
Perl version 5.12.4 documentation - perlebcdic

Page 1http://perldoc.perl.org

NAME
perlebcdic - Considerations for running Perl on EBCDIC platforms

DESCRIPTION
An exploration of some of the issues facing Perl programmers
 on EBCDIC based computers. We do
not cover localization, internationalization, or multi byte character set issues other
 than some
discussion of UTF-8 and UTF-EBCDIC.

Portions that are still incomplete are marked with XXX.

Perl used to work on EBCDIC machines, but there are now areas of the code where
 it doesn't. If you
want to use Perl on an EBCDIC machine, please let us know
 by sending mail to perlbug@perl.org

COMMON CHARACTER CODE SETS
ASCII

The American Standard Code for Information Interchange (ASCII or US-ASCII) is a
 set of
 integers
running from 0 to 127 (decimal) that imply character interpretation by the display and other systems of
computers. The range 0..127 can be covered by setting the bits in a 7-bit binary digit, hence the set is
sometimes referred to as a "7-bit ASCII". ASCII was described by the American National Standards
Institute document ANSI X3.4-1986. It was also described by ISO 646:1991 (with localization for
currency symbols). The full ASCII set is given in the table below as the first 128 elements. Languages
that can be written adequately with the characters in ASCII include English, Hawaiian, Indonesian,
Swahili and some Native American languages.

There are many character sets that extend the range of integers
 from 0..2**7-1 up to 2**8-1, or 8 bit
bytes (octets if you prefer).
 One common one is the ISO 8859-1 character set.

ISO 8859
The ISO 8859-$n are a collection of character code sets from the International Organization for
Standardization (ISO) each of which adds characters to the ASCII set that are typically found in
European languages many of which are based on the Roman, or Latin, alphabet.

Latin 1 (ISO 8859-1)
A particular 8-bit extension to ASCII that includes grave and acute accented Latin characters.
Languages that can employ ISO 8859-1 include all the languages covered by ASCII as well as
Afrikaans, Albanian, Basque, Catalan, Danish, Faroese, Finnish, Norwegian, Portuguese, Spanish,
and Swedish. Dutch is covered albeit without the ij ligature. French is covered too but without the oe
ligature. German can use ISO 8859-1 but must do so without German-style
 quotation marks. This set
is based on Western European extensions to ASCII and is commonly encountered in world wide web
work.
 In IBM character code set identification terminology ISO 8859-1 is
 also known as CCSID 819
(or sometimes 0819 or even 00819).

EBCDIC
The Extended Binary Coded Decimal Interchange Code refers to a large collection of single and multi
byte coded character sets that are
 different from ASCII or ISO 8859-1 and are all slightly different
from each
 other; they typically run on host computers. The EBCDIC encodings derive from
 8 bit byte
extensions of Hollerith punched card encodings. The layout on the
 cards was such that high bits were
set for the upper and lower case alphabet
 characters [a-z] and [A-Z], but there were gaps within each
Latin alphabet
 range.

Some IBM EBCDIC character sets may be known by character code set identification numbers
(CCSID numbers) or code page numbers.

Perl can be compiled on platforms that run any of three commonly used EBCDIC
 character sets,
listed below.

Perl version 5.12.4 documentation - perlebcdic

Page 2http://perldoc.perl.org

The 13 variant characters
Among IBM EBCDIC character code sets there are 13 characters that
 are often mapped to different
integer values. Those characters
 are known as the 13 "variant" characters and are:

 \ [] { } ^ ~ ! # | $ @ `

When Perl is compiled for a platform, it looks at some of these characters to
 guess which EBCDIC
character set the platform uses, and adapts itself
 accordingly to that platform. If the platform uses a
character set that is not
 one of the three Perl knows about, Perl will either fail to compile, or

mistakenly and silently choose one of the three.
 They are:

0037
Character code set ID 0037 is a mapping of the ASCII plus Latin-1 characters (i.e. ISO 8859-1) to an
EBCDIC set. 0037 is used in North American English locales on the OS/400 operating system that
runs on AS/400 computers. CCSID 0037 differs from ISO 8859-1 in 237 places, in other words they
agree on only 19 code point values.

1047
Character code set ID 1047 is also a mapping of the ASCII plus Latin-1 characters (i.e. ISO 8859-1)
to an EBCDIC set. 1047 is used under Unix System Services for OS/390 or z/OS, and OpenEdition
for VM/ESA. CCSID 1047 differs from CCSID 0037 in eight places.

POSIX-BC
The EBCDIC code page in use on Siemens' BS2000 system is distinct from
 1047 and 0037. It is
identified below as the POSIX-BC set.

Unicode code points versus EBCDIC code points
In Unicode terminology a code point is the number assigned to a
 character: for example, in EBCDIC
the character "A" is usually assigned
 the number 193. In Unicode the character "A" is assigned the
number 65.
 This causes a problem with the semantics of the pack/unpack "U", which
 are supposed to
pack Unicode code points to characters and back to numbers.
 The problem is: which code points to
use for code points less than 256?
 (for 256 and over there's no problem: Unicode code points are
used)
 In EBCDIC, for the low 256 the EBCDIC code points are used. This
 means that the
equivalences

	 pack("U", ord($character)) eq $character
	 unpack("U", $character) == ord $character

will hold. (If Unicode code points were applied consistently over
 all the possible code points,
pack("U",ord("A")) would in EBCDIC
 equal A with acute or chr(101), and unpack("U", "A") would equal
65, or non-breaking space, not 193, or ord "A".)

Remaining Perl Unicode problems in EBCDIC
Many of the remaining problems seem to be related to case-insensitive matching

The extensions Unicode::Collate and Unicode::Normalized are not
 supported under EBCDIC,
likewise for the encoding pragma.

Unicode and UTF
UTF stands for Unicode Transformation Format.
 UTF-8 is an encoding of Unicode into a
sequence of 8-bit byte chunks, based on
 ASCII and Latin-1.
 The length of a sequence required to
represent a Unicode code point
 depends on the ordinal number of that code point,
 with larger
numbers requiring more bytes.
 UTF-EBCDIC is like UTF-8, but based on EBCDIC.

You may see the term invariant character or code point.
 This simply means that the character has
the same numeric
 value when encoded as when not.
 (Note that this is a very different concept from

Perl version 5.12.4 documentation - perlebcdic

Page 3http://perldoc.perl.org

The 13 variant characters
 mentioned above.)
 For example, the ordinal value of 'A' is 193 in most
EBCDIC code pages,
 and also is 193 when encoded in UTF-EBCDIC.
 All variant code points occupy
at least two bytes when encoded.
 In UTF-8, the code points corresponding to the lowest 128
 ordinal
numbers (0 - 127: the ASCII characters) are invariant.
 In UTF-EBCDIC, there are 160 invariant
characters.
 (If you care, the EBCDIC invariants are those characters
 which have ASCII equivalents,
plus those that correspond to
 the C1 controls (80..9f on ASCII platforms).)

A string encoded in UTF-EBCDIC may be longer (but never shorter) than
 one encoded in UTF-8.

Using Encode
Starting from Perl 5.8 you can use the standard new module Encode
 to translate from EBCDIC to
Latin-1 code points.
 Encode knows about more EBCDIC character sets than Perl can currently
 be
compiled to run on.

	 use Encode 'from_to';

	 my %ebcdic = (176 => 'cp37', 95 => 'cp1047', 106 => 'posix-bc');

	 # $a is in EBCDIC code points
	 from_to($a, $ebcdic{ord '^'}, 'latin1');
	 # $a is ISO 8859-1 code points

and from Latin-1 code points to EBCDIC code points

	 use Encode 'from_to';

	 my %ebcdic = (176 => 'cp37', 95 => 'cp1047', 106 => 'posix-bc');

	 # $a is ISO 8859-1 code points
	 from_to($a, 'latin1', $ebcdic{ord '^'});
	 # $a is in EBCDIC code points

For doing I/O it is suggested that you use the autotranslating features
 of PerlIO, see perluniintro.

Since version 5.8 Perl uses the new PerlIO I/O library. This enables
 you to use different encodings
per IO channel. For example you may use

 use Encode;
 open($f, ">:encoding(ascii)", "test.ascii");
 print $f "Hello World!\n";
 open($f, ">:encoding(cp37)", "test.ebcdic");
 print $f "Hello World!\n";
 open($f, ">:encoding(latin1)", "test.latin1");
 print $f "Hello World!\n";
 open($f, ">:encoding(utf8)", "test.utf8");
 print $f "Hello World!\n";

to get four files containing "Hello World!\n" in ASCII, CP 0037 EBCDIC,
 ISO 8859-1 (Latin-1) (in this
example identical to ASCII since only ASCII
 characters were printed), and UTF-EBCDIC (in this
example identical to normal EBCDIC since only characters
 that don't differ between EBCDIC and
UTF-EBCDIC were printed). See the
 documentation of Encode::PerlIO for details.

As the PerlIO layer uses raw IO (bytes) internally, all this totally
 ignores things like the type of your
filesystem (ASCII or EBCDIC).

Perl version 5.12.4 documentation - perlebcdic

Page 4http://perldoc.perl.org

SINGLE OCTET TABLES
The following tables list the ASCII and Latin 1 ordered sets including
 the subsets: C0 controls (0..31),
ASCII graphics (32..7e), delete (7f),
 C1 controls (80..9f), and Latin-1 (a.k.a. ISO 8859-1) (a0..ff). In the
table non-printing control character names as well as the Latin 1 extensions to ASCII have been
labelled with character names roughly corresponding to The Unicode Standard, Version 3.0 albeit
with substitutions such as s/LATIN// and s/VULGAR// in all cases, s/CAPITAL LETTER// in some
cases, and s/SMALL LETTER ([A-Z])/\l$1/ in some other cases. The "names" of the controls listed
here are the Unicode Version 1 names, except for the few that don't have names, in which
 case the
names in the Wikipedia article were used
 (http://en.wikipedia.org/wiki/C0_and_C1_control_codes.

The differences between the 0037 and 1047 sets are flagged with ***. The differences between the
1047 and POSIX-BC sets are flagged with ###. All ord() numbers listed are decimal. If you would
rather see this table listing octal values then run the table (that is, the pod version of this document
since this recipe may not work with a pod2_other_format translation) through:

recipe 0

 perl -ne 'if(/(.{43})(\d+)\s+(\d+)\s+(\d+)\s+(\d+)/)' \
 -e '{printf("%s%-9o%-9o%-9o%o\n",$1,$2,$3,$4,$5)}' perlebcdic.pod

If you want to retain the UTF-x code points then in script form you
 might want to write:

recipe 1

 open(FH,"<perlebcdic.pod") or die "Could not open perlebcdic.pod: $!";
 while (<FH>) {
 if
(/(.{43})(\d+)\s+(\d+)\s+(\d+)\s+(\d+)\s+(\d+)\.?(\d*)\s+(\d+)\.?(\d*)/) {
 if ($7 ne '' && $9 ne '') {

printf("%s%-9o%-9o%-9o%-9o%-3o.%-5o%-3o.%o\n",$1,$2,$3,$4,$5,$6,$7,$8,$9);
 }
 elsif ($7 ne '') {

printf("%s%-9o%-9o%-9o%-9o%-3o.%-5o%o\n",$1,$2,$3,$4,$5,$6,$7,$8);
 }
 else {
 printf("%s%-9o%-9o%-9o%-9o%-9o%o\n",$1,$2,$3,$4,$5,$6,$8);
 }
 }
 }

If you would rather see this table listing hexadecimal values then
 run the table through:

recipe 2

 perl -ne 'if(/(.{43})(\d+)\s+(\d+)\s+(\d+)\s+(\d+)/)' \
 -e '{printf("%s%-9X%-9X%-9X%X\n",$1,$2,$3,$4,$5)}' perlebcdic.pod

Or, in order to retain the UTF-x code points in hexadecimal:

recipe 3

 open(FH,"<perlebcdic.pod") or die "Could not open perlebcdic.pod: $!";
 while (<FH>) {
 if
(/(.{43})(\d+)\s+(\d+)\s+(\d+)\s+(\d+)\s+(\d+)\.?(\d*)\s+(\d+)\.?(\d*)/) {
 if ($7 ne '' && $9 ne '') {

Perl version 5.12.4 documentation - perlebcdic

Page 5http://perldoc.perl.org

printf("%s%-9X%-9X%-9X%-9X%-2X.%-6X%-2X.%X\n",$1,$2,$3,$4,$5,$6,$7,$8,$9);
 }
 elsif ($7 ne '') {

printf("%s%-9X%-9X%-9X%-9X%-2X.%-6X%X\n",$1,$2,$3,$4,$5,$6,$7,$8);
 }
 else {
 printf("%s%-9X%-9X%-9X%-9X%-9X%X\n",$1,$2,$3,$4,$5,$6,$8);
 }
 }
 }

 ISO 8859-1 CCSID CCSID
 CCSID 1047
 chr CCSID 0819 0037 1047 POSIX-BC
 UTF-8 UTF-EBCDIC

 <NULL> 0 0 0 0
 0 0
 <START OF HEADING> 1 1 1 1
 1 1
 <START OF TEXT> 2 2 2 2
 2 2
 <END OF TEXT> 3 3 3 3
 3 3
 <END OF TRANSMISSION> 4 55 55 55
 4 55
 <ENQUIRY> 5 45 45 45
 5 45
 <ACKNOWLEDGE> 6 46 46 46
 6 46
 <BELL> 7 47 47 47
 7 47
 <BACKSPACE> 8 22 22 22
 8 22
 <HORIZONTAL TABULATION> 9 5 5 5
 9 5
 <LINE FEED> 10 37 21 21
 10 21 ***
 <VERTICAL TABULATION> 11 11 11 11
 11 11
 <FORM FEED> 12 12 12 12
 12 12
 <CARRIAGE RETURN> 13 13 13 13
 13 13
 <SHIFT OUT> 14 14 14 14
 14 14
 <SHIFT IN> 15 15 15 15
 15 15
 <DATA LINK ESCAPE> 16 16 16 16
 16 16
 <DEVICE CONTROL ONE> 17 17 17 17
 17 17

Perl version 5.12.4 documentation - perlebcdic

Page 6http://perldoc.perl.org

 <DEVICE CONTROL TWO> 18 18 18 18
 18 18
 <DEVICE CONTROL THREE> 19 19 19 19
 19 19
 <DEVICE CONTROL FOUR> 20 60 60 60
 20 60
 <NEGATIVE ACKNOWLEDGE> 21 61 61 61
 21 61
 <SYNCHRONOUS IDLE> 22 50 50 50
 22 50
 <END OF TRANSMISSION BLOCK> 23 38 38 38
 23 38
 <CANCEL> 24 24 24 24
 24 24
 <END OF MEDIUM> 25 25 25 25
 25 25
 <SUBSTITUTE> 26 63 63 63
 26 63
 <ESCAPE> 27 39 39 39
 27 39
 <FILE SEPARATOR> 28 28 28 28
 28 28
 <GROUP SEPARATOR> 29 29 29 29
 29 29
 <RECORD SEPARATOR> 30 30 30 30
 30 30
 <UNIT SEPARATOR> 31 31 31 31
 31 31
 <SPACE> 32 64 64 64
 32 64
 ! 33 90 90 90
 33 90
 " 34 127 127 127
 34 127
 # 35 123 123 123
 35 123
 $ 36 91 91 91
 36 91
 % 37 108 108 108
 37 108
 & 38 80 80 80
 38 80
 ' 39 125 125 125
 39 125
 (40 77 77 77
 40 77
) 41 93 93 93
 41 93
 * 42 92 92 92
 42 92
 + 43 78 78 78
 43 78
 , 44 107 107 107
 44 107
 - 45 96 96 96
 45 96

Perl version 5.12.4 documentation - perlebcdic

Page 7http://perldoc.perl.org

 . 46 75 75 75
 46 75
 / 47 97 97 97
 47 97
 0 48 240 240 240
 48 240
 1 49 241 241 241
 49 241
 2 50 242 242 242
 50 242
 3 51 243 243 243
 51 243
 4 52 244 244 244
 52 244
 5 53 245 245 245
 53 245
 6 54 246 246 246
 54 246
 7 55 247 247 247
 55 247
 8 56 248 248 248
 56 248
 9 57 249 249 249
 57 249
 : 58 122 122 122
 58 122
 ; 59 94 94 94
 59 94
 < 60 76 76 76
 60 76
 = 61 126 126 126
 61 126
 > 62 110 110 110
 62 110
 ? 63 111 111 111
 63 111
 @ 64 124 124 124
 64 124
 A 65 193 193 193
 65 193
 B 66 194 194 194
 66 194
 C 67 195 195 195
 67 195
 D 68 196 196 196
 68 196
 E 69 197 197 197
 69 197
 F 70 198 198 198
 70 198
 G 71 199 199 199
 71 199
 H 72 200 200 200
 72 200
 I 73 201 201 201
 73 201

Perl version 5.12.4 documentation - perlebcdic

Page 8http://perldoc.perl.org

 J 74 209 209 209
 74 209
 K 75 210 210 210
 75 210
 L 76 211 211 211
 76 211
 M 77 212 212 212
 77 212
 N 78 213 213 213
 78 213
 O 79 214 214 214
 79 214
 P 80 215 215 215
 80 215
 Q 81 216 216 216
 81 216
 R 82 217 217 217
 82 217
 S 83 226 226 226
 83 226
 T 84 227 227 227
 84 227
 U 85 228 228 228
 85 228
 V 86 229 229 229
 86 229
 W 87 230 230 230
 87 230
 X 88 231 231 231
 88 231
 Y 89 232 232 232
 89 232
 Z 90 233 233 233
 90 233
 [91 186 173 187
 91 173 *** ###
 \ 92 224 224 188
 92 224 ###
] 93 187 189 189
 93 189 ***
 ^ 94 176 95 106
 94 95 *** ###
 _ 95 109 109 109
 95 109
 ` 96 121 121 74
 96 121 ###
 a 97 129 129 129
 97 129
 b 98 130 130 130
 98 130
 c 99 131 131 131
 99 131
 d 100 132 132 132
 100 132
 e 101 133 133 133
 101 133

Perl version 5.12.4 documentation - perlebcdic

Page 9http://perldoc.perl.org

 f 102 134 134 134
 102 134
 g 103 135 135 135
 103 135
 h 104 136 136 136
 104 136
 i 105 137 137 137
 105 137
 j 106 145 145 145
 106 145
 k 107 146 146 146
 107 146
 l 108 147 147 147
 108 147
 m 109 148 148 148
 109 148
 n 110 149 149 149
 110 149
 o 111 150 150 150
 111 150
 p 112 151 151 151
 112 151
 q 113 152 152 152
 113 152
 r 114 153 153 153
 114 153
 s 115 162 162 162
 115 162
 t 116 163 163 163
 116 163
 u 117 164 164 164
 117 164
 v 118 165 165 165
 118 165
 w 119 166 166 166
 119 166
 x 120 167 167 167
 120 167
 y 121 168 168 168
 121 168
 z 122 169 169 169
 122 169
 { 123 192 192 251
 123 192 ###
 | 124 79 79 79
 124 79
 } 125 208 208 253
 125 208 ###
 ~ 126 161 161 255
 126 161 ###
 <DELETE> 127 7 7 7
 127 7
 <PADDING CHARACTER> 128 32 32 32
 194.128 32
 <HIGH OCTET PRESET> 129 33 33 33
 194.129 33

Perl version 5.12.4 documentation - perlebcdic

Page 10http://perldoc.perl.org

 <BREAK PERMITTED HERE> 130 34 34 34
 194.130 34
 <NO BREAK HERE> 131 35 35 35
 194.131 35
 <INDEX> 132 36 36 36
 194.132 36
 <NEXT LINE> 133 21 37 37
 194.133 37 ***
 <START OF SELECTED AREA> 134 6 6 6
 194.134 6
 <END OF SELECTED AREA> 135 23 23 23
 194.135 23
 <CHARACTER TABULATION SET> 136 40 40 40
 194.136 40
 <CHARACTER TABULATION WITH JUSTIFICATION> 137 41 41 41
 194.137 41
 <LINE TABULATION SET> 138 42 42 42
 194.138 42
 <PARTIAL LINE FORWARD> 139 43 43 43
 194.139 43
 <PARTIAL LINE BACKWARD> 140 44 44 44
 194.140 44
 <REVERSE LINE FEED> 141 9 9 9
 194.141 9
 <SINGLE SHIFT TWO> 142 10 10 10
 194.142 10
 <SINGLE SHIFT THREE> 143 27 27 27
 194.143 27
 <DEVICE CONTROL STRING> 144 48 48 48
 194.144 48
 <PRIVATE USE ONE> 145 49 49 49
 194.145 49
 <PRIVATE USE TWO> 146 26 26 26
 194.146 26
 <SET TRANSMIT STATE> 147 51 51 51
 194.147 51
 <CANCEL CHARACTER> 148 52 52 52
 194.148 52
 <MESSAGE WAITING> 149 53 53 53
 194.149 53
 <START OF GUARDED AREA> 150 54 54 54
 194.150 54
 <END OF GUARDED AREA> 151 8 8 8
 194.151 8
 <START OF STRING> 152 56 56 56
 194.152 56
 <SINGLE GRAPHIC CHARACTER INTRODUCER> 153 57 57 57
 194.153 57
 <SINGLE CHARACTER INTRODUCER> 154 58 58 58
 194.154 58
 <CONTROL SEQUENCE INTRODUCER> 155 59 59 59
 194.155 59
 <STRING TERMINATOR> 156 4 4 4
 194.156 4
 <OPERATING SYSTEM COMMAND> 157 20 20 20
 194.157 20

Perl version 5.12.4 documentation - perlebcdic

Page 11http://perldoc.perl.org

 <PRIVACY MESSAGE> 158 62 62 62
 194.158 62
 <APPLICATION PROGRAM COMMAND> 159 255 255 95
 194.159 255 ###
 <NON-BREAKING SPACE> 160 65 65 65
 194.160 128.65
 <INVERTED EXCLAMATION MARK> 161 170 170 170
 194.161 128.66
 <CENT SIGN> 162 74 74 176
 194.162 128.67 ###
 <POUND SIGN> 163 177 177 177
 194.163 128.68
 <CURRENCY SIGN> 164 159 159 159
 194.164 128.69
 <YEN SIGN> 165 178 178 178
 194.165 128.70
 <BROKEN BAR> 166 106 106 208
 194.166 128.71 ###
 <SECTION SIGN> 167 181 181 181
 194.167 128.72
 <DIAERESIS> 168 189 187 121
 194.168 128.73 *** ###
 <COPYRIGHT SIGN> 169 180 180 180
 194.169 128.74
 <FEMININE ORDINAL INDICATOR> 170 154 154 154
 194.170 128.81
 <LEFT POINTING GUILLEMET> 171 138 138 138
 194.171 128.82
 <NOT SIGN> 172 95 176 186
 194.172 128.83 *** ###
 <SOFT HYPHEN> 173 202 202 202
 194.173 128.84
 <REGISTERED TRADE MARK SIGN> 174 175 175 175
 194.174 128.85
 <MACRON> 175 188 188 161
 194.175 128.86 ###
 <DEGREE SIGN> 176 144 144 144
 194.176 128.87
 <PLUS-OR-MINUS SIGN> 177 143 143 143
 194.177 128.88
 <SUPERSCRIPT TWO> 178 234 234 234
 194.178 128.89
 <SUPERSCRIPT THREE> 179 250 250 250
 194.179 128.98
 <ACUTE ACCENT> 180 190 190 190
 194.180 128.99
 <MICRO SIGN> 181 160 160 160
 194.181 128.100
 <PARAGRAPH SIGN> 182 182 182 182
 194.182 128.101
 <MIDDLE DOT> 183 179 179 179
 194.183 128.102
 <CEDILLA> 184 157 157 157
 194.184 128.103
 <SUPERSCRIPT ONE> 185 218 218 218
 194.185 128.104

Perl version 5.12.4 documentation - perlebcdic

Page 12http://perldoc.perl.org

 <MASC. ORDINAL INDICATOR> 186 155 155 155
 194.186 128.105
 <RIGHT POINTING GUILLEMET> 187 139 139 139
 194.187 128.106
 <FRACTION ONE QUARTER> 188 183 183 183
 194.188 128.112
 <FRACTION ONE HALF> 189 184 184 184
 194.189 128.113
 <FRACTION THREE QUARTERS> 190 185 185 185
 194.190 128.114
 <INVERTED QUESTION MARK> 191 171 171 171
 194.191 128.115
 <A WITH GRAVE> 192 100 100 100
 195.128 138.65
 <A WITH ACUTE> 193 101 101 101
 195.129 138.66
 <A WITH CIRCUMFLEX> 194 98 98 98
 195.130 138.67
 <A WITH TILDE> 195 102 102 102
 195.131 138.68
 <A WITH DIAERESIS> 196 99 99 99
 195.132 138.69
 <A WITH RING ABOVE> 197 103 103 103
 195.133 138.70
 <CAPITAL LIGATURE AE> 198 158 158 158
 195.134 138.71
 <C WITH CEDILLA> 199 104 104 104
 195.135 138.72
 <E WITH GRAVE> 200 116 116 116
 195.136 138.73
 <E WITH ACUTE> 201 113 113 113
 195.137 138.74
 <E WITH CIRCUMFLEX> 202 114 114 114
 195.138 138.81
 <E WITH DIAERESIS> 203 115 115 115
 195.139 138.82
 <I WITH GRAVE> 204 120 120 120
 195.140 138.83
 <I WITH ACUTE> 205 117 117 117
 195.141 138.84
 <I WITH CIRCUMFLEX> 206 118 118 118
 195.142 138.85
 <I WITH DIAERESIS> 207 119 119 119
 195.143 138.86
 <CAPITAL LETTER ETH> 208 172 172 172
 195.144 138.87
 <N WITH TILDE> 209 105 105 105
 195.145 138.88
 <O WITH GRAVE> 210 237 237 237
 195.146 138.89
 <O WITH ACUTE> 211 238 238 238
 195.147 138.98
 <O WITH CIRCUMFLEX> 212 235 235 235
 195.148 138.99
 <O WITH TILDE> 213 239 239 239
 195.149 138.100

Perl version 5.12.4 documentation - perlebcdic

Page 13http://perldoc.perl.org

 <O WITH DIAERESIS> 214 236 236 236
 195.150 138.101
 <MULTIPLICATION SIGN> 215 191 191 191
 195.151 138.102
 <O WITH STROKE> 216 128 128 128
 195.152 138.103
 <U WITH GRAVE> 217 253 253 224
 195.153 138.104 ###
 <U WITH ACUTE> 218 254 254 254
 195.154 138.105
 <U WITH CIRCUMFLEX> 219 251 251 221
 195.155 138.106 ###
 <U WITH DIAERESIS> 220 252 252 252
 195.156 138.112
 <Y WITH ACUTE> 221 173 186 173
 195.157 138.113 *** ###
 <CAPITAL LETTER THORN> 222 174 174 174
 195.158 138.114
 <SMALL LETTER SHARP S> 223 89 89 89
 195.159 138.115
 <a WITH GRAVE> 224 68 68 68
 195.160 139.65
 <a WITH ACUTE> 225 69 69 69
 195.161 139.66
 <a WITH CIRCUMFLEX> 226 66 66 66
 195.162 139.67
 <a WITH TILDE> 227 70 70 70
 195.163 139.68
 <a WITH DIAERESIS> 228 67 67 67
 195.164 139.69
 <a WITH RING ABOVE> 229 71 71 71
 195.165 139.70
 <SMALL LIGATURE ae> 230 156 156 156
 195.166 139.71
 <c WITH CEDILLA> 231 72 72 72
 195.167 139.72
 <e WITH GRAVE> 232 84 84 84
 195.168 139.73
 <e WITH ACUTE> 233 81 81 81
 195.169 139.74
 <e WITH CIRCUMFLEX> 234 82 82 82
 195.170 139.81
 <e WITH DIAERESIS> 235 83 83 83
 195.171 139.82
 <i WITH GRAVE> 236 88 88 88
 195.172 139.83
 <i WITH ACUTE> 237 85 85 85
 195.173 139.84
 <i WITH CIRCUMFLEX> 238 86 86 86
 195.174 139.85
 <i WITH DIAERESIS> 239 87 87 87
 195.175 139.86
 <SMALL LETTER eth> 240 140 140 140
 195.176 139.87
 <n WITH TILDE> 241 73 73 73
 195.177 139.88

Perl version 5.12.4 documentation - perlebcdic

Page 14http://perldoc.perl.org

 <o WITH GRAVE> 242 205 205 205
 195.178 139.89
 <o WITH ACUTE> 243 206 206 206
 195.179 139.98
 <o WITH CIRCUMFLEX> 244 203 203 203
 195.180 139.99
 <o WITH TILDE> 245 207 207 207
 195.181 139.100
 <o WITH DIAERESIS> 246 204 204 204
 195.182 139.101
 <DIVISION SIGN> 247 225 225 225
 195.183 139.102
 <o WITH STROKE> 248 112 112 112
 195.184 139.103
 <u WITH GRAVE> 249 221 221 192
 195.185 139.104 ###
 <u WITH ACUTE> 250 222 222 222
 195.186 139.105
 <u WITH CIRCUMFLEX> 251 219 219 219
 195.187 139.106
 <u WITH DIAERESIS> 252 220 220 220
 195.188 139.112
 <y WITH ACUTE> 253 141 141 141
 195.189 139.113
 <SMALL LETTER thorn> 254 142 142 142
 195.190 139.114
 <y WITH DIAERESIS> 255 223 223 223
 195.191 139.115

If you would rather see the above table in CCSID 0037 order rather than
 ASCII + Latin-1 order then
run the table through:

recipe 4

 perl -ne
'if(/.{43}\d{1,3}\s{6,8}\d{1,3}\s{6,8}\d{1,3}\s{6,8}\d{1,3}/)'\
 -e '{push(@l,$_)}' \
 -e 'END{print map{$_->[0]}' \
 -e ' sort{$a->[1] <=> $b->[1]}' \
 -e ' map{[$_,substr($_,52,3)]}@l;}' perlebcdic.pod

If you would rather see it in CCSID 1047 order then change the number
 52 in the last line to 61, like
this:

recipe 5

 perl -ne
'if(/.{43}\d{1,3}\s{6,8}\d{1,3}\s{6,8}\d{1,3}\s{6,8}\d{1,3}/)'\
 -e '{push(@l,$_)}' \
 -e 'END{print map{$_->[0]}' \
 -e ' sort{$a->[1] <=> $b->[1]}' \
 -e ' map{[$_,substr($_,61,3)]}@l;}' perlebcdic.pod

If you would rather see it in POSIX-BC order then change the number
 61 in the last line to 70, like
this:

recipe 6

Perl version 5.12.4 documentation - perlebcdic

Page 15http://perldoc.perl.org

 perl -ne
'if(/.{43}\d{1,3}\s{6,8}\d{1,3}\s{6,8}\d{1,3}\s{6,8}\d{1,3}/)'\
 -e '{push(@l,$_)}' \
 -e 'END{print map{$_->[0]}' \
 -e ' sort{$a->[1] <=> $b->[1]}' \
 -e ' map{[$_,substr($_,70,3)]}@l;}' perlebcdic.pod

IDENTIFYING CHARACTER CODE SETS
To determine the character set you are running under from perl one could use the return value of
ord() or chr() to test one or more character values. For example:

 $is_ascii = "A" eq chr(65);
 $is_ebcdic = "A" eq chr(193);

Also, "\t" is a HORIZONTAL TABULATION character so that:

 $is_ascii = ord("\t") == 9;
 $is_ebcdic = ord("\t") == 5;

To distinguish EBCDIC code pages try looking at one or more of
 the characters that differ between
them. For example:

 $is_ebcdic_37 = "\n" eq chr(37);
 $is_ebcdic_1047 = "\n" eq chr(21);

Or better still choose a character that is uniquely encoded in any
 of the code sets, e.g.:

 $is_ascii = ord('[') == 91;
 $is_ebcdic_37 = ord('[') == 186;
 $is_ebcdic_1047 = ord('[') == 173;
 $is_ebcdic_POSIX_BC = ord('[') == 187;

However, it would be unwise to write tests such as:

 $is_ascii = "\r" ne chr(13); # WRONG
 $is_ascii = "\n" ne chr(10); # ILL ADVISED

Obviously the first of these will fail to distinguish most ASCII platforms
 from either a CCSID 0037, a
1047, or a POSIX-BC EBCDIC platform since "\r" eq chr(13) under all of those coded character sets.
But note too that because "\n" is chr(13) and "\r" is chr(10) on the MacIntosh (which is an ASCII
platform) the second $is_ascii test will lead to trouble there.

To determine whether or not perl was built under an EBCDIC code page you can use the Config
module like so:

 use Config;
 $is_ebcdic = $Config{'ebcdic'} eq 'define';

CONVERSIONS
tr///

In order to convert a string of characters from one character set to another a simple list of numbers,
such as in the right columns in the
 above table, along with perl's tr/// operator is all that is needed.
The data in the table are in ASCII order hence the EBCDIC columns provide easy to use ASCII to
EBCDIC operations that are also easily reversed.

Perl version 5.12.4 documentation - perlebcdic

Page 16http://perldoc.perl.org

For example, to convert ASCII to code page 037 take the output of the second column from the output
of recipe 0 (modified to add \\ characters) and use it in tr/// like so:

 $cp_037 =
 '\000\001\002\003\234\011\206\177\227\215\216\013\014\015\016\017' .
 '\020\021\022\023\235\205\010\207\030\031\222\217\034\035\036\037' .
 '\200\201\202\203\204\012\027\033\210\211\212\213\214\005\006\007' .
 '\220\221\026\223\224\225\226\004\230\231\232\233\024\025\236\032' .
 '\040\240\342\344\340\341\343\345\347\361\242\056\074\050\053\174' .
 '\046\351\352\353\350\355\356\357\354\337\041\044\052\051\073\254' .
 '\055\057\302\304\300\301\303\305\307\321\246\054\045\137\076\077' .
 '\370\311\312\313\310\315\316\317\314\140\072\043\100\047\075\042' .
 '\330\141\142\143\144\145\146\147\150\151\253\273\360\375\376\261' .
 '\260\152\153\154\155\156\157\160\161\162\252\272\346\270\306\244' .
 '\265\176\163\164\165\166\167\170\171\172\241\277\320\335\336\256' .
 '\136\243\245\267\251\247\266\274\275\276\133\135\257\250\264\327' .
 '\173\101\102\103\104\105\106\107\110\111\255\364\366\362\363\365' .
 '\175\112\113\114\115\116\117\120\121\122\271\373\374\371\372\377' .
 '\134\367\123\124\125\126\127\130\131\132\262\324\326\322\323\325' .
 '\060\061\062\063\064\065\066\067\070\071\263\333\334\331\332\237' ;

 my $ebcdic_string = $ascii_string;
 eval '$ebcdic_string =~ tr/' . $cp_037 . '/\000-\377/';

To convert from EBCDIC 037 to ASCII just reverse the order of the tr///
 arguments like so:

 my $ascii_string = $ebcdic_string;
 eval '$ascii_string =~ tr/\000-\377/' . $cp_037 . '/';

Similarly one could take the output of the third column from recipe 0 to
 obtain a $cp_1047 table. The
fourth column of the output from recipe
 0 could provide a $cp_posix_bc table suitable for
transcoding as well.

iconv
XPG operability often implies the presence of an iconv utility
 available from the shell or from the C
library. Consult your system's
 documentation for information on iconv.

On OS/390 or z/OS see the iconv(1) manpage. One way to invoke the iconv shell utility from within
perl would be to:

 # OS/390 or z/OS example
 $ascii_data = `echo '$ebcdic_data'| iconv -f IBM-1047 -t ISO8859-1`

or the inverse map:

 # OS/390 or z/OS example
 $ebcdic_data = `echo '$ascii_data'| iconv -f ISO8859-1 -t IBM-1047`

For other perl based conversion options see the Convert::* modules on CPAN.

C RTL
The OS/390 and z/OS C run time libraries provide _atoe() and _etoa() functions.

OPERATOR DIFFERENCES
The .. range operator treats certain character ranges with care on EBCDIC platforms. For example
the following array
 will have twenty six elements on either an EBCDIC platform
 or an ASCII platform:

Perl version 5.12.4 documentation - perlebcdic

Page 17http://perldoc.perl.org

 @alphabet = ('A'..'Z'); # $#alphabet == 25

The bitwise operators such as & ^ | may return different results
 when operating on string or character
data in a perl program running on an EBCDIC platform than when run on an ASCII platform. Here is

an example adapted from the one in perlop:

 # EBCDIC-based examples
 print "j p \n" ^ " a h"; # prints "JAPH\n"
 print "JA" | " ph\n"; # prints "japh\n"
 print "JAPH\nJunk" & "\277\277\277\277\277"; # prints "japh\n";
 print 'p N$' ^ " E<H\n"; # prints "Perl\n";

An interesting property of the 32 C0 control characters
 in the ASCII table is that they can "literally" be
constructed
 as control characters in perl, e.g. (chr(0) eq \c@) (chr(1) eq \cA), and so on.
Perl on EBCDIC platforms has been ported to take \c@ to chr(0) and \cA to chr(1), etc. as well, but
the
 thirty three characters that result depend on which code page you are
 using. The table below uses
the standard acronyms for the controls.
 The POSIX-BC and 1047 sets are
 identical throughout this
range and differ from the 0037 set at only one spot (21 decimal). Note that the LINE FEED character

may be generated by \cJ on ASCII platforms but by \cU on 1047 or POSIX-BC platforms and cannot
be generated as a "\c.letter." control character on 0037 platforms. Note also that \c\ cannot be
the final element in a string
 or regex, as it will absorb the terminator. But \c\X is a FILE
 SEPARATOR
concatenated with X for all X.

 chr ord 8859-1 0037 1047 && POSIX-BC
 --
 \c? 127 " "
 \c@ 0 <NUL> <NUL> <NUL>
 \cA 1 <SOH> <SOH> <SOH>
 \cB 2 <STX> <STX> <STX>
 \cC 3 <ETX> <ETX> <ETX>
 \cD 4 <EOT> <ST> <ST>
 \cE 5 <ENQ> <HT> <HT>
 \cF 6 <ACK> <SSA> <SSA>
 \cG 7 <BEL>
 \cH 8 <BS> <EPA> <EPA>
 \cI 9 <HT> <RI> <RI>
 \cJ 10 <LF> <SS2> <SS2>
 \cK 11 <VT> <VT> <VT>
 \cL 12 <FF> <FF> <FF>
 \cM 13 <CR> <CR> <CR>
 \cN 14 <SO> <SO> <SO>
 \cO 15 <SI> <SI> <SI>
 \cP 16 <DLE> <DLE> <DLE>
 \cQ 17 <DC1> <DC1> <DC1>
 \cR 18 <DC2> <DC2> <DC2>
 \cS 19 <DC3> <DC3> <DC3>
 \cT 20 <DC4> <OSC> <OSC>
 \cU 21 <NAK> <NEL> <LF> ***
 \cV 22 <SYN> <BS> <BS>
 \cW 23 <ETB> <ESA> <ESA>
 \cX 24 <CAN> <CAN> <CAN>
 \cY 25 <EOM> <EOM> <EOM>
 \cZ 26 <SUB> <PU2> <PU2>
 \c[27 <ESC> <SS3> <SS3>
 \c\X 28 <FS>X <FS>X <FS>X
 \c] 29 <GS> <GS> <GS>

Perl version 5.12.4 documentation - perlebcdic

Page 18http://perldoc.perl.org

 \c^ 30 <RS> <RS> <RS>
 \c_ 31 <US> <US> <US>

FUNCTION DIFFERENCES
chr()

chr() must be given an EBCDIC code number argument to yield a desired character
return value on an EBCDIC platform. For example:

 $CAPITAL_LETTER_A = chr(193);

ord()

ord() will return EBCDIC code number values on an EBCDIC platform.
 For example:

 $the_number_193 = ord("A");

pack()

The c and C templates for pack() are dependent upon character set encoding.
Examples of usage on EBCDIC include:

 $foo = pack("CCCC",193,194,195,196);
 # $foo eq "ABCD"
 $foo = pack("C4",193,194,195,196);
 # same thing

 $foo = pack("ccxxcc",193,194,195,196);
 # $foo eq "AB\0\0CD"

print()

One must be careful with scalars and strings that are passed to
 print that contain
ASCII encodings. One common place
 for this to occur is in the output of the MIME type
header for
 CGI script writing. For example, many perl programming guides
recommend something similar to:

 print "Content-type:\ttext/html\015\012\015\012";
 # this may be wrong on EBCDIC

Under the IBM OS/390 USS Web Server or WebSphere on z/OS for example you
should instead write that as:

 print "Content-type:\ttext/html\r\n\r\n"; # OK for DGW et
alia

That is because the translation from EBCDIC to ASCII is done
 by the web server in
this case (such code will not be appropriate for
 the Macintosh however). Consult your
web server's documentation for further details.

printf()

The formats that can convert characters to numbers and vice versa
 will be different
from their ASCII counterparts when executed
 on an EBCDIC platform. Examples
include:

 printf("%c%c%c",193,194,195); # prints ABC

sort()

EBCDIC sort results may differ from ASCII sort results especially for mixed case
strings. This is discussed in more detail below.

Perl version 5.12.4 documentation - perlebcdic

Page 19http://perldoc.perl.org

sprintf()

See the discussion of printf() above. An example of the use
 of sprintf would be:

 $CAPITAL_LETTER_A = sprintf("%c",193);

unpack()

See the discussion of pack() above.

REGULAR EXPRESSION DIFFERENCES
As of perl 5.005_03 the letter range regular expression such as [A-Z] and [a-z] have been especially
coded to not pick up gap characters. For example, characters such as ô o WITH CIRCUMFLEX that
lie between I and J would not be matched by the regular expression range /[H-K]/. This works in

the other direction, too, if either of the range end points is
 explicitly numeric: [\x89-\x91] will match
\x8e, even
 though \x89 is i and \x91 is j, and \x8e
 is a gap character from the alphabetic
viewpoint.

If you do want to match the alphabet gap characters in a single octet regular expression try matching
the hex or octal code such as /\313/ on EBCDIC or /\364/ on ASCII platforms to have your
regular expression match o WITH CIRCUMFLEX.

Another construct to be wary of is the inappropriate use of hex or
 octal constants in regular
expressions. Consider the following
 set of subs:

 sub is_c0 {
 my $char = substr(shift,0,1);
 $char =~ /[\000-\037]/;
 }

 sub is_print_ascii {
 my $char = substr(shift,0,1);
 $char =~ /[\040-\176]/;
 }

 sub is_delete {
 my $char = substr(shift,0,1);
 $char eq "\177";
 }

 sub is_c1 {
 my $char = substr(shift,0,1);
 $char =~ /[\200-\237]/;
 }

 sub is_latin_1 {
 my $char = substr(shift,0,1);
 $char =~ /[\240-\377]/;
 }

The above would be adequate if the concern was only with numeric code points.
 However, the
concern may be with characters rather than code points and on an EBCDIC platform it may be
desirable for constructs such as if (is_print_ascii("A")) {print "A is a printable
character\n";} to print
 out the expected message. One way to represent the above collection
 of
character classification subs that is capable of working across the
 four coded character sets
discussed in this document is as follows:

Perl version 5.12.4 documentation - perlebcdic

Page 20http://perldoc.perl.org

 sub Is_c0 {
 my $char = substr(shift,0,1);
 if (ord('^')==94) { # ascii
 return $char =~ /[\000-\037]/;
 }
 if (ord('^')==176) { # 0037
 return $char =~
/[\000-\003\067\055-\057\026\005\045\013-\023\074\075\062\046\030\031\077\0
47\034-\037]/;
 }
 if (ord('^')==95 || ord('^')==106) { # 1047 || posix-bc
 return $char =~
/[\000-\003\067\055-\057\026\005\025\013-\023\074\075\062\046\030\031\077\0
47\034-\037]/;
 }
 }

 sub Is_print_ascii {
 my $char = substr(shift,0,1);
 $char =~ /[!"\#\$%&'()*+,\-.\/0-9:;<=>?\@A-Z[\\\]^_`a-z{|}~]/;
 }

 sub Is_delete {
 my $char = substr(shift,0,1);
 if (ord('^')==94) { # ascii
 return $char eq "\177";
 }
 else { # ebcdic
 return $char eq "\007";
 }
 }

 sub Is_c1 {
 my $char = substr(shift,0,1);
 if (ord('^')==94) { # ascii
 return $char =~ /[\200-\237]/;
 }
 if (ord('^')==176) { # 0037
 return $char =~
/[\040-\044\025\006\027\050-\054\011\012\033\060\061\032\063-\066\010\070-\
073\040\024\076\377]/;
 }
 if (ord('^')==95) { # 1047
 return $char =~
/[\040-\045\006\027\050-\054\011\012\033\060\061\032\063-\066\010\070-\073\
040\024\076\377]/;
 }
 if (ord('^')==106) { # posix-bc
 return $char =~

/[\040-\045\006\027\050-\054\011\012\033\060\061\032\063-\066\010\070-\073\
040\024\076\137]/;
 }
 }

Perl version 5.12.4 documentation - perlebcdic

Page 21http://perldoc.perl.org

 sub Is_latin_1 {
 my $char = substr(shift,0,1);
 if (ord('^')==94) { # ascii
 return $char =~ /[\240-\377]/;
 }
 if (ord('^')==176) { # 0037
 return $char =~

/[\101\252\112\261\237\262\152\265\275\264\232\212\137\312\257\274\220\217\
352\372\276\240\266\263\235\332\233\213\267\270\271\253\144\145\142\146\143
\147\236\150\164\161-\163\170\165-\167\254\151\355\356\353\357\354\277\200\
375\376\373\374\255\256\131\104\105\102\106\103\107\234\110\124\121-\123\13
0\125-\127\214\111\315\316\313\317\314\341\160\335\336\333\334\215\216\337]
/;
 }
 if (ord('^')==95) { # 1047
 return $char =~

/[\101\252\112\261\237\262\152\265\273\264\232\212\260\312\257\274\220\217\
352\372\276\240\266\263\235\332\233\213\267\270\271\253\144\145\142\146\143
\147\236\150\164\161-\163\170\165-\167\254\151\355\356\353\357\354\277\200\
375\376\373\374\272\256\131\104\105\102\106\103\107\234\110\124\121-\123\13
0\125-\127\214\111\315\316\313\317\314\341\160\335\336\333\334\215\216\337]
/;
 }
 if (ord('^')==106) { # posix-bc
 return $char =~

/[\101\252\260\261\237\262\320\265\171\264\232\212\272\312\257\241\220\217\
352\372\276\240\266\263\235\332\233\213\267\270\271\253\144\145\142\146\143
\147\236\150\164\161-\163\170\165-\167\254\151\355\356\353\357\354\277\200\
340\376\335\374\255\256\131\104\105\102\106\103\107\234\110\124\121-\123\13
0\125-\127\214\111\315\316\313\317\314\341\160\300\336\333\334\215\216\337]
/;
 }
 }

Note however that only the Is_ascii_print() sub is really independent of coded character set.
Another way to write Is_latin_1() would be to use the characters in the range explicitly:

 sub Is_latin_1 {
 my $char = substr(shift,0,1);
 $char =~
/[Â Â¡Â¢Â£Â¤Â¥Â¦Â§Â¨Â©ÂªÂ«Â¬Â-Â®Â¯Â°Â±Â²Â³Â´ÂµÂ¶Â·Â¸Â¹ÂºÂ»Â¼Â½Â¾Â¿Ã€Ã•Ã‚ÃƒÃ
„Ã…Ã†Ã‡ÃˆÃ‰ÃŠÃ‹ÃŒÃ•ÃŽÃ•Ã•Ã‘Ã’Ã“Ã”Ã•Ã–Ã—Ã˜Ã™ÃšÃ›ÃœÃ•ÃžÃŸÃ Ã¡Ã¢Ã£Ã¤Ã¥Ã¦Ã§Ã¨Ã©
ÃªÃ«Ã¬Ã-Ã®Ã¯Ã°Ã±Ã²Ã³Ã´ÃµÃ¶Ã·Ã¸Ã¹ÃºÃ»Ã¼Ã½Ã¾Ã¿]/;
 }

Although that form may run into trouble in network transit (due to the presence of 8 bit characters) or
on non ISO-Latin character sets.

SOCKETS
Most socket programming assumes ASCII character encodings in network
 byte order. Exceptions can
include CGI script writing under a
 host web server where the server may take care of translation for
you.
 Most host web servers convert EBCDIC data to ISO-8859-1 or Unicode on
 output.

Perl version 5.12.4 documentation - perlebcdic

Page 22http://perldoc.perl.org

SORTING
One big difference between ASCII based character sets and EBCDIC ones
 are the relative positions
of upper and lower case letters and the
 letters compared to the digits. If sorted on an ASCII based
platform the
 two letter abbreviation for a physician comes before the two letter
 for drive, that is:

 @sorted = sort(qw(Dr. dr.)); # @sorted holds ('Dr.','dr.') on ASCII,
 # but ('dr.','Dr.') on EBCDIC

The property of lower case before uppercase letters in EBCDIC is
 even carried to the Latin 1 EBCDIC
pages such as 0037 and 1047.
 An example would be that Ë E WITH DIAERESIS (203) comes
before ë e WITH DIAERESIS (235) on an ASCII platform, but the latter (83) comes before the former
(115) on an EBCDIC platform. (Astute readers will note that the upper case version of ß SMALL
LETTER SHARP S is simply "SS" and that the upper case version of ÿ y WITH DIAERESIS is not in
the 0..255 range but it is at U+x0178 in Unicode, or "\x{178}" in a Unicode enabled Perl).

The sort order will cause differences between results obtained on
 ASCII platforms versus EBCDIC
platforms. What follows are some suggestions
 on how to deal with these differences.

Ignore ASCII vs. EBCDIC sort differences.
This is the least computationally expensive strategy. It may require
 some user education.

MONO CASE then sort data.
In order to minimize the expense of mono casing mixed test try to tr/// towards the character set
case most employed within the data.
 If the data are primarily UPPERCASE non Latin 1 then apply
tr/[a-z]/[A-Z]/
 then sort(). If the data are primarily lowercase non Latin 1 then
 apply tr/[A-Z]/[a-z]/ before
sorting. If the data are primarily UPPERCASE
 and include Latin-1 characters then apply:

 tr/[a-z]/[A-Z]/;

tr/[Ã Ã¡Ã¢Ã£Ã¤Ã¥Ã¦Ã§Ã¨Ã©ÃªÃ«Ã¬Ã-Ã®Ã¯Ã°Ã±Ã²Ã³Ã´ÃµÃ¶Ã¸Ã¹ÃºÃ»Ã¼Ã½Ã¾]/[Ã€Ã•Ã‚Ãƒ
Ã„Ã…Ã†Ã‡ÃˆÃ‰ÃŠÃ‹ÃŒÃ•ÃŽÃ•Ã•Ã‘Ã’Ã“Ã”Ã•Ã–Ã˜Ã™ÃšÃ›ÃœÃ•Ãž/;
 s/ÃŸ/SS/g;

then sort(). Do note however that such Latin-1 manipulation does not address the ÿ y WITH
DIAERESIS character that will remain at code point 255 on ASCII platforms, but 223 on most
EBCDIC platforms where it will sort to a place less than the EBCDIC numerals. With a Unicode
enabled Perl you might try:

 tr/^?/\x{178}/;

The strategy of mono casing data before sorting does not preserve the case of the data and may not
be acceptable for that reason.

Convert, sort data, then re convert.
This is the most expensive proposition that does not employ a network
 connection.

Perform sorting on one type of platform only.
This strategy can employ a network connection. As such
 it would be computationally expensive.

TRANSFORMATION FORMATS
There are a variety of ways of transforming data with an intra character set mapping that serve a
variety of purposes. Sorting was discussed in the previous section and a few of the other more
popular mapping techniques are discussed next.

Perl version 5.12.4 documentation - perlebcdic

Page 23http://perldoc.perl.org

URL decoding and encoding
Note that some URLs have hexadecimal ASCII code points in them in an
 attempt to overcome
character or protocol limitation issues. For example the tilde character is not on every keyboard hence
a URL of the form:

 http://www.pvhp.com/~pvhp/

may also be expressed as either of:

 http://www.pvhp.com/%7Epvhp/

 http://www.pvhp.com/%7epvhp/

where 7E is the hexadecimal ASCII code point for '~'. Here is an example
 of decoding such a URL
under CCSID 1047:

 $url = 'http://www.pvhp.com/%7Epvhp/';
 # this array assumes code page 1047
 my @a2e_1047 = (
 0, 1, 2, 3, 55, 45, 46, 47, 22, 5, 21, 11, 12, 13, 14, 15,
 16, 17, 18, 19, 60, 61, 50, 38, 24, 25, 63, 39, 28, 29, 30, 31,
 64, 90,127,123, 91,108, 80,125, 77, 93, 92, 78,107, 96, 75, 97,
 240,241,242,243,244,245,246,247,248,249,122, 94, 76,126,110,111,
 124,193,194,195,196,197,198,199,200,201,209,210,211,212,213,214,
 215,216,217,226,227,228,229,230,231,232,233,173,224,189, 95,109,
 121,129,130,131,132,133,134,135,136,137,145,146,147,148,149,150,
 151,152,153,162,163,164,165,166,167,168,169,192, 79,208,161, 7,
 32, 33, 34, 35, 36, 37, 6, 23, 40, 41, 42, 43, 44, 9, 10, 27,
 48, 49, 26, 51, 52, 53, 54, 8, 56, 57, 58, 59, 4, 20, 62,255,
 65,170, 74,177,159,178,106,181,187,180,154,138,176,202,175,188,
 144,143,234,250,190,160,182,179,157,218,155,139,183,184,185,171,
 100,101, 98,102, 99,103,158,104,116,113,114,115,120,117,118,119,
 172,105,237,238,235,239,236,191,128,253,254,251,252,186,174, 89,
 68, 69, 66, 70, 67, 71,156, 72, 84, 81, 82, 83, 88, 85, 86, 87,
 140, 73,205,206,203,207,204,225,112,221,222,219,220,141,142,223
);
 $url =~ s/%([0-9a-fA-F]{2})/pack("c",$a2e_1047[hex($1)])/ge;

Conversely, here is a partial solution for the task of encoding such a URL under the 1047 code page:

 $url = 'http://www.pvhp.com/~pvhp/';
 # this array assumes code page 1047
 my @e2a_1047 = (
 0, 1, 2, 3,156, 9,134,127,151,141,142, 11, 12, 13, 14, 15,
 16, 17, 18, 19,157, 10, 8,135, 24, 25,146,143, 28, 29, 30, 31,
 128,129,130,131,132,133, 23, 27,136,137,138,139,140, 5, 6, 7,
 144,145, 22,147,148,149,150, 4,152,153,154,155, 20, 21,158, 26,
 32,160,226,228,224,225,227,229,231,241,162, 46, 60, 40, 43,124,
 38,233,234,235,232,237,238,239,236,223, 33, 36, 42, 41, 59, 94,
 45, 47,194,196,192,193,195,197,199,209,166, 44, 37, 95, 62, 63,
 248,201,202,203,200,205,206,207,204, 96, 58, 35, 64, 39, 61, 34,
 216, 97, 98, 99,100,101,102,103,104,105,171,187,240,253,254,177,
 176,106,107,108,109,110,111,112,113,114,170,186,230,184,198,164,
 181,126,115,116,117,118,119,120,121,122,161,191,208, 91,222,174,
 172,163,165,183,169,167,182,188,189,190,221,168,175, 93,180,215,
 123, 65, 66, 67, 68, 69, 70, 71, 72, 73,173,244,246,242,243,245,

Perl version 5.12.4 documentation - perlebcdic

Page 24http://perldoc.perl.org

 125, 74, 75, 76, 77, 78, 79, 80, 81, 82,185,251,252,249,250,255,
 92,247, 83, 84, 85, 86, 87, 88, 89, 90,178,212,214,210,211,213,
 48, 49, 50, 51, 52, 53, 54, 55, 56, 57,179,219,220,217,218,159
);
 # The following regular expression does not address the
 # mappings for: ('.' => '%2E', '/' => '%2F', ':' => '%3A')
 $url =~ s/([\t
"#%&\(\),;<=>\?\@\[\\\]^`{|}~])/sprintf("%%%02X",$e2a_1047[ord($1)])/ge;

where a more complete solution would split the URL into components and apply a full s/// substitution
only to the appropriate parts.

In the remaining examples a @e2a or @a2e array may be employed
 but the assignment will not be
shown explicitly. For code page 1047
 you could use the @a2e_1047 or @e2a_1047 arrays just
shown.

uu encoding and decoding
The u template to pack() or unpack() will render EBCDIC data in EBCDIC characters equivalent to
their ASCII counterparts. For example, the following will print "Yes indeed\n" on either an ASCII or
EBCDIC computer:

 $all_byte_chrs = '';
 for (0..255) { $all_byte_chrs .= chr($_); }
 $uuencode_byte_chrs = pack('u', $all_byte_chrs);
 ($uu = <<'ENDOFHEREDOC') =~ s/^\s*//gm;
 M``$"`P0%!@<("0H+#`T.#Q`1$A,4%187&!D:&QP='A\@(2(C)"4F)R@I*BLL
 M+2XO,#$R,S0U-C<X.3H[/#T^/T!!0D-$149'2$E*2TQ-3D]045)35%565UA9
 M6EM<75Y?8&%B8V1E9F=H:6IK;&UN;W!Q<G-T=79W>'EZ>WQ]?G^`@8*#A(6&
 MAXB)BHN,C8Z/D)&2DY25EI>8F9J;G)V>GZ"AHJ.DI::GJ*FJJZRMKJ^PL;*S
 MM+6VM[BYNKN\O;Z_P,'"P\3%QL?(R<K+S,W.S]#1TM/4U=;7V-G:V]S=WM_@
 ?X>+CY.7FY^CIZNOL[>[O\/'R_3U]O?X^?K[_/W^_P``
 ENDOFHEREDOC
 if ($uuencode_byte_chrs eq $uu) {
 print "Yes ";
 }
 $uudecode_byte_chrs = unpack('u', $uuencode_byte_chrs);
 if ($uudecode_byte_chrs eq $all_byte_chrs) {
 print "indeed\n";
 }

Here is a very spartan uudecoder that will work on EBCDIC provided
 that the @e2a array is filled in
appropriately:

 #!/usr/local/bin/perl
 @e2a = (# this must be filled in
);
 $_ = <> until ($mode,$file) = /^begin\s*(\d*)\s*(\S*)/;
 open(OUT, "> $file") if $file ne "";
 while(<>) {
 last if /^end/;
 next if /[a-z]/;
 next unless int(((($e2a[ord()] - 32) & 077) + 2) / 3) ==
 int(length() / 4);
 print OUT unpack("u", $_);
 }
 close(OUT);

Perl version 5.12.4 documentation - perlebcdic

Page 25http://perldoc.perl.org

 chmod oct($mode), $file;

Quoted-Printable encoding and decoding
On ASCII encoded platforms it is possible to strip characters outside of
 the printable set using:

 # This QP encoder works on ASCII only
 $qp_string =~ s/([=\x00-\x1F\x80-\xFF])/sprintf("=%02X",ord($1))/ge;

Whereas a QP encoder that works on both ASCII and EBCDIC platforms would look somewhat like
the following (where the EBCDIC branch @e2a array is omitted for brevity):

 if (ord('A') == 65) { # ASCII
 $delete = "\x7F"; # ASCII
 @e2a = (0 .. 255) # ASCII to ASCII identity map
 }
 else { # EBCDIC
 $delete = "\x07"; # EBCDIC
 @e2a = # EBCDIC to ASCII map (as shown above)
 }
 $qp_string =~
 s/([^
!"\#\$%&'()*+,\-.\/0-9:;<>?\@A-Z[\\\]^_`a-z{|}~$delete])/sprintf("=%02X",$e
2a[ord($1)])/ge;

(although in production code the substitutions might be done
 in the EBCDIC branch with the @e2a
array and separately in the ASCII branch without the expense of the identity map).

Such QP strings can be decoded with:

 # This QP decoder is limited to ASCII only
 $string =~ s/=([0-9A-Fa-f][0-9A-Fa-f])/chr hex $1/ge;
 $string =~ s/=[\n\r]+$//;

Whereas a QP decoder that works on both ASCII and EBCDIC platforms would look somewhat like
the following (where the @a2e array is
 omitted for brevity):

 $string =~ s/=([0-9A-Fa-f][0-9A-Fa-f])/chr $a2e[hex $1]/ge;
 $string =~ s/=[\n\r]+$//;

Caesarian ciphers
The practice of shifting an alphabet one or more characters for encipherment
 dates back thousands of
years and was explicitly detailed by Gaius Julius
 Caesar in his Gallic Wars text. A single alphabet
shift is sometimes referred to as a rotation and the shift amount is given as a number $n after
 the
string 'rot' or "rot$n". Rot0 and rot26 would designate identity maps on the 26 letter English version of
the Latin alphabet. Rot13 has the interesting property that alternate subsequent invocations are
identity maps (thus rot13 is its own non-trivial inverse in the group of 26 alphabet rotations). Hence
the following is a rot13 encoder and decoder that will work on ASCII and EBCDIC platforms:

 #!/usr/local/bin/perl

 while(<>){
 tr/n-za-mN-ZA-M/a-zA-Z/;
 print;
 }

Perl version 5.12.4 documentation - perlebcdic

Page 26http://perldoc.perl.org

In one-liner form:

 perl -ne 'tr/n-za-mN-ZA-M/a-zA-Z/;print'

Hashing order and checksums
To the extent that it is possible to write code that depends on hashing order there may be differences
between hashes as stored
 on an ASCII based platform and hashes stored on an EBCDIC based
platform.
 XXX

I18N AND L10N
Internationalization(I18N) and localization(L10N) are supported at least in principle even on EBCDIC
platforms. The details are system dependent and discussed under the "OS ISSUES" in perlebcdic
section below.

MULTI OCTET CHARACTER SETS
Perl may work with an internal UTF-EBCDIC encoding form for wide characters on EBCDIC platforms
in a manner analogous to the way that it works with the UTF-8 internal encoding form on ASCII based
platforms.

Legacy multi byte EBCDIC code pages XXX.

OS ISSUES
There may be a few system dependent issues of concern to EBCDIC Perl programmers.

OS/400
PASE

The PASE environment is runtime environment for OS/400 that can run
 executables
built for PowerPC AIX in OS/400, see perlos400. PASE
 is ASCII-based, not
EBCDIC-based as the ILE.

IFS access

XXX.

OS/390, z/OS
Perl runs under Unix Systems Services or USS.

chcp

chcp is supported as a shell utility for displaying and changing one's code page. See
also chcp.

dataset access

For sequential data set access try:

 my @ds_records = `cat //DSNAME`;

or:

 my @ds_records = `cat //'HLQ.DSNAME'`;

See also the OS390::Stdio module on CPAN.

OS/390, z/OS iconv

iconv is supported as both a shell utility and a C RTL routine.
 See also the iconv(1)
and iconv(3) manual pages.

locales

On OS/390 or z/OS see locale for information on locales. The L10N files
 are in

Perl version 5.12.4 documentation - perlebcdic

Page 27http://perldoc.perl.org

/usr/nls/locale. $Config{d_setlocale} is 'define' on OS/390
 or z/OS.

VM/ESA?
XXX.

POSIX-BC?
XXX.

BUGS
This pod document contains literal Latin 1 characters and may encounter translation difficulties. In
particular one popular nroff implementation was known to strip accented characters to their
unaccented counterparts while attempting to view this document through the pod2man program (for
example, you may see a plain y rather than one with a diaeresis as in ÿ). Another nroff truncated the
resultant manpage at
 the first occurrence of 8 bit characters.

Not all shells will allow multiple -e string arguments to perl to
 be concatenated together properly as
recipes 0, 2, 4, 5, and 6 might seem to imply.

SEE ALSO
perllocale, perlfunc, perlunicode, utf8.

REFERENCES
http://anubis.dkuug.dk/i18n/charmaps

http://www.unicode.org/

http://www.unicode.org/unicode/reports/tr16/

http://www.wps.com/projects/codes/ ASCII: American Standard Code for Information Infiltration
Tom Jennings,
 September 1999.

The Unicode Standard, Version 3.0 The Unicode Consortium, Lisa Moore ed., ISBN 0-201-61633-5,
Addison Wesley Developers Press, February 2000.

CDRA: IBM - Character Data Representation Architecture - Reference and Registry, IBM
SC09-2190-00, December 1996.

"Demystifying Character Sets", Andrea Vine, Multilingual Computing & Technology, #26 Vol. 10 Issue
4, August/September 1999;
 ISSN 1523-0309; Multilingual Computing Inc. Sandpoint ID, USA.

Codes, Ciphers, and Other Cryptic and Clandestine Communication
 Fred B. Wrixon, ISBN
1-57912-040-7, Black Dog & Leventhal Publishers,
 1998.

http://www.bobbemer.com/P-BIT.HTM IBM - EBCDIC and the P-bit; The biggest Computer Goof
Ever Robert Bemer.

HISTORY
15 April 2001: added UTF-8 and UTF-EBCDIC to main table, pvhp.

AUTHOR
Peter Prymmer pvhp@best.com wrote this in 1999 and 2000 with CCSID 0819 and 0037 help from
Chris Leach and André Pirard A.Pirard@ulg.ac.be as well as POSIX-BC help from Thomas Dorner
Thomas.Dorner@start.de.
 Thanks also to Vickie Cooper, Philip Newton, William Raffloer, and Joe
Smith. Trademarks, registered trademarks, service marks and registered service marks used in this
document are the property of their respective owners.

