sv_2pvutf8(SV *const sv, STRLEN *const Ip)

Returns a pointer to the string value of an SV, and sets *Ip to its length. If flags
includes SV_GMAGIC, does an mg_get() first. Coerces sv to a string if necessary.
Normally invoked via the SvPV_Fflags macro. sv_2pv() and sv_2pv_nomg usually
end up here too.

char* sv_2pv_flags(SV *const sv, STRLEN *const Ip, const 132
flags)

Return the unsigned integer value of an SV, doing any necessary string conversion. If
flags includes SV_GMAGIC, does an mg_get() first. Normally used via the SvUV(sv)
and SvUVx(sv) macros.

UV sv_2uv_flags(SV *const sv, const 132 flags)

Remove any string offset. You should normally use the SvOOK_off macro wrapper
instead.

int sv_backoff(SV *const sv)

Blesses an SV into a specified package. The SV must be an RV. The package must
be designated by its stash (see gv_stashpv()). The reference count of the SV is
unaffected.

SV* sv_bless(SV *const sv, HV *const stash)

Concatenates the string onto the end of the string which is in the SV. If the SV has the
UTF-8 status set, then the bytes appended should be valid UTF-8. Handles 'get’
magic, but not 'set' magic. See sv_catpv_mg.

void sv_catpv(SV *const sv, const char* ptr)

Processes its arguments like sprintf and appends the formatted output to an SV. If
the appended data contains "wide" characters (including, but not limited to, SVs with a
UTF-8 PV formatted with %s, and characters >255 formatted with %c), the original SV
might get upgraded to UTF-8. Handles 'get' magic, but not 'set’ magic. See
sv_catpvf_mg. If the original SV was UTF-8, the pattern should be valid UTF-8; if the
original SV was bytes, the pattern should be too.

void sv_catpvf(SV *const sv, const char *const pat, ...)

Like sv_catpvf, but also handles 'set' magic.
void sv_catpvf mg(SV *const sv, const char *const pat, ...)

http://perldoc.perl.org

Page 58

@ Pefl Perl version 5.12.4 documentation - perlapi

sv_catpvn

Concatenates the string onto the end of the string which is in the SV. The Ien
indicates number of bytes to copy. If the SV has the UTF-8 status set, then the bytes
appended should be valid UTF-8. Handles 'get' magic, but not 'set' magic. See
Sv_catpvn_mg.

void sv_catpvn(SV *dsv, const char *sstr, STRLEN len)

sv_catpvn_flags

Concatenates the string onto the end of the string which is in the SV. The len
indicates number of bytes to copy. If the SV has the UTF-8 status set, then the bytes
appended should be valid UTF-8. If Flags has SV_GMAGIC bit set, will mng_get on
dsv if appropriate, else not. sv_catpvn and sv_catpvn_nomg are implemented in
terms of this function.

void sv_catpvn_flags(SV *const dstr, const char *sstr, const
STRLEN len, const 132 flags)

Sv_catpvs
Like sv_catpvn, but takes a literal string instead of a string/length pair.
void sv_catpvs(SV* sv, const char* s)

Sv_catpv_mg
Like sv_catpv, but also handles 'set' magic.
void sv_catpv_mg(SV *const sv, const char *const ptr)

sv_catsv

Concatenates the string from SV ssv onto the end of the string in SV dsv. Modifies
dsv but not ssv. Handles 'get’' magic, but not 'set' magic. See sv_catsv_mg.

void sv_catsv(SV *dstr, SV *sstr)

sv_catsv_flags

Concatenates the string from SV ssv onto the end of the string in SV dsv. Modifies
dsv but not ssv. If Flags has SV_GMAGIC bit set, will mg_get on the SVs if
appropriate, else not. sv_catsv and sv_catsv_nomg are implemented in terms of
this function.

void sv_catsv_flags(SV *const dsv, SV *const ssv, const 132

flags)

sv_chop
Efficient removal of characters from the beginning of the string buffer. SvPOK(sv) must
be true and the ptr must be a pointer to somewhere inside the string buffer. The ptr
becomes the first character of the adjusted string. Uses the "OOK hack". Beware: after
this function returns, ptr and SvPVX_const(sv) may no longer refer to the same
chunk of data.

void sv_chop(SV *const sv, const char *const ptr)
sv_clear

Clear an SV: call any destructors, free up any memory used by the body, and free the
body itself. The SV's head is not freed, although its type is set to all 1's so that it won't
inadvertently be assumed to be live during global destruction etc. This function should

http://perldoc.perl.org Page 59

@ Pefl Perl version 5.12.4 documentation - perlapi

only be called when REFCNT is zero. Most of the time you'll want to call sv_free()
(or its macro wrapper SVREFCNT_dec) instead.

void sv_clear(SV *const sv)

sv_cmp

Compares the strings in two SVs. Returns -1, 0, or 1 indicating whether the string in
svlis less than, equal to, or greater than the string in sv2. Is UTF-8 and 'use bytes'
aware, handles get magic, and will coerce its args to strings if necessary. See also
sv_cmp_locale.

132 sv_cmp(SV *const svl, SV *const sv2)

sv_cmp_locale

Compares the strings in two SVs in a locale-aware manner. Is UTF-8 and 'use bytes'
aware, handles get magic, and will coerce its args to strings if necessary. See also
sv_cmp.

132 sv_cmp_locale(SV *const svl, SV *const sv2)

sv_collxfrm
Add Collate Transform magic to an SV if it doesn't already have it.

Any scalar variable may carry PERL_MAGIC_ collxfrm magic that contains the scalar
data of the variable, but transformed to such a format that a normal memory
comparison can be used to compare the data according to the locale settings.

char* sv_colIxfrm(SV *const sv, STRLEN *const nxp)

SV_copypv

Copies a stringified representation of the source SV into the destination SV.
Automatically performs any necessary mg_get and coercion of numeric values into
strings. Guaranteed to preserve UTF8 flag even from overloaded objects. Similar in
nature to sv_2pv[_flags] but operates directly on an SV instead of just the string.
Mostly uses sv_2pv_flags to do its work, except when that would lose the UTF-8'ness
of the PV.

void sv_copypv(SV *const dsv, SV *const ssv)

sv_dec

Auto-decrement of the value in the SV, doing string to numeric conversion if
necessary. Handles 'get' magic.

void sv_dec(SV *const sv)

sv_eq

Returns a boolean indicating whether the strings in the two SVs are identical. Is UTF-8
and 'use bytes' aware, handles get magic, and will coerce its args to strings if
necessary.

132 sv_eq(SV* svl, SV* sv2)

sv_force_normal_flags

Undo various types of fakery on an SV: if the PV is a shared string, make a private
copy; if we're a ref, stop refing; if we're a glob, downgrade to an xpvmg; if we're a
copy-on-write scalar, this is the on-write time when we do the copy, and is also used
locally. If SV_COW_DROP_PV is set then a copy-on-write scalar drops its PV buffer (if

http://perldoc.perl.org Page 60

O Perl

Perl version 5.12.4 documentation - perlapi

sv_free

sv_gets

SvV_grow

sv_inc

sv_insert

sv_insert_flags

Sv_isa

sv_isobject

any) and becomes SvPOK _off rather than making a copy. (Used where this scalar is
about to be set to some other value.) In addition, the flags parameter gets passed to
sv_unref_flags() when unrefing. sv_force_normal calls this function with flags
setto 0.

void sv_force_normal_flags(SV *const sv, const U32 flags)

Decrement an SV's reference count, and if it drops to zero, call sv_clear to invoke
destructors and free up any memory used by the body; finally, deallocate the SV's
head itself. Normally called via a wrapper macro SVREFCNT_dec.

void sv_free(SV *const sv)

Get a line from the filehandle and store it into the SV, optionally appending to the
currently-stored string.

char* sv_gets(SV *const sv, PerllO *const fp, 132 append)

Expands the character buffer in the SV. If necessary, uses sv_unref and upgrades
the SV to SVt_PV. Returns a pointer to the character buffer. Use the SvGROW wrapper
instead.

char* sv_grow(SV *const sv, STRLEN newlen)

Auto-increment of the value in the SV, doing string to numeric conversion if necessary.
Handles 'get' magic.

void sv_inc(SV *const sv)

Inserts a string at the specified offset/length within the SV. Similar to the Perl substr()
function. Handles get magic.

void sv_insert(SV *const bigstr, const STRLEN offset, const
STRLEN len, const char *const little, const STRLEN littlelen)

Same as sv_insert, but the extra Flags are passed the SvPV_force_flags that
applies to bigstr.

void sv_insert_flags(SV *const bigstr, const STRLEN offset,
const STRLEN len, const char *const little, const STRLEN
littlelen, const U32 flags)

Returns a boolean indicating whether the SV is blessed into the specified class. This
does not check for subtypes; use sv_derived_from to verify an inheritance
relationship.

int sv_isa(SV* sv, const char *const name)

http://perldoc.perl.org

Page 61

O Perl

Perl version 5.12.4 documentation - perlapi

sv_len

sv_len_utf8

svV_magic

Sv_magicext

sv_mortalcopy

sv_newmortal

Returns a boolean indicating whether the SV is an RV pointing to a blessed object. If
the SV is not an RV, or if the object is not blessed, then this will return false.

int sv_isobject(SV* sv)

Returns the length of the string in the SV. Handles magic and type coercion. See also
SVCUR, which gives raw access to the xpv_cur slot.

STRLEN sv_len(SV *const sv)

Returns the number of characters in the string in an SV, counting wide UTF-8 bytes as
a single character. Handles magic and type coercion.

STRLEN sv_len_utf8(SV *const sv)

Adds magic to an SV. First upgrades sv to type SVt _PVMG if necessary, then adds a
new magic item of type how to the head of the magic list.

See sv_magicext (which sv_magic now calls) for a description of the handling of
the name and namlen arguments.

You need to use sv_magicext to add magic to SYREADONLY SVs and also to add
more than one instance of the same 'how'.

void sv_magic(SV *const sv, SV *const obj, const int how, const
char *const name, const 132 namlen)

Adds magic to an SV, upgrading it if necessary. Applies the supplied vtable and
returns a pointer to the magic added.

Note that sv_magicext will allow things that sv_magic will not. In particular, you can
add magic to SYREADONLY SVs, and add more than one instance of the same 'how'.

If namlen is greater than zero then a savepvn copy of name is stored, if namlen is
zero then name is stored as-is and - as another special case - if (name && namlen
== HET_SVKEY) then name is assumed to contain an SV* and is stored as-is with its
REFCNT incremented.

(This is now used as a subroutine by sv_magic.)

MAGIC * sv_magicext(SV *const sv, SV *const obj, const int how,
const MGVTBL *const vtbl, const char *const name, const 132
namlen)

Creates a new SV which is a copy of the original SV (using sv_setsv). The new SV is
marked as mortal. It will be destroyed "soon", either by an explicit call to FREETMPS,
or by an implicit call at places such as statement boundaries. See also
sv_newmortal and sv_2mortal.

SV* sv_mortalcopy(SV *const oldsv)

Creates a new null SV which is mortal. The reference count of the SV is set to 1. It will
be destroyed "soon", either by an explicit call to FREETMPS, or by an implicit call at

http://perldoc.perl.org

Page 62

O Perl

Perl version 5.12.4 documentation - perlapi

sv_newref

sv_pos_b2u

sv_pos_u2b

places such as statement boundaries. See also sv_mortalcopy and sv_2mortal.
SV* sv_newmortal)

Increment an SV's reference count. Use the SVREFCNT_inc() wrapper instead.
SV* sv_newref(SV *const sv)

Converts the value pointed to by offsetp from a count of bytes from the start of the
string, to a count of the equivalent number of UTF-8 chars. Handles magic and type
coercion.

void sv_pos_b2u(SV *const sv, 132 *const offsetp)

Converts the value pointed to by offsetp from a count of UTF-8 chars from the start of
the string, to a count of the equivalent number of bytes; if lenp is non-zero, it does the
same to lenp, but this time starting from the offset, rather than from the start of the
string. Handles magic and type coercion.

Use sv_pos_u2b_flags in preference, which correctly handles strings longer than
2Gb.

void sv_pos_u2b(SV *const sv, 132 *const offsetp, 132 *const
lenp)

sv_pos_u2b_flags

Converts the value pointed to by offsetp from a count of UTF-8 chars from the start of
the string, to a count of the equivalent number of bytes; if lenp is non-zero, it does the
same to lenp, but this time starting from the offset, rather than from the start of the
string. Handles type coercion. flags is passed to SvPV_flags, and usually should be
SV_GMAGIC|SV_CONST_RETURN to handle magic.

STRLEN sv_pos_u2b_flags(SV *const sv, STRLEN uoffset, STRLEN
*const lenp, U32 flags)

sv_pvbyten_force

sv_pvn_force

The backend for the SvPVbytex_ force macro. Always use the macro instead.
char* sv_pvbyten_force(SV *const sv, STRLEN *const Ip)

Get a sensible string out of the SV somehow. A private implementation of the
SvPV_force macro for compilers which can't cope with complex macro expressions.
Always use the macro instead.

char* sv_pvn_force(SV* sv, STRLEN* Ip)

sv_pvn_force_flags

Get a sensible string out of the SV somehow. If Flags has SV_GMAGIC bit set, will
mg_get on sv if appropriate, else not. sv_pvn_Tforce and sv_pvn_force_nomg
are implemented in terms of this function. You normally want to use the various
wrapper macros instead: see SvPV_force and SvPV_Tforce_nomg

char* sv_pvn_force_ flags(SV *const sv, STRLEN *const lIp, const

http://perldoc.perl.org

Page 63

O Perl

Perl version 5.12.4 documentation - perlapi

132 flags)

sv_pvutf8n_force

sv_reftype

sv_replace

sv_reset

sv_rvweaken

sv_setiv

Sv_setiv._mg

sv_setnv

sv_setnv_mg

The backend for the SvPVutf8x_force macro. Always use the macro instead.
char* sv_pvutf8n_force(SV *const sv, STRLEN *const Ip)

Returns a string describing what the SV is a reference to.
const char* sv_reftype(const SV *const sv, const int ob)

Make the first argument a copy of the second, then delete the original. The target SV
physically takes over ownership of the body of the source SV and inherits its flags;
however, the target keeps any magic it owns, and any magic in the source is
discarded. Note that this is a rather specialist SV copying operation; most of the time
you'll want to use sv_setsv or one of its many macro front-ends.

void sv_replace(SV *const sv, SV *const nsv)

Underlying implementation for the reset Perl function. Note that the perl-level
function is vaguely deprecated.

void sv_reset(const char* s, HV *const stash)

Weaken a reference: set the SYWWEAKREF flag on this RV; give the referred-to SV
PERL_MAGIC_backref magic if it hasn't already; and push a back-reference to this
RV onto the array of backreferences associated with that magic. If the RV is magical,
set magic will be called after the RV is cleared.

SV* sv_rvweaken(SV *const sv)

Copies an integer into the given SV, upgrading first if necessary. Does not handle 'set'
magic. See also sv_setiv_mg.

void sv_setiv(SV *const sv, const IV num)

Like sv_setiv, but also handles 'set' magic.
void sv_setiv_mg(SV *const sv, const 1V i)

Copies a double into the given SV, upgrading first if necessary. Does not handle 'set'
magic. See also sv_setnv_mg.

void sv_setnv(SV *const sv, const NV num)

Like sv_setnv, but also handles 'set' magic.
void sv_setnv_mg(SV *const sv, const NV num)

http://perldoc.perl.org

Page 64

@ Pefl Perl version 5.12.4 documentation - perlapi

Sv_setpv
Copies a string into an SV. The string must be null-terminated. Does not handle 'set'
magic. See sv_setpv_mg.
void sv_setpv(SV *const sv, const char *const ptr)
sv_setpvf

Works like sv_catpvT but copies the text into the SV instead of appending it. Does
not handle 'set' magic. See sv_setpvf_mg.

void sv_setpvFf(SV *const sv, const char *const pat, ...)

sv_setpvf_mg
Like sv_setpvT, but also handles 'set' magic.
void sv_setpvf mg(SV *const sv, const char *const pat, ...)

Sv_setpviv

Copies an integer into the given SV, also updating its string value. Does not handle
'set' magic. See sv_setpviv_mg.

void sv_setpviv(SV *const sv, const IV num)

Sv_setpviv_mg
Like sv_setpviv, but also handles 'set' magic.
void sv_setpviv_mg(SV *const sv, const IV iv)

sv_setpvn

Copies a string into an SV. The Ien parameter indicates the number of bytes to be
copied. If the ptr argument is NULL the SV will become undefined. Does not handle
'set' magic. See sv_setpvn_mg.

void sv_setpvn(SV *const sv, const char *const ptr, const
STRLEN 1len)

sv_setpvn_mg
Like sv_setpvn, but also handles 'set' magic.

void sv_setpvn_mg(SV *const sv, const char *const ptr, const
STRLEN 1len)

Sv_setpvs
Like sv_setpvn, but takes a literal string instead of a string/length pair.
void sv_setpvs(SV* sv, const char* s)

Sv_setpv_mg
Like sv_setpv, but also handles 'set' magic.
void sv_setpv_mg(SV *const sv, const char *const ptr)

sv_setref_iv

Copies an integer into a new SV, optionally blessing the SV. The rv argument will be
upgraded to an RV. That RV will be modified to point to the new SV. The classname
argument indicates the package for the blessing. Set classname to NULL to avoid the

http://perldoc.perl.org Page 65

O Perl

Perl version 5.12.4 documentation - perlapi

sv_setref_nv

sv_setref_pv

sv_setref_pvn

sv_setref_uv

Sv_setsv

blessing. The new SV will have a reference count of 1, and the RV will be returned.

SV* sv_setref_iv(SV *const rv, const char *const classname,
const 1V iv)

Copies a double into a new SV, optionally blessing the SV. The rv argument will be
upgraded to an RV. That RV will be modified to point to the new SV. The classname
argument indicates the package for the blessing. Set classname to NULL to avoid the
blessing. The new SV will have a reference count of 1, and the RV will be returned.

SV* sv_setref_nv(SV *const rv, const char *const classname,
const NV nv)

Copies a pointer into a new SV, optionally blessing the SV. The rv argument will be
upgraded to an RV. That RV will be modified to point to the new SV. If the pv
argument is NULL then PL_sv_undef will be placed into the SV. The classname
argument indicates the package for the blessing. Set classname to NULL to avoid the
blessing. The new SV will have a reference count of 1, and the RV will be returned.

Do not use with other Perl types such as HV, AV, SV, CV, because those objects will
become corrupted by the pointer copy process.

Note that sv_setref _pvn copies the string while this copies the pointer.

SV* sv_setref pv(SV *const rv, const char *const classname,
void *const pv)

Copies a string into a new SV, optionally blessing the SV. The length of the string must
be specified with n. The rv argument will be upgraded to an RV. That RV will be
modified to point to the new SV. The classname argument indicates the package for
the blessing. Set classname to NULL to avoid the blessing. The new SV will have a
reference count of 1, and the RV will be returned.

Note that sv_setref _pv copies the pointer while this copies the string.

SV* sv_setref _pvn(SV *const rv, const char *const classname,
const char *const pv, const STRLEN n)

Copies an unsigned integer into a new SV, optionally blessing the SV. The rv
argument will be upgraded to an RV. That RV will be modified to point to the new SV.
The classnhame argument indicates the package for the blessing. Set classname to
NULL to avoid the blessing. The new SV will have a reference count of 1, and the RV
will be returned.

SV* sv_setref _uv(SV *const rv, const char *const classname,
const UV uv)

Copies the contents of the source SV ssv into the destination SV dsv. The source SV
may be destroyed if it is mortal, so don't use this function if the source SV needs to be
reused. Does not handle 'set' magic. Loosely speaking, it performs a copy-by-value,
obliterating any previous content of the destination.

You probably want to use one of the assortment of wrappers, such as SvSetSV,
SvSetSV_nosteal, SvSetMagicSV and SvSetMagicSV_nosteal.

http://perldoc.perl.org

Page 66

O Perl

Perl version 5.12.4 documentation - perlapi

sv_setsv_flags

Sv_setsv_mg

Sv_setuv

Sv_setuv_mg

sv_tainted

sv_true

SV_unmagic

sv_unref_flags

void sv_setsv(SV *dstr, SV *sstr)

Copies the contents of the source SV ssv into the destination SV dsv. The source SV
may be destroyed if it is mortal, so don't use this function if the source SV needs to be
reused. Does not handle 'set' magic. Loosely speaking, it performs a copy-by-value,
obliterating any previous content of the destination. If the Flags parameter has the
SV_GMAGIC bit set, will mg_get on ssv if appropriate, else not. If the Flags
parameter has the NOSTEAL bit set then the buffers of temps will not be stolen.
<sv_setsv> and sv_setsv_nomg are implemented in terms of this function.

You probably want to use one of the assortment of wrappers, such as SvSetSyV,
SvSetSV_nosteal, SvSetMagicSV and SvSetMagicSV_nosteal.

This is the primary function for copying scalars, and most other copy-ish functions and
macros use this underneath.

void sv_setsv_flags(SV *dstr, SV *sstr, const 132 flags)

Like sv_setsv, but also handles 'set' magic.
void sv_setsv_mg(SV *const dstr, SV *const sstr)

Copies an unsigned integer into the given SV, upgrading first if necessary. Does not
handle 'set' magic. See also sv_setuv_mg.

void sv_setuv(SV *const sv, const UV num)

Like sv_setuv, but also handles 'set' magic.
void sv_setuv_mg(SV *const sv, const UV u)

Test an SV for taintedness. Use SVTAINTED instead. bool sv_tainted(SV *const sv)

Returns true if the SV has a true value by Perl's rules. Use the SVTRUE macro instead,
which may call sv_true() or may instead use an in-line version.

132 sv_true(SV *const sv)

Removes all magic of type type from an SV.
int sv_unmagic(SV *const sv, const int type)

Unsets the RV status of the SV, and decrements the reference count of whatever was
being referenced by the RV. This can almost be thought of as a reversal of newSVrv.
The cflags argument can contain SV_IMMEDIATE_UNREF to force the reference
count to be decremented (otherwise the decrementing is conditional on the reference
count being different from one or the reference being a readonly SV). See SVROK_off

http://perldoc.perl.org

Page 67

O Perl

Perl version 5.12.4 documentation - perlapi

SvV_untaint

Sv_upgrade

void sv_unref_flags(SV *const ref, const U32 flags)

Untaint an SV. Use SVTAINTED_off instead. void sv_untaint(SV *const sv)

Upgrade an SV to a more complex form. Generally adds a new body type to the SV,
then copies across as much information as possible from the old body. You generally
want to use the SYUPGRADE macro wrapper. See also svtype.

void sv_upgrade(SV *const sv, svtype new_type)

sv_usepvn_flags

Tells an SV to use ptr to find its string value. Normally the string is stored inside the
SV but sv_usepvn allows the SV to use an outside string. The ptr should point to
memory that was allocated by mal loc. The string length, Ien, must be supplied. By
default this function will realloc (i.e. move) the memory pointed to by ptr, so that
pointer should not be freed or used by the programmer after giving it to sv_usepvn,
and neither should any pointers from "behind" that pointer (e.g. ptr + 1) be used.

If Flags & SV_SMAGIC is true, will call SY'SETMAGIC. If Flags &

SV_HAS_ TRAILING_NUL is true, then ptr[Ien] must be NUL, and the realloc will
be skipped. (i.e. the buffer is actually at least 1 byte longer than Ien, and already
meets the requirements for storing in SVPVX)

void sv_usepvn_flags(SV *const sv, char* ptr, const STRLEN len,
const U32 flags)

sv_utf8_decode

If the PV of the SV is an octet sequence in UTF-8 and contains a multiple-byte
character, the SVUTF8 flag is turned on so that it looks like a character. If the PV
contains only single-byte characters, the SVUTF8 flag stays being off. Scans PV for
validity and returns false if the PV is invalid UTF-8.

NOTE: this function is experimental and may change or be removed without notice.
bool sv_utf8 decode(SV *const sv)

sv_utf8_downgrade

Attempts to convert the PV of an SV from characters to bytes. If the PV contains a
character that cannot fit in a byte, this conversion will fail; in this case, either returns
false or, if fail_ok is not true, croaks.

This is not as a general purpose Unicode to byte encoding interface: use the Encode
extension for that.

NOTE: this function is experimental and may change or be removed without notice.
bool sv_utf8 downgrade(SV *const sv, const bool fail_ok)

sv_utf8_encode

Converts the PV of an SV to UTF-8, but then turns the SVUTF8 flag off so that it looks
like octets again.

void sv_utf8_encode(SV *const sv)

sv_utf8_upgrade

Converts the PV of an SV to its UTF-8-encoded form. Forces the SV to string form if it

http://perldoc.perl.org

Page 68

O Perl

Perl version 5.12.4 documentation - perlapi

is not already. Will mng_get on sv if appropriate. Always sets the SYUTF8 flag to avoid
future validity checks even if the whole string is the same in UTF-8 as not. Returns the
number of bytes in the converted string

This is not as a general purpose byte encoding to Unicode interface: use the Encode
extension for that.

STRLEN sv_utf8 upgrade(SV *sv)

sv_utf8_upgrade_flags

Converts the PV of an SV to its UTF-8-encoded form. Forces the SV to string form if it
is not already. Always sets the SYUTF8 flag to avoid future validity checks even if all
the bytes are invariant in UTF-8. If flags has SV_GMAGIC bit set, will mng_get on sv if
appropriate, else not. Returns the number of bytes in the converted string

sv_utf8 upgrade and sv_utf8 upgrade_nomg are implemented in terms of this
function.

This is not as a general purpose byte encoding to Unicode interface: use the Encode
extension for that.

STRLEN sv_utf8 upgrade flags(SV *const sv, const 132 flags)

sv_utf8_upgrade_nomg

sv_vcatpvf

sv_vcatpvfn

Like sv_utf8 upgrade, but doesn't do magic on sv
STRLEN sv_utf8 upgrade_nomg(SV *sv)

Processes its arguments like vsprintf and appends the formatted output to an SV.
Does not handle 'set' magic. See sv_vcatpvf_mg.

Usually used via its frontend sv_catpvf.

void sv_vcatpvf(SV *const sv, const char *const pat, va_list
*const args)

Processes its arguments like vsprintf and appends the formatted output to an SV.
Uses an array of SVs if the C style variable argument list is missing (NULL). When
running with taint checks enabled, indicates via maybe_tainted if results are
untrustworthy (often due to the use of locales).

Usually used via one of its frontends sv_vcatpvf and sv_vcatpvf_mg.

void sv_vcatpvfn(SV *const sv, const char *const pat, const
STRLEN patlen, va_list *const args, SV **const svargs, const 132
svmax, bool *const maybe tainted)

sv_vcatpvf_mg

sv_vsetpvf

Like sv_vcatpvT, but also handles 'set' magic.
Usually used via its frontend sv_catpvf_mg.

void sv_vcatpvf mg(SV *const sv, const char *const pat, va_list
*const args)

Works like sv_vcatpvT but copies the text into the SV instead of appending it. Does
not handle 'set’ magic. See sv_vsetpvf_mg.

http://perldoc.perl.org

Page 69

O Perl

Perl version 5.12.4 documentation - perlapi

sv_vsetpvfn

sv_vsetpvf_mg

Unicode Support
bytes from_utf

bytes to utf8

ibcmp_utf8

Usually used via its frontend sv_setpvf.

void sv_vsetpvf(SV *const sv, const char *const pat, va_list
*const args)

Works like sv_vcatpvfn but copies the text into the SV instead of appending it.
Usually used via one of its frontends sv_vsetpvTt and sv_vsetpvf_mg.

void sv_vsetpvfn(SV *const sv, const char *const pat, const
STRLEN patlen, va_list *const args, SV **const svargs, const 132
svmax, bool *const maybe tainted)

Like sv_vsetpvT, but also handles 'set' magic.
Usually used via its frontend sv_setpvf_mg.

void sv_vsetpvf mg(SV *const sv, const char *const pat, va_list
*const args)

8

Converts a string s of length Ien from UTF-8 into native byte encoding. Unlike
utf8 to bytes but like bytes to utf8, returns a pointer to the newly-created
string, and updates len to contain the new length. Returns the original string if no
conversion occurs, len is unchanged. Do nothing if is_utf8 points to 0. Sets
is_utf8to 0if sis converted or consisted entirely of characters that are invariant in
utf8 (i.e., US-ASCII on non-EBCDIC machines).

NOTE: this function is experimental and may change or be removed without notice.
Us* bytes from utf8(const U8 *s, STRLEN *len, bool *is_utf8)

Converts a string s of length 1en from the native encoding into UTF-8. Returns a
pointer to the newly-created string, and sets Ien to reflect the new length.

A NUL character will be written after the end of the string.

If you want to convert to UTF-8 from encodings other than the native (Latinl or
EBCDIC), see sv_recode_to_utf8().

NOTE: this function is experimental and may change or be removed without notice.
U8* bytes to utf8(const U8 *s, STRLEN *len)

Return true if the strings s1 and s2 differ case-insensitively, false if not (if they are
equal case-insensitively). If ul is true, the string s1 is assumed to be in
UTF-8-encoded Unicode. If u2 is true, the string s2 is assumed to be in
UTF-8-encoded Unicode. If ul or u2 are false, the respective string is assumed to be
in native 8-bit encoding.

If the pel and pe2 are non-NULL, the scanning pointers will be copied in there (they
will point at the beginning of the next character). If the pointers behind pel or pe2 are
non-NULL, they are the end pointers beyond which scanning will not continue under
any circumstances. If the byte lengths 11 and 12 are non-zero, s1+l1 and s2+I2 will be
used as goal end pointers that will also stop the scan, and which qualify towards

http://perldoc.perl.org

Page 70

@ Pefl Perl version 5.12.4 documentation - perlapi

defining a successful match: all the scans that define an explicit length must reach
their goal pointers for a match to succeed).

For case-insensitiveness, the "casefolding" of Unicode is used instead of
upper/lowercasing both the characters, see
http://www.unicode.org/unicode/reports/tr21/ (Case Mappings).

132 ibcmp_utf8(const char *sl1, char **pel, UV 11, bool ul,
const char *s2, char **pe2, UV 12, bool u2)

is_ascii_string

Returns true if first len bytes of the given string are ASCII (i.e. none of them even
raise the question of UTF-8-ness).

See also is_utf8_string(), is_utf8_string_loclen(), and is_utf8_string_loc().
bool is ascii_string(const U8 *s, STRLEN len)

is_utf8_char

Tests if some arbitrary number of bytes begins in a valid UTF-8 character. Note that an
INVARIANT (i.e. ASCIl on non-EBCDIC machines) character is a valid UTF-8
character. The actual number of bytes in the UTF-8 character will be returned if it is
valid, otherwise 0.

STRLEN is_utf8 char(const U8 *s)

is_utf8_string

Returns true if first len bytes of the given string form a valid UTF-8 string, false
otherwise. Note that 'a valid UTF-8 string' does not mean 'a string that contains code
points above 0x7F encoded in UTF-8' because a valid ASCII string is a valid UTF-8
string.

See also is_ascii_string(), is_utf8_string_loclen(), and is_utf8 string_loc().
bool is utf8 string(const U8 *s, STRLEN len)

is_utf8 string_loc

Like is_utf8_string() but stores the location of the failure (in the case of "utf8ness
failure™) or the location s+len (in the case of "utf8ness success") in the ep.

See also is_utf8_string_loclen() and is_utf8_string().
bool is utf8 string loc(const U8 *s, STRLEN len, const U8 **p)

is_utf8_string_loclen

Like is_utf8_string() but stores the location of the failure (in the case of "utf8ness
failure™) or the location s+len (in the case of "utf8ness success") in the ep, and the
number of UTF-8 encoded characters in the el.

See also is_utf8_string_loc() and is_utf8_string().

bool is utf8 string loclen(const U8 *s, STRLEN len, const U8
**ep, STRLEN *el)

pv_uni_display

Build to the scalar dsv a displayable version of the string spv, length len, the
displayable version being at most pvlim bytes long (if longer, the rest is truncated and
"..." will be appended).

The flags argument can have UNI_DISPLAY _ISPRINT set to display isPRINT()able

http://perldoc.perl.org Page 71

O Perl

Perl version 5.12.4 documentation - perlapi

characters as themselves, UNI_DISPLAY_ BACKSLASH to display the \\[nrfta\\] as the
backslashed versions (like \n") (UNI_DISPLAY_BACKSLASH is preferred over
UNI_DISPLAY_ISPRINT for \\). UNI_DISPLAY_QQ (and its alias
UNI_DISPLAY_REGEX) have both UNI_DISPLAY_BACKSLASH and
UNI_DISPLAY_ISPRINT turned on.

The pointer to the PV of the dsv is returned.

char* pv_uni_display(SV *dsv, const U8 *spv, STRLEN len, STRLEN
pviim, UV flags)

sv_cat_decode

The encoding is assumed to be an Encode object, the PV of the ssv is assumed to be
octets in that encoding and decoding the input starts from the position which (PV +
*offset) pointed to. The dsv will be concatenated the decoded UTF-8 string from ssv.
Decoding will terminate when the string tstr appears in decoding output or the input
ends on the PV of the ssv. The value which the offset points will be modified to the last
input position on the ssv.

Returns TRUE if the terminator was found, else returns FALSE.

bool sv_cat _decode(SV* dsv, SV *encoding, SV *ssv, int *offset,
char* tstr, int tlen)

sv_recode_to_utf8

sv_uni_display

to_utf8_case

The encoding is assumed to be an Encode object, on entry the PV of the sv is
assumed to be octets in that encoding, and the sv will be converted into Unicode (and
UTF-8).

If the sv already is UTF-8 (or if it is not POK), or if the encoding is not a reference,
nothing is done to the sv. If the encoding is not an Encode: : XS Encoding object, bad
things will happen. (See lib/encoding.pm and Encode).

The PV of the sv is returned.
char* sv_recode_to utf8(SV* sv, SV *encoding)

Build to the scalar dsv a displayable version of the scalar sv, the displayable version
being at most pvlim bytes long (if longer, the rest is truncated and "..." will be
appended).

The flags argument is as in pv_uni_display().
The pointer to the PV of the dsv is returned.
char* sv_uni_display(SV *dsv, SV *ssv, STRLEN pvlim, UV flags)

The "p" contains the pointer to the UTF-8 string encoding the character that is being
converted.

The "ustrp" is a pointer to the character buffer to put the conversion result to. The
"lenp" is a pointer to the length of the result.

The "swashp" is a pointer to the swash to use.

Both the special and normal mappings are stored lib/unicore/To/Foo.pl, and loaded by
SWASHNEW, using lib/utf8 heavy.pl. The special (usually, but not always, a
multicharacter mapping), is tried first.

The "special" is a string like "utf8::ToSpecLower", which means the hash
%utf8::ToSpecLower. The access to the hash is through Perl_to_utf8_case().

http://perldoc.perl.org

Page 72

O Perl

Perl version 5.12.4 documentation - perlapi

to_utf8_fold

to_utf8_lower

to_utf8_title

to_utf8_upper

utf8n_to_uvchr

The "normal" is a string like "ToLower" which means the swash %utf8::ToLower.

UV to_utf8_ case(const U8 *p, U8* ustrp, STRLEN *lenp, SV
**swashp, const char *normal, const char *special)

Convert the UTF-8 encoded character at p to its foldcase version and store that in
UTF-8 in ustrp and its length in bytes in lenp. Note that the ustrp needs to be at least
UTF8 MAXBYTES CASE+1 bytes since the foldcase version may be longer than the
original character (up to three characters).

The first character of the foldcased version is returned (but note, as explained above,
that there may be more.)

UV to_utf8_fold(const U8 *p, U8* ustrp, STRLEN *lenp)

Convert the UTF-8 encoded character at p to its lowercase version and store that in
UTF-8 in ustrp and its length in bytes in lenp. Note that the ustrp needs to be at least
UTF8 MAXBYTES_ CASE+1 bytes since the lowercase version may be longer than
the original character.

The first character of the lowercased version is returned (but note, as explained above,
that there may be more.)

UV to_utf8 lower(const U8 *p, U8* ustrp, STRLEN *lenp)

Convert the UTF-8 encoded character at p to its titlecase version and store that in
UTF-8 in ustrp and its length in bytes in lenp. Note that the ustrp needs to be at least
UTF8 MAXBYTES_ CASE+1 hytes since the titlecase version may be longer than the
original character.

The first character of the titlecased version is returned (but note, as explained above,
that there may be more.)

UV to_utf8_title(const U8 *p, U8* ustrp, STRLEN *lenp)

Convert the UTF-8 encoded character at p to its uppercase version and store that in
UTF-8 in ustrp and its length in bytes in lenp. Note that the ustrp needs to be at least
UTF8 MAXBYTES CASE+1 bytes since the uppercase version may be longer than
the original character.

The first character of the uppercased version is returned (but note, as explained
above, that there may be more.)

UV to_utf8 upper(const U8 *p, U8* ustrp, STRLEN *lenp)

flags

Returns the native character value of the first character in the string s which is
assumed to be in UTF-8 encoding; retlen will be set to the length, in bytes, of that
character.

Allows length and flags to be passed to low level routine.

UV utf8n_to_uvchr(const U8 *s, STRLEN curlen, STRLEN *retlen,
U322 flags)

http://perldoc.perl.org

Page 73

@ Pefl Perl version 5.12.4 documentation - perlapi

utf8n_to_uvuni

Bottom level UTF-8 decode routine. Returns the Unicode code point value of the first
character in the string s which is assumed to be in UTF-8 encoding and no longer than
curlen; retlen will be set to the length, in bytes, of that character.

If s does not point to a well-formed UTF-8 character, the behaviour is dependent on
the value of Flags: if it contains UTF8_CHECK_ONLY, it is assumed that the caller
will raise a warning, and this function will silently just set retlen to -1 and return
zero. If the Flags does not contain UTF8_CHECK_ONLY, warnings about
malformations will be given, retlen will be set to the expected length of the UTF-8
character in bytes, and zero will be returned.

The flags can also contain various flags to allow deviations from the strict UTF-8
encoding (see utf8.h).

Most code should use utf8_to_uvchr() rather than call this directly.

UV utf8n_to uvuni(const U8 *s, STRLEN curlen, STRLEN *retlen,
U32 flags)

utf8_distance
Returns the number of UTF-8 characters between the UTF-8 pointers a and b.

WARNING: use only if you *know* that the pointers point inside the same UTF-8
buffer.

IV utf8 distance(const U8 *a, const U8 *b)

utf8_hop
Return the UTF-8 pointer s displaced by oFf characters, either forward or backward.
WARNING: do not use the following unless you *know* ofF is within the UTF-8 data
pointed to by s *and* that on entry s is aligned on the first byte of character or just
after the last byte of a character.
Ug8* utf8 hop(const U8 *s, 132 off)
utf8_length

Return the length of the UTF-8 char encoded string s in characters. Stops at e
(inclusive). If e < s or if the scan would end up past e, croaks.

STRLEN utf8 length(const U8* s, const U8 *e)

utf8_to_bytes

Converts a string s of length Ien from UTF-8 into native byte encoding. Unlike
bytes to_ utf8, this over-writes the original string, and updates len to contain the
new length. Returns zero on failure, setting len to -1.

If you need a copy of the string, see bytes from_utf8.
NOTE: this function is experimental and may change or be removed without notice.
us* utf8 to bytes(U8 *s, STRLEN *len)

utf8_to_uvchr

Returns the native character value of the first character in the string s which is
assumed to be in UTF-8 encoding; retlen will be set to the length, in bytes, of that
character.

If s does not point to a well-formed UTF-8 character, zero is returned and retlen is set,
if possible, to -1.

http://perldoc.perl.org Page 74

O Perl

Perl version 5.12.4 documentation - perlapi

utf8_to_uvuni

uvchr_to_utf8

UV utf8_to _uvchr(const U8 *s, STRLEN *retlen)

Returns the Unicode code point of the first character in the string s which is assumed
to be in UTF-8 encoding; retlen will be set to the length, in bytes, of that character.

This function should only be used when the returned UV is considered an index into
the Unicode semantic tables (e.g. swashes).

If s does not point to a well-formed UTF-8 character, zero is returned and retlen is set,
if possible, to -1.

UV utf8_to uvuni(const U8 *s, STRLEN *retlen)

Adds the UTF-8 representation of the Native codepoint uv to the end of the string d; d
should be have at least UTF8_MAXBYTES+1 free bytes available. The return value is
the pointer to the byte after the end of the new character. In other words,

d = uvchr_to _utf8(d, uv);

is the recommended wide native character-aware way of saying
*(d++) = uv;

U8* uvchr_to utf8(U8 *d, UV uv)

uvuni_to_utf8_flags

Adds the UTF-8 representation of the Unicode codepoint uv to the end of the string d;
d should be have at least UTF8_MAXBYTES+1 free bytes available. The return value is
the pointer to the byte after the end of the new character. In other words,

d = uvuni_to_utf8 flags(d, uv, flags);

or, in most cases,
d = uvuni_to_utf8(d, uv);

(which is equivalent to)
d = uvuni_to_utf8 flags(d, uv, 0);

is the recommended Unicode-aware way of saying
*(d++) = uv;

U8* uvuni_to _utf8 flags(U8 *d, UV uv, UV flags)

Variables created by xsubpp and xsubpp internal functions

ax

CLASS

Variable which is setup by xsubpp to indicate the stack base offset, used by the ST,
XSprePUSH and XSRETURN macros. The dMARK macro must be called prior to setup
the MARK variable.

132 ax

Variable which is setup by xsubpp to indicate the class name for a C++ XS
constructor. This is always a char*. See THIS.

http://perldoc.perl.org

Page 75

O Perl

Perl version 5.12.4 documentation - perlapi

dAX

dAXMARK

dITEMS

dUNDERBAR

dXSARGS

dXSI132

items

newXSproto

RETVAL

char* CLASS

Sets up the ax variable. This is usually handled automatically by xsubpp by calling
dXSARGS.

dAX;

Sets up the ax variable and stack marker variable mark. This is usually handled
automatically by xsubpp by calling dXSARGS.

dAXMARK;

Sets up the items variable. This is usually handled automatically by xsubpp by
calling dXSARGS.

dITEMS;

Sets up the padoff_du variable for an XSUB that wishes to use UNDERBAR.
dUNDERBAR;

Sets up stack and mark pointers for an XSUB, calling dSP and dMARK. Sets up the
ax and 1tems variables by calling dAX and dITEMS. This is usually handled
automatically by xsubpp.

dXSARGS;

Sets up the ix variable for an XSUB which has aliases. This is usually handled
automatically by xsubpp.

dxsSi132;

Variable which is setup by xsubpp to indicate the number of items on the stack. See
"Variable-length Parameter Lists" in perlxs.

132 items

Variable which is setup by xsubpp to indicate which of an XSUB's aliases was used to
invoke it. See "The ALIAS: Keyword" in perlxs.

132 ix

Used by xsubpp to hook up XSUBs as Perl subs. Adds Perl prototypes to the subs.

Variable which is setup by xsubpp to hold the return value for an XSUB. This is

http://perldoc.perl.org

Page 76

O Perl

Perl version 5.12.4 documentation - perlapi

ST

THIS

UNDERBAR

XS

XS_VERSION

always the proper type for the XSUB. See "The RETVAL Variable" in perlxs.
(whatever) RETVAL

Used to access elements on the XSUB's stack.
Sv* ST(int ix)

Variable which is setup by xsubpp to designate the object in a C++ XSUB. This is
always the proper type for the C++ object. See CLASS and "Using XS With C++" in
perlxs.

(whatever) THIS

The SV* corresponding to the $_ variable. Works even if there is a lexical $_ in scope.

Macro to declare an XSUB and its C parameter list. This is handled by xsubpp.

The version identifier for an XS module. This is usually handled automatically by
ExtUtils: :MakeMaker. See XS_VERSION_BOOTCHECK.

XS_VERSION_BOOTCHECK

Warning and Dieing

croak

warn

Macro to verify that a PM module's $VERSION variable matches the XS module's
XS_VERSION variable. This is usually handled automatically by xsubpp. See "The
VERSIONCHECK: Keyword" in perlxs.

XS_VERSI0ON_BOOTCHECK;

This is the XSUB-writer's interface to Perl's die function. Normally call this function the
same way you call the C printf function. Calling croak returns control directly to
Perl, sidestepping the normal C order of execution. See warn.

If you want to throw an exception object, assign the object to $@ and then pass NULL
to croak():

errsv = get_sv('@", GV_ADD);
sv_setsv(errsv, exception_object);
croak(NULL);

void croak(const char* pat, ...)

This is the XSUB-writer's interface to Perl's warn function. Call this function the same
way you call the C printf function. See croak.

void warn(const char* pat, ...)

http://perldoc.perl.org

Page 77

@ Pefl Perl version 5.12.4 documentation - perlapi

Undocumented functions
These functions are currently undocumented:

GetVars
Gv_AMupdate
PerllO_clearerr
PerllO_close
PerllO_context_layers
PerllO_eof
PerllO_error
PerllO_fileno
PerllO_fill
PerllO_flush
PerllO_get_base
PerllO_get_bufsiz
PerllO_get_cnt
PerllO_get_ptr
PerllO_read
PerllO_seek
PerllO_set_cnt
PerllO_set ptrcnt
PerllO_setlinebuf
PerllO_stderr
PerllO_stdin
PerllO_stdout
PerllO_tell
PerllO_unread
PerllO_write
Slab_Alloc
Slab_Free
amagic_call
any_dup
apply_attrs_string
atfork_lock
atfork_unlock
av_arylen_p
av_iter_p
block_gimme
call_atexit
call_list

calloc

cast_i32

cast_iv

http://perldoc.perl.org Page 78

@ Pefl Perl version 5.12.4 documentation - perlapi

cast_ulong

cast_uv
ck_warner
ck_warner_d
ckwarn
ckwarn_d

croak _nocontext
csighandler
custom_op_desc
custom_op_name
cx_dump
cx_dup

cxinc

deb
deb_nocontext
debop
debprofdump
debstack
debstackptrs
delimcpy
despatch_signals
die
die_nocontext
dirp_dup
do_aspawn
do_binmode
do_close
do_gv_dump
do_gvgv_dump
do_hv_dump
do_join
do_magic_dump
do_op_dump
do_open
do_open9
do_openn
do_pmop_dump
do_spawn
do_spawn_nowait
do_sprintf
do_sv_dump
doing_taint

http://perldoc.perl.org Page 79

@ Pefl Perl version 5.12.4 documentation - perlapi

doref

dounwind
dowantarray
dump_all
dump_eval
dump_fds
dump_form
dump_indent
dump_mstats
dump_packsubs
dump_sub
dump_vindent
fetch_cop_label
filter_add
filter_del
filter_read
find_rundefsvoffset
form_nocontext
fp_dup
fprintf_nocontext
free_global_struct
free_tmps
get_context
get_mstats
get_op_descs
get_op_names
get_ppaddr
get_vtbl

gp_dup
gp_free

gp_ref
gv_AVadd
gv_HVadd
gv_lOadd
gv_SVadd
gv_add_by type
gv_autoload4
gv_check
gv_dump
gv_efullname
gv_efullname3
gv_efullname4

http://perldoc.perl.org Page 80

O Perl

Perl version 5.12.4 documentation - perlapi

gv_fetchfile
gv_fetchfile_flags
gv_fetchmethod_flags
gv_fetchpv
gv_fetchpvn_flags
gv_fetchsv
gv_fullname
gv_fullname3
gv_fullname4
gv_handler

gv_init
gv_name_set
he_dup

hek_dup
hv_common
hv_common_key_len
hv_delayfree_ent
hv_eiter_p
hv_eiter_set
hv_free_ent
hv_ksplit
hv_name_set
hv_placeholders_get
hv_placeholders_p
hv_placeholders_set
hv_riter_p
hv_riter_set
hv_store_flags
ibcmp
ibcmp_locale
init_global_struct
init_i18nl10n
init_i18nl14n
init_stacks

init_tm

instr

is_Ivalue_sub
is_uni_alnum
is_uni_alnum_lIc
is_uni_alpha
is_uni_alpha_lc
is_uni_ascii

http://perldoc.perl.org

Page 81

@ Pefl Perl version 5.12.4 documentation - perlapi

is_uni_ascii_lc

is_uni_cntrl
is_uni_cntrl_Ic
is_uni_digit
is_uni_digit_Ic
is_uni_graph
is_uni_graph_lc
is_uni_idfirst
is_uni_idfirst_Ic
is_uni_lower
is_uni_lower lIc
is_uni_print
is_uni_print_Ic
iS_uni_punct
is_uni_punct_lc
iS_uni_space
is_uni_space_lIc
is_uni_upper
is_uni_upper_lIc
is_uni_xdigit
is_uni_xdigit_lc
is_utf8_alnum
is_utf8 alpha
is_utf8_ ascii
is_utf8_cntrl
is_utf8_digit
is_utf8 graph
is_utf8_idcont
is_utf8_idfirst
is_utf8 lower
is_utf8 mark
is_utf8_ perl_space
is_utf8 perl_word
is_utf8_posix_digit
is_utf8 print
is_utf8 punct
is_utf8 space
is_utf8 upper
is_utf8 xdigit
leave_scope
load_module _nocontext
magic_dump

http://perldoc.perl.org Page 82

@ Pefl Perl version 5.12.4 documentation - perlapi

malloc

markstack_grow
mess
mess_nocontext
mfree

mg_dup
mg_size
mini_mktime
moreswitches
mro_get_from_name
mro_get_private_data
mro_register
mro_set_mro
mro_set_private_data
my_atof
my_atof2
my_bcopy
my_bzero
my_chsize
my_cxt_index
my_cxt_init
my_dirfd
my_exit
my_failure_exit
my_fflush_all
my_fork
my_htonl
my_Istat
my_memcmp
my_memset
my_ntohl
my_pclose
my_popen
my_popen_list
my_setenv
my_socketpair
my_stat
my_strftime
my_strlcat
my_stricpy
my_swap
newANONATTRSUB

http://perldoc.perl.org Page 83

@ Pefl Perl version 5.12.4 documentation - perlapi

newANONHASH
newANONLIST
newANONSUB
newASSIGNOP
newATTRSUB
newAVREF
newBINOP
newCONDOP
newCVREF
newFORM
newFOROP
newGIVENOP
newGVOP
newGVREF
newGVgen
newHVREF
newHVhv
newlO
newLISTOP
newLOGOP
newLOOPEX
newLOOPOP
newMYSUB
newNULLLIST
newOP
newPADOP
newPMOP
newPROG
newPVOP
newRANGE
newRV
newSLICEOP
newSTATEOP
newSUB
newSVOP
newSVREF
newSVpvf_nocontext
newUNOP
newWHENOP
newWHILEOP
newXsS_flags

new_collate

http://perldoc.perl.org Page 84

@ Pefl Perl version 5.12.4 documentation - perlapi

new_ctype

new_numeric
new_stackinfo

ninstr

op_dump

op_free

op_null
op_refent_lock
op_refent_unlock
parser_dup
perl_alloc_using
perl_clone_using
pmop_dump
pop_scope

pregcomp

pregexec

pregfree

pregfree2
printf_nocontext
ptr_table clear
ptr_table_fetch
ptr_table free
ptr_table new
ptr_table_split
ptr_table store
push_scope
re_compile
re_dup_guts
re_intuit_start
re_intuit_string

realloc

reentrant_free
reentrant_init
reentrant_retry
reentrant_size

ref
reg_named_buff_all
reg_named_buff_exists
reg_named_buff fetch
reg_named_buff firstkey
reg_named_buff_nextkey
reg_named_buff scalar

http://perldoc.perl.org Page 85

@ Pefl Perl version 5.12.4 documentation - perlapi

regclass_swash

regdump
regdupe_internal
regexec_flags
regfree_internal
reginitcolors
regnext

repeatcpy

rninstr

rsignal
rsignal_state
runops_debug
runops_standard
rvpv_dup
safesyscalloc
safesysfree
safesysmalloc
safesysrealloc
save |16
save_132

save_18
save_adelete
save_aelem
save_aelem_flags
save_alloc
save_aptr
save_ary
save_bool
save_clearsv
save_delete
save_destructor
save_destructor_x
save_freepv
save_freesv
save_generic_pvref
save_generic_svref
save_gp
save_hash
save_hdelete
save_helem
save_helem_flags
save_hptr

http://perldoc.perl.org Page 86

@ Pefl Perl version 5.12.4 documentation - perlapi

save_int

save_item

save_iv

save_list

save_long
save_mortalizesv
save_nogv
save_padsv_and_mortalize
save_pptr
save_pushptr
save_re_context
save_scalar
save_set svflags
save_shared_pvref
save_sptr
save_svref
save_vptr
savestack_grow
savestack_grow_cnt
scan_num
scan_vstring
screaminstr

seed

set_context
set_numeric_local
set_numeric_radix
set_numeric_standard
share_hek

si_dup

ss_dup

stack_grow
start_subparse
stashpv_hvname_match
str_to_version
sv_2iv

Sv_2pv

Ssv_2uv
sv_catpvf_mg_nocontext
sv_catpvf_nocontext
sv_compile_2op
sv_dump

sv_dup

http://perldoc.perl.org Page 87

@ Pefl Perl version 5.12.4 documentation - perlapi

sv_peek

SV_pvn_nomg
sv_setpvf_mg_nocontext
sv_setpvf_nocontext
sv_utf8_upgrade_flags_grow
swash_fetch
swash_init

sys_init

sys_init3
sys_intern_clear
sys_intern_dup
sys_intern_init
sys_term

taint_env

taint_proper
tmps_grow

to_uni_fold
to_uni_lower
to_uni_lower_Ic
to_uni_title
to_uni_title_Ic
to_uni_upper
to_uni_upper_lIc

unink

unsharepvn

utf16_to utf8
utfl6_to utf8 reversed
uvchr_to_utf8 flags
uvuni_to_utf8

vcroak

vdeb

vform

vload_module

vmess

vnewSVpvf

vwarn

vwarner
warn_nocontext
warner
warner_nocontext
whichsig

http://perldoc.perl.org Page 88

@ Pefl Perl version 5.12.4 documentation - perlapi

AUTHORS
Until May 1997, this document was maintained by Jeff Okamoto <okamoto@corp.hp.com>. It is now
maintained as part of Perl itself.

With lots of help and suggestions from Dean Roehrich, Malcolm Beattie, Andreas Koenig, Paul
Hudson, llya Zakharevich, Paul Marquess, Neil Bowers, Matthew Green, Tim Bunce, Spider
Boardman, Ulrich Pfeifer, Stephen McCamant, and Gurusamy Sarathy.

API Listing originally by Dean Roehrich <roehrich@cray.com>.

Updated to be autogenerated from comments in the source by Benjamin Stuhl.

SEE ALSO

perlguts, perlxs, perlxstut, perlintern

http://perldoc.perl.org Page 89

