
Perl version 5.12.4 documentation - perlre

Page 1http://perldoc.perl.org

NAME
perlre - Perl regular expressions

DESCRIPTION
This page describes the syntax of regular expressions in Perl.

If you haven't used regular expressions before, a quick-start
 introduction is available in perlrequick,
and a longer tutorial
 introduction is available in perlretut.

For reference on how regular expressions are used in matching
 operations, plus various examples of
the same, see discussions of m//, s///, qr// and ?? in "Regexp Quote-Like Operators" in perlop.

Modifiers
Matching operations can have various modifiers. Modifiers
 that relate to the interpretation of the
regular expression inside
 are listed below. Modifiers that alter the way a regular expression
 is used by
Perl are detailed in "Regexp Quote-Like Operators" in perlop and "Gory details of parsing quoted
constructs" in perlop.

m

Treat string as multiple lines. That is, change "^" and "$" from matching
 the start or end of the
string to matching the start or end of any
 line anywhere within the string.

s

Treat string as single line. That is, change "." to match any character
 whatsoever, even a
newline, which normally it would not match.

Used together, as /ms, they let the "." match any character whatsoever,
 while still allowing "^"
and "$" to match, respectively, just after
 and just before newlines within the string.

i

Do case-insensitive pattern matching.

If use locale is in effect, the case map is taken from the current
 locale. See perllocale.

x

Extend your pattern's legibility by permitting whitespace and comments.

p

Preserve the string matched such that ${^PREMATCH}, ${^MATCH}, and
 ${^POSTMATCH}
are available for use after matching.

g and c

Global matching, and keep the Current position after failed matching.
 Unlike i, m, s and x,
these two flags affect the way the regex is used
 rather than the regex itself. See "Using
regular expressions in Perl" in perlretut for further explanation
 of the g and c modifiers.

These are usually written as "the /x modifier", even though the delimiter
 in question might not really
be a slash. Any of these
 modifiers may also be embedded within the regular expression itself using

the (?...) construct. See below.

The /x modifier itself needs a little more explanation. It tells
 the regular expression parser to ignore
most whitespace that is neither
 backslashed nor within a character class. You can use this to break
up
 your regular expression into (slightly) more readable parts. The #
 character is also treated as a
metacharacter introducing a comment,
 just as in ordinary Perl code. This also means that if you want
real
 whitespace or # characters in the pattern (outside a character
 class, where they are unaffected
by /x), then you'll either have to
 escape them (using backslashes or \Q...\E) or encode them using
octal,
 hex, or \N{} escapes. Taken together, these features go a long way towards
 making Perl's
regular expressions more readable. Note that you have to
 be careful not to include the pattern

Perl version 5.12.4 documentation - perlre

Page 2http://perldoc.perl.org

delimiter in the comment--perl has
 no way of knowing you did not intend to close the pattern early.
See
 the C-comment deletion code in perlop. Also note that anything inside
 a \Q...\E stays
unaffected by /x. And note that /x doesn't affect
 whether space interpretation within a single
multi-character construct. For
 example in \x{...}, regardless of the /x modifier, there can be no

spaces. Same for a quantifier such as {3} or {5,}. Similarly, (?:...) can't have a space between
the ? and :,
 but can between the (and ?. Within any delimiters for such a
 construct, allowed spaces
are not affected by /x, and depend on the
 construct. For example, \x{...} can't have spaces
because hexadecimal
 numbers don't have spaces in them. But, Unicode properties can have spaces,
so
 in \p{...} there can be spaces that follow the Unicode rules, for which see "Properties
accessible through \p{} and \P{}" in perluniprops.

Regular Expressions
Metacharacters

The patterns used in Perl pattern matching evolved from those supplied in
 the Version 8 regex
routines. (The routines are derived
 (distantly) from Henry Spencer's freely redistributable
reimplementation
 of the V8 routines.) See Version 8 Regular Expressions for
 details.

In particular the following metacharacters have their standard egrep-ish
 meanings:

 \	 Quote the next metacharacter
 ^	 Match the beginning of the line
 .	 Match any character (except newline)
 $	 Match the end of the line (or before newline at the end)
 |	 Alternation
 ()	 Grouping
 []	 Bracketed Character class

By default, the "^" character is guaranteed to match only the
 beginning of the string, the "$" character
only the end (or before the
 newline at the end), and Perl does certain optimizations with the

assumption that the string contains only one line. Embedded newlines
 will not be matched by "^" or
"$". You may, however, wish to treat a
 string as a multi-line buffer, such that the "^" will match after
any
 newline within the string (except if the newline is the last character in
 the string), and "$" will
match before any newline. At the
 cost of a little more overhead, you can do this by using the /m
modifier
 on the pattern match operator. (Older programs did this by setting $*,
 but this practice has
been removed in perl 5.9.)

To simplify multi-line substitutions, the "." character never matches a
 newline unless you use the /s
modifier, which in effect tells Perl to pretend
 the string is a single line--even if it isn't.

Quantifiers

The following standard quantifiers are recognized:

 *	 Match 0 or more times
 +	 Match 1 or more times
 ?	 Match 1 or 0 times
 {n} Match exactly n times
 {n,} Match at least n times
 {n,m} Match at least n but not more than m times

(If a curly bracket occurs in any other context, it is treated
 as a regular character. In particular, the
lower bound
 is not optional.) The "*" quantifier is equivalent to {0,}, the "+"
 quantifier to {1,}, and
the "?" quantifier to {0,1}. n and m are limited
 to non-negative integral values less than a preset limit
defined when perl is built.
 This is usually 32766 on the most common platforms. The actual limit can

be seen in the error message generated by code such as this:

 $_ **= $_ , / {$_} / for 2 .. 42;

Perl version 5.12.4 documentation - perlre

Page 3http://perldoc.perl.org

By default, a quantified subpattern is "greedy", that is, it will match as
 many times as possible (given a
particular starting location) while still
 allowing the rest of the pattern to match. If you want it to match
the
 minimum number of times possible, follow the quantifier with a "?". Note
 that the meanings don't
change, just the "greediness":

 *? Match 0 or more times, not greedily
 +? Match 1 or more times, not greedily
 ?? Match 0 or 1 time, not greedily
 {n}? Match exactly n times, not greedily
 {n,}? Match at least n times, not greedily
 {n,m}? Match at least n but not more than m times, not greedily

By default, when a quantified subpattern does not allow the rest of the
 overall pattern to match, Perl
will backtrack. However, this behaviour is
 sometimes undesirable. Thus Perl provides the
"possessive" quantifier form
 as well.

 *+ Match 0 or more times and give nothing back
 ++ Match 1 or more times and give nothing back
 ?+ Match 0 or 1 time and give nothing back
 {n}+ Match exactly n times and give nothing back (redundant)
 {n,}+ Match at least n times and give nothing back
 {n,m}+ Match at least n but not more than m times and give nothing back

For instance,

 'aaaa' =~ /a++a/

will never match, as the a++ will gobble up all the a's in the
 string and won't leave any for the
remaining part of the pattern. This
 feature can be extremely useful to give perl hints about where it

shouldn't backtrack. For instance, the typical "match a double-quoted
 string" problem can be most
efficiently performed when written as:

 /"(?:[^"\\]++|\\.)*+"/

as we know that if the final quote does not match, backtracking will not
 help. See the independent
subexpression (?>...) for more details;
 possessive quantifiers are just syntactic sugar for that
construct. For
 instance the above example could also be written as follows:

 /"(?>(?:(?>[^"\\]+)|\\.)*)"/

Escape sequences

Because patterns are processed as double quoted strings, the following
 also work:

 \t		 tab (HT, TAB)
 \n		 newline (LF, NL)
 \r		 return (CR)
 \f		 form feed (FF)
 \a		 alarm (bell) (BEL)
 \e		 escape (think troff) (ESC)
 \033	 octal char (example: ESC)
 \x1B	 hex char (example: ESC)
 \x{263a}	 long hex char (example: Unicode SMILEY)
 \cK		 control char (example: VT)
 \N{name}	 named Unicode character
 \N{U+263D}	 Unicode character (example: FIRST QUARTER MOON)
 \l		 lowercase next char (think vi)

Perl version 5.12.4 documentation - perlre

Page 4http://perldoc.perl.org

 \u		 uppercase next char (think vi)
 \L		 lowercase till \E (think vi)
 \U		 uppercase till \E (think vi)
 \Q		 quote (disable) pattern metacharacters till \E
 \E		 end either case modification or quoted section (think vi)

Details are in "Quote and Quote-like Operators" in perlop.

Character Classes and other Special Escapes

In addition, Perl defines the following:

 Sequence Note Description
 [...] [1] Match a character according to the rules of the bracketed
 character class defined by the "...". Example: [a-z]
 matches "a" or "b" or "c" ... or "z"
 [[:...:]] [2] Match a character according to the rules of the POSIX
 character class "..." within the outer bracketed
character
 class. Example: [[:upper:]] matches any uppercase
 character.
 \w [3] Match a "word" character (alphanumeric plus "_")
 \W [3] Match a non-"word" character
 \s [3] Match a whitespace character
 \S [3] Match a non-whitespace character
 \d [3] Match a decimal digit character
 \D [3] Match a non-digit character
 \pP [3] Match P, named property. Use \p{Prop} for longer names.
 \PP [3] Match non-P
 \X [4] Match Unicode "eXtended grapheme cluster"
 \C Match a single C-language char (octet) even if that is
part
 of a larger UTF-8 character. Thus it breaks up
characters
 into their UTF-8 bytes, so you may end up with
malformed
 pieces of UTF-8. Unsupported in lookbehind.
 \1 [5] Backreference to a specific capture buffer or group.
 '1' may actually be any positive integer.
 \g1 [5] Backreference to a specific or previous group,
 \g{-1} [5] The number may be negative indicating a relative previous
 buffer and may optionally be wrapped in curly brackets
for
 safer parsing.
 \g{name} [5] Named backreference
 \k<name> [5] Named backreference
 \K [6] Keep the stuff left of the \K, don't include it in $&
 \N [7] Any character but \n (experimental). Not affected by /s
 modifier
 \v [3] Vertical whitespace
 \V [3] Not vertical whitespace
 \h [3] Horizontal whitespace
 \H [3] Not horizontal whitespace
 \R [4] Linebreak

[1]

Perl version 5.12.4 documentation - perlre

Page 5http://perldoc.perl.org

See "Bracketed Character Classes" in perlrecharclass for details.

[2]

See "POSIX Character Classes" in perlrecharclass for details.

[3]

See "Backslash sequences" in perlrecharclass for details.

[4]

See "Misc" in perlrebackslash for details.

[5]

See Capture buffers below for details.

[6]

See Extended Patterns below for details.

[7]

Note that \N has two meanings. When of the form \N{NAME}, it matches the
 character whose
name is NAME; and similarly when of the form \N{U+wide hex char}, it matches the
character whose Unicode ordinal is wide hex char. Otherwise it matches any character but \n.

Assertions

Perl defines the following zero-width assertions:

 \b Match a word boundary
 \B Match except at a word boundary
 \A Match only at beginning of string
 \Z Match only at end of string, or before newline at the end
 \z Match only at end of string
 \G Match only at pos() (e.g. at the end-of-match position
 of prior m//g)

A word boundary (\b) is a spot between two characters
 that has a \w on one side of it and a \W on
the other side
 of it (in either order), counting the imaginary characters off the
 beginning and end of the
string as matching a \W. (Within
 character classes \b represents backspace rather than a word

boundary, just as it normally does in any double-quoted string.)
 The \A and \Z are just like "^" and
"$", except that they
 won't match multiple times when the /m modifier is used, while
 "^" and "$" will
match at every internal line boundary. To match
 the actual end of the string and not ignore an optional
trailing
 newline, use \z.

The \G assertion can be used to chain global matches (using m//g), as described in "Regexp
Quote-Like Operators" in perlop.
 It is also useful when writing lex-like scanners, when you have

several patterns that you want to match against consequent substrings
 of your string, see the
previous reference. The actual location
 where \G will match can also be influenced by using pos()
as
 an lvalue: see "pos" in perlfunc. Note that the rule for zero-length
 matches is modified somewhat,
in that contents to the left of \G is
 not counted when determining the length of the match. Thus the
following
 will not match forever:

 $str = 'ABC';
 pos($str) = 1;
 while (/.\G/g) {
 print $&;
 }

It will print 'A' and then terminate, as it considers the match to
 be zero-width, and thus will not match

Perl version 5.12.4 documentation - perlre

Page 6http://perldoc.perl.org

at the same position twice in a
 row.

It is worth noting that \G improperly used can result in an infinite
 loop. Take care when using patterns
that include \G in an alternation.

Capture buffers

The bracketing construct (...) creates capture buffers. To refer
 to the current contents of a buffer
later on, within the same pattern,
 use \1 for the first, \2 for the second, and so on.
 Outside the match
use "$" instead of "\". (The
 \<digit> notation works in certain circumstances outside
 the match. See
Warning on \1 Instead of $1 below for details.)
 Referring back to another part of the match is called a
backreference.

There is no limit to the number of captured substrings that you may
 use. However Perl also uses \10,
\11, etc. as aliases for \010,
 \011, etc. (Recall that 0 means octal, so \011 is the character at
 number 9
in your coded character set; which would be the 10th character,
 a horizontal tab under ASCII.) Perl
resolves this
 ambiguity by interpreting \10 as a backreference only if at least 10
 left parentheses have
opened before it. Likewise \11 is a
 backreference only if at least 11 left parentheses have opened

before it. And so on. \1 through \9 are always interpreted as
 backreferences.
 If the bracketing group
did not match, the associated backreference won't
 match either. (This can happen if the bracketing
group is optional, or
 in a different branch of an alternation.)

 In order to provide a safer and easier way to construct patterns using
 backreferences, Perl
provides the \g{N} notation (starting with perl
 5.10.0). The curly brackets are optional, however
omitting them is less
 safe as the meaning of the pattern can be changed by text (such as digits)

following it. When N is a positive integer the \g{N} notation is
 exactly equivalent to using normal
backreferences. When N is a negative
 integer then it is a relative backreference referring to the
previous N'th
 capturing group. When the bracket form is used and N is not an integer, it
 is treated as
a reference to a named buffer.

Thus \g{-1} refers to the last buffer, \g{-2} refers to the
 buffer before that. For example:

 /
 (Y) # buffer 1
 (# buffer 2
 (X) # buffer 3
 \g{-1} # backref to buffer 3
 \g{-3} # backref to buffer 1
)
 /x

and would match the same as /(Y) ((X) \3 \1)/x.

Additionally, as of Perl 5.10.0 you may use named capture buffers and named
 backreferences. The
notation is (?<name>...) to declare and \k<name>
 to reference. You may also use apostrophes
instead of angle brackets to delimit the
 name; and you may use the bracketed \g{name}
backreference syntax.
 It's possible to refer to a named capture buffer by absolute and relative number
as well.
 Outside the pattern, a named capture buffer is available via the %+ hash.
 When different
buffers within the same pattern have the same name, $+{name}
 and \k<name> refer to the leftmost
defined group. (Thus it's possible
 to do things with named capture buffers that would otherwise
require (??{})
 code to accomplish.)

Examples:

 s/^([^]*) *([^]*)/$2 $1/; # swap first two words

 /(.)\1/ # find first doubled char
 and print "'$1' is the first doubled character\n";

Perl version 5.12.4 documentation - perlre

Page 7http://perldoc.perl.org

 /(?<char>.)\k<char>/ # ... a different way
 and print "'$+{char}' is the first doubled character\n";

 /(?'char'.)\1/ # ... mix and match
 and print "'$1' is the first doubled character\n";

 if (/Time: (..):(..):(..)/) { # parse out values
	 $hours = $1;
	 $minutes = $2;
	 $seconds = $3;
 }

Several special variables also refer back to portions of the previous
 match. $+ returns whatever the
last bracket match matched. $& returns the entire matched string. (At one point $0 did
 also, but now it
returns the name of the program.) $` returns
 everything before the matched string. $' returns
everything
 after the matched string. And $^N contains whatever was matched by
 the most-recently
closed group (submatch). $^N can be used in
 extended patterns (see below), for example to assign a
submatch to a
 variable.

The numbered match variables ($1, $2, $3, etc.) and the related punctuation
 set ($+, $&, $`, $', and
$^N) are all dynamically scoped
 until the end of the enclosing block or until the next successful
 match,
whichever comes first. (See "Compound Statements" in perlsyn.)

NOTE: Failed matches in Perl do not reset the match variables,
 which makes it easier to write code
that tests for a series of more
 specific cases and remembers the best match.

WARNING: Once Perl sees that you need one of $&, $`, or $' anywhere in the program, it has to
provide them for every
 pattern match. This may substantially slow your program. Perl
 uses the same
mechanism to produce $1, $2, etc, so you also pay a
 price for each pattern that contains capturing
parentheses. (To
 avoid this cost while retaining the grouping behaviour, use the
 extended regular
expression (?: ...) instead.) But if you never
 use $&, $` or $', then patterns without capturing

parentheses will not be penalized. So avoid $&, $', and $`
 if you can, but if you can't (and some
algorithms really appreciate
 them), once you've used them once, use them at will, because you've

already paid the price. As of 5.005, $& is not so costly as the
 other two.

As a workaround for this problem, Perl 5.10.0 introduces ${^PREMATCH}, ${^MATCH} and
${^POSTMATCH}, which are equivalent to $`, $&
 and $', except that they are only guaranteed to be
defined after a
 successful match that was executed with the /p (preserve) modifier.
 The use of these
variables incurs no global performance penalty, unlike
 their punctuation char equivalents, however at
the trade-off that you
 have to tell perl when you want to use them.

Quoting metacharacters
Backslashed metacharacters in Perl are alphanumeric, such as \b, \w, \n. Unlike some other regular
expression languages, there
 are no backslashed symbols that aren't alphanumeric. So anything
 that
looks like \\, \(, \), \<, \>, \{, or \} is always
 interpreted as a literal character, not a metacharacter. This
was
 once used in a common idiom to disable or quote the special meanings
 of regular expression
metacharacters in a string that you want to
 use for a pattern. Simply quote all non-"word" characters:

 $pattern =~ s/(\W)/\\$1/g;

(If use locale is set, then this depends on the current locale.)
 Today it is more common to use the
quotemeta() function or the \Q
 metaquoting escape sequence to disable all metacharacters' special

meanings like this:

 /$unquoted\Q$quoted\E$unquoted/

Perl version 5.12.4 documentation - perlre

Page 8http://perldoc.perl.org

Beware that if you put literal backslashes (those not inside
 interpolated variables) between \Q and \E,
double-quotish
 backslash interpolation may lead to confusing results. If you need to use literal
backslashes within \Q...\E,
 consult "Gory details of parsing quoted constructs" in perlop.

Extended Patterns
Perl also defines a consistent extension syntax for features not
 found in standard tools like awk and
lex. The syntax is a
 pair of parentheses with a question mark as the first thing within
 the parentheses.
The character after the question mark indicates
 the extension.

The stability of these extensions varies widely. Some have been
 part of the core language for many
years. Others are experimental
 and may change without warning or be completely removed. Check

the documentation on an individual feature to verify its current
 status.

A question mark was chosen for this and for the minimal-matching
 construct because 1) question
marks are rare in older regular
 expressions, and 2) whenever you see one, you should stop and

"question" exactly what is going on. That's psychology...

(?#text)

A comment. The text is ignored. If the /x modifier enables
 whitespace formatting,
a simple # will suffice. Note that Perl closes
 the comment as soon as it sees a),
so there is no way to put a literal) in the comment.

(?pimsx-imsx)

One or more embedded pattern-match modifiers, to be turned on (or
 turned off, if
preceded by -) for the remainder of the pattern or
 the remainder of the enclosing
pattern group (if any). This is
 particularly useful for dynamic patterns, such as
those read in from a
 configuration file, taken from an argument, or specified in a
table
 somewhere. Consider the case where some patterns want to be case

sensitive and some do not: The case insensitive ones merely need to
 include (?i)
at the front of the pattern. For example:

 $pattern = "foobar";
 if (/$pattern/i) { }

 # more flexible:

 $pattern = "(?i)foobar";
 if (/$pattern/) { }

These modifiers are restored at the end of the enclosing group. For example,

 ((?i) blah) \s+ \1

will match blah in any case, some spaces, and an exact (including the case!)

repetition of the previous word, assuming the /x modifier, and no /i
 modifier
outside this group.

These modifiers do not carry over into named subpatterns called in the
 enclosing
group. In other words, a pattern such as ((?i)(&NAME)) does not
 change the
case-sensitivity of the "NAME" pattern.

Note that the p modifier is special in that it can only be enabled,
 not disabled, and
that its presence anywhere in a pattern has a global
 effect. Thus (?-p) and
(?-p:...) are meaningless and will warn
 when executed under use warnings.

(?:pattern)

(?imsx-imsx:pattern)

This is for clustering, not capturing; it groups subexpressions like
 "()", but doesn't
make backreferences as "()" does. So

Perl version 5.12.4 documentation - perlre

Page 9http://perldoc.perl.org

 @fields = split(/\b(?:a|b|c)\b/)

is like

 @fields = split(/\b(a|b|c)\b/)

but doesn't spit out extra fields. It's also cheaper not to capture
 characters if you
don't need to.

Any letters between ? and : act as flags modifiers as with (?imsx-imsx). For
example,

 /(?s-i:more.*than).*million/i

is equivalent to the more verbose

 /(?:(?s-i)more.*than).*million/i

(?|pattern)

This is the "branch reset" pattern, which has the special property
 that the capture
buffers are numbered from the same starting point
 in each alternation branch. It is
available starting from perl 5.10.0.

Capture buffers are numbered from left to right, but inside this
 construct the
numbering is restarted for each branch.

The numbering within each branch will be as normal, and any buffers
 following this
construct will be numbered as though the construct
 contained only one branch,
that being the one with the most capture
 buffers in it.

This construct will be useful when you want to capture one of a
 number of
alternative matches.

Consider the following pattern. The numbers underneath show in
 which buffer the
captured content will be stored.

 # before ---------------branch-reset----------- after
 / (a) (?| x (y) z | (p (q) r) | (t) u (v)) (z) /x
 # 1 2 2 3 2 3 4

Be careful when using the branch reset pattern in combination with named
captures. Named captures are implemented as being aliases to numbered buffers
holding the captures, and that interferes with the
 implementation of the branch
reset pattern. If you are using named
 captures in a branch reset pattern, it's best to
use the same names,
 in the same order, in each of the alternations:

 /(?| (?<a> x) (? y)
 | (?<a> z) (? w)) /x

Not doing so may lead to surprises:

 "12" =~ /(?| (?<a> \d+) | (? \D+))/x;
 say $+ {a}; # Prints '12'
 say $+ {b}; # *Also* prints '12'.

The problem here is that both the buffer named a and the buffer
 named b are
aliases for the buffer belonging to $1.

Look-Around Assertions

Look-around assertions are zero width patterns which match a specific
 pattern
without including it in $&. Positive assertions match when
 their subpattern
matches, negative assertions match when their subpattern
 fails. Look-behind
matches text up to the current match position,
 look-ahead matches text following

Perl version 5.12.4 documentation - perlre

Page 10http://perldoc.perl.org

the current match position.

(?=pattern)

A zero-width positive look-ahead assertion. For example, /\w+(?=\t)/

matches a word followed by a tab, without including the tab in $&.

(?!pattern)

A zero-width negative look-ahead assertion. For example /foo(?!bar)/

matches any occurrence of "foo" that isn't followed by "bar". Note
 however
that look-ahead and look-behind are NOT the same thing. You cannot
 use
this for look-behind.

If you are looking for a "bar" that isn't preceded by a "foo", /(?!foo)bar/

will not do what you want. That's because the (?!foo) is just saying that

the next thing cannot be "foo"--and it's not, it's a "bar", so "foobar" will

match. You would have to do something like /(?!foo)...bar/ for that.
We
 say "like" because there's the case of your "bar" not having three
characters
 before it. You could cover that this way:
/(?:(?!foo)...|^.{0,2})bar/.
 Sometimes it's still easier just to say:

 if (/bar/ && $` !~ /foo$/)

For look-behind see below.

(?<=pattern) \K

A zero-width positive look-behind assertion. For example, /(?<=\t)\w+/

matches a word that follows a tab, without including the tab in $&.
 Works
only for fixed-width look-behind.

There is a special form of this construct, called \K, which causes the
 regex
engine to "keep" everything it had matched prior to the \K and
 not include it
in $&. This effectively provides variable length
 look-behind. The use of \K
inside of another look-around assertion
 is allowed, but the behaviour is
currently not well defined.

For various reasons \K may be significantly more efficient than the

equivalent (?<=...) construct, and it is especially useful in
 situations
where you want to efficiently remove something following
 something else in
a string. For instance

 s/(foo)bar/$1/g;

can be rewritten as the much more efficient

 s/foo\Kbar//g;

(?<!pattern)

A zero-width negative look-behind assertion. For example
/(?<!bar)foo/
 matches any occurrence of "foo" that does not follow
"bar". Works
 only for fixed-width look-behind.

(?'NAME'pattern)

(?<NAME>pattern)

A named capture buffer. Identical in every respect to normal capturing
 parentheses
() but for the additional fact that %+ or %- may be
 used after a successful match to
refer to a named buffer. See perlvar
 for more details on the %+ and %- hashes.

If multiple distinct capture buffers have the same name then the
 $+{NAME} will
refer to the leftmost defined buffer in the match.

Perl version 5.12.4 documentation - perlre

Page 11http://perldoc.perl.org

The forms (?'NAME'pattern) and (?<NAME>pattern) are equivalent.

NOTE: While the notation of this construct is the same as the similar
 function in
.NET regexes, the behavior is not. In Perl the buffers are
 numbered sequentially
regardless of being named or not. Thus in the
 pattern

 /(x)(?<foo>y)(z)/

$+{foo} will be the same as $2, and $3 will contain 'z' instead of
 the opposite which
is what a .NET regex hacker might expect.

Currently NAME is restricted to simple identifiers only.
 In other words, it must
match /^[_A-Za-z][_A-Za-z0-9]*\z/ or
 its Unicode extension (see utf8),

though it isn't extended by the locale (see perllocale).

NOTE: In order to make things easier for programmers with experience
 with the
Python or PCRE regex engines, the pattern (?P<NAME>pattern)
 may be used
instead of (?<NAME>pattern); however this form does not
 support the use of
single quotes as a delimiter for the name.

\k<NAME>

\k'NAME'

Named backreference. Similar to numeric backreferences, except that
 the group is
designated by name and not number. If multiple groups
 have the same name then
it refers to the leftmost defined group in
 the current match.

It is an error to refer to a name not defined by a (?<NAME>)
 earlier in the pattern.

Both forms are equivalent.

NOTE: In order to make things easier for programmers with experience
 with the
Python or PCRE regex engines, the pattern (?P=NAME)
 may be used instead of
\k<NAME>.

(?{ code })

WARNING: This extended regular expression feature is considered
 experimental,
and may be changed without notice. Code executed that
 has side effects may not
perform identically from version to version
 due to the effect of future optimisations
in the regex engine.

This zero-width assertion evaluates any embedded Perl code. It
 always succeeds,
and its code is not interpolated. Currently,
 the rules to determine where the code
ends are somewhat convoluted.

This feature can be used together with the special variable $^N to
 capture the
results of submatches in variables without having to keep
 track of the number of
nested parentheses. For example:

 $_ = "The brown fox jumps over the lazy dog";
 /the (\S+)(?{ $color = $^N }) (\S+)(?{ $animal = $^N })/i;
 print "color = $color, animal = $animal\n";

Inside the (?{...}) block, $_ refers to the string the regular
 expression is
matching against. You can also use pos() to know what is
 the current position of
matching within this string.

The code is properly scoped in the following sense: If the assertion
 is backtracked
(compare Backtracking), all changes introduced after localization are undone, so
that

 $_ = 'a' x 8;
 m<
 (?{ $cnt = 0 })			 # Initialize $cnt.
 (

Perl version 5.12.4 documentation - perlre

Page 12http://perldoc.perl.org

 a
 (?{
 local $cnt = $cnt + 1;	 # Update $cnt,
backtracking-safe.
 })
)*
 aaaa
 (?{ $res = $cnt })			 # On success copy to non-localized
					 # location.
 >x;

will set $res = 4. Note that after the match, $cnt returns to the globally

introduced value, because the scopes that restrict local operators
 are unwound.

This assertion may be used as a (?(condition)yes-pattern|no-pattern)

switch. If not used in this way, the result of evaluation of code is put into the
special variable $^R. This happens
 immediately, so $^R can be used from other
(?{ code }) assertions
 inside the same regular expression.

The assignment to $^R above is properly localized, so the old
 value of $^R is
restored if the assertion is backtracked; compare Backtracking.

For reasons of security, this construct is forbidden if the regular
 expression
involves run-time interpolation of variables, unless the
 perilous use re 'eval'
pragma has been used (see re), or the
 variables contain results of qr// operator
(see "qr/STRING/msixpo" in perlop).

This restriction is due to the wide-spread and remarkably convenient
 custom of
using run-time determined strings as patterns. For example:

 $re = <>;
 chomp $re;
 $string =~ /$re/;

Before Perl knew how to execute interpolated code within a pattern,
 this operation
was completely safe from a security point of view,
 although it could raise an
exception from an illegal pattern. If
 you turn on the use re 'eval', though, it is
no longer secure,
 so you should only do so if you are also using taint checking.

Better yet, use the carefully constrained evaluation within a Safe
 compartment.
See perlsec for details about both these mechanisms.

WARNING: Use of lexical (my) variables in these blocks is
 broken. The result is
unpredictable and will make perl unstable. The
 workaround is to use global (our)
variables.

WARNING: Because Perl's regex engine is currently not re-entrant,
 interpolated
code may not invoke the regex engine either directly with m// or s///), or
indirectly with functions such as split. Invoking the regex engine in these blocks
will make perl
 unstable.

(??{ code })

WARNING: This extended regular expression feature is considered
 experimental,
and may be changed without notice. Code executed that
 has side effects may not
perform identically from version to version
 due to the effect of future optimisations
in the regex engine.

This is a "postponed" regular subexpression. The code is evaluated
 at run time, at
the moment this subexpression may match. The result
 of evaluation is considered
as a regular expression and matched as
 if it were inserted instead of this construct.
Note that this means
 that the contents of capture buffers defined inside an eval'ed
pattern
 are not available outside of the pattern, and vice versa, there is no
 way for

Perl version 5.12.4 documentation - perlre

Page 13http://perldoc.perl.org

the inner pattern to refer to a capture buffer defined outside.
 Thus,

 ('a' x 100)=~/(??{'(.)' x 100})/

will match, it will not set $1.

The code is not interpolated. As before, the rules to determine
 where the code
ends are currently somewhat convoluted.

The following pattern matches a parenthesized group:

 $re = qr{
	 \(
	 (?:
		 (?> [^()]+)	 # Non-parens without backtracking
	 |
		 (??{ $re })	 # Group with matching parens
)*
	 \)
	 }x;

See also (?PARNO) for a different, more efficient way to accomplish
 the same
task.

For reasons of security, this construct is forbidden if the regular
 expression
involves run-time interpolation of variables, unless the
 perilous use re 'eval'
pragma has been used (see re), or the
 variables contain results of qr// operator
(see "qr/STRING/msixpo" in perlop).

Because perl's regex engine is not currently re-entrant, delayed
 code may not
invoke the regex engine either directly with m// or s///),
 or indirectly with
functions such as split.

Recursing deeper than 50 times without consuming any input string will
 result in a
fatal error. The maximum depth is compiled into perl, so
 changing it requires a
custom build.

(?PARNO) (?-PARNO) (?+PARNO) (?R) (?0)

Similar to (??{ code }) except it does not involve compiling any code,
 instead it
treats the contents of a capture buffer as an independent
 pattern that must match
at the current position. Capture buffers
 contained by the pattern will have the value
as determined by the
 outermost recursion.

PARNO is a sequence of digits (not starting with 0) whose value reflects
 the
paren-number of the capture buffer to recurse to. (?R) recurses to
 the beginning
of the whole pattern. (?0) is an alternate syntax for (?R). If PARNO is preceded
by a plus or minus sign then it is assumed
 to be relative, with negative numbers
indicating preceding capture buffers
 and positive ones following. Thus (?-1)
refers to the most recently
 declared buffer, and (?+1) indicates the next buffer to
be declared.
 Note that the counting for relative recursion differs from that of
 relative
backreferences, in that with recursion unclosed buffers are
 included.

The following pattern matches a function foo() which may contain
 balanced
parentheses as the argument.

 $re = qr{ (# paren group 1 (full
function)
 foo
 (# paren group 2 (parens)
 \(
 (# paren group 3 (contents of
 parens)
 (?:

Perl version 5.12.4 documentation - perlre

Page 14http://perldoc.perl.org

 (?> [^()]+) # Non-parens without
backtracking
 |
 (?2) # Recurse to start of paren
group 2
)*
)
 \)
)
)
 }x;

If the pattern was used as follows

 'foo(bar(baz)+baz(bop))'=~/$re/
 and print "\$1 = $1\n",
 "\$2 = $2\n",
 "\$3 = $3\n";

the output produced should be the following:

 $1 = foo(bar(baz)+baz(bop))
 $2 = (bar(baz)+baz(bop))
 $3 = bar(baz)+baz(bop)

If there is no corresponding capture buffer defined, then it is a
 fatal error.
Recursing deeper than 50 times without consuming any input
 string will also result
in a fatal error. The maximum depth is compiled
 into perl, so changing it requires a
custom build.

The following shows how using negative indexing can make it
 easier to embed
recursive patterns inside of a qr// construct
 for later use:

 my $parens = qr/(\((?:[^()]++|(?-1))*+\))/;
 if (/foo $parens \s+ + \s+ bar $parens/x) {
 # do something here...
 }

Note that this pattern does not behave the same way as the equivalent
 PCRE or
Python construct of the same form. In Perl you can backtrack into
 a recursed
group, in PCRE and Python the recursed into group is treated
 as atomic. Also,
modifiers are resolved at compile time, so constructs
 like (?i:(?1)) or (?:(?i)(?1)) do
not affect how the sub-pattern will
 be processed.

(?&NAME)

Recurse to a named subpattern. Identical to (?PARNO) except that the
 parenthesis
to recurse to is determined by name. If multiple parentheses have
 the same name,
then it recurses to the leftmost.

It is an error to refer to a name that is not declared somewhere in the
 pattern.

NOTE: In order to make things easier for programmers with experience
 with the
Python or PCRE regex engines the pattern (?P>NAME)
 may be used instead of
(?&NAME).

(?(condition)yes-pattern|no-pattern)

(?(condition)yes-pattern)

Conditional expression. (condition) should be either an integer in
 parentheses
(which is valid if the corresponding pair of parentheses
 matched), a
look-ahead/look-behind/evaluate zero-width assertion, a
 name in angle brackets or

Perl version 5.12.4 documentation - perlre

Page 15http://perldoc.perl.org

single quotes (which is valid if a buffer
 with the given name matched), or the
special symbol (R) (true when
 evaluated inside of recursion or eval). Additionally
the R may be
 followed by a number, (which will be true when evaluated when
recursing
 inside of the appropriate group), or by &NAME, in which case it will
 be true
only when evaluated during recursion in the named group.

Here's a summary of the possible predicates:

(1) (2) ...

Checks if the numbered capturing buffer has matched something.

(<NAME>) ('NAME')

Checks if a buffer with the given name has matched something.

(?{ CODE })

Treats the code block as the condition.

(R)

Checks if the expression has been evaluated inside of recursion.

(R1) (R2) ...

Checks if the expression has been evaluated while executing directly
 inside
of the n-th capture group. This check is the regex equivalent of

 if ((caller(0))[3] eq 'subname') { ... }

In other words, it does not check the full recursion stack.

(R&NAME)

Similar to (R1), this predicate checks to see if we're executing
 directly
inside of the leftmost group with a given name (this is the same
 logic used
by (?&NAME) to disambiguate). It does not check the full
 stack, but only
the name of the innermost active recursion.

(DEFINE)

In this case, the yes-pattern is never directly executed, and no
 no-pattern is
allowed. Similar in spirit to (?{0}) but more efficient.
 See below for
details.

For example:

 m{ (\()?
 [^()]+
 (?(1) \))
 }x

matches a chunk of non-parentheses, possibly included in parentheses

themselves.

A special form is the (DEFINE) predicate, which never executes directly
 its
yes-pattern, and does not allow a no-pattern. This allows to define
 subpatterns
which will be executed only by using the recursion mechanism.
 This way, you can
define a set of regular expression rules that can be
 bundled into any pattern you
choose.

It is recommended that for this usage you put the DEFINE block at the
 end of the
pattern, and that you name any subpatterns defined within it.

Also, it's worth noting that patterns defined this way probably will
 not be as
efficient, as the optimiser is not very clever about
 handling them.

Perl version 5.12.4 documentation - perlre

Page 16http://perldoc.perl.org

An example of how this might be used is as follows:

 /(?<NAME>(?&NAME_PAT))(?<ADDR>(?&ADDRESS_PAT))
 (?(DEFINE)
 (?<NAME_PAT>....)
 (?<ADRESS_PAT>....)
)/x

Note that capture buffers matched inside of recursion are not accessible
 after the
recursion returns, so the extra layer of capturing buffers is
 necessary. Thus
$+{NAME_PAT} would not be defined even though $+{NAME} would be.

(?>pattern)

An "independent" subexpression, one which matches the substring
 that a
standalone pattern would match if anchored at the given
 position, and it matches
nothing other than this substring. This
 construct is useful for optimizations of what
would otherwise be
 "eternal" matches, because it will not backtrack (see
Backtracking).
 It may also be useful in places where the "grab all you can, and do
not
 give anything back" semantic is desirable.

For example: ^(?>a*)ab will never match, since (?>a*)
 (anchored at the
beginning of string, as above) will match all
 characters a at the beginning of string,
leaving no a for ab to match. In contrast, a*ab will match the same as a+b,
 since
the match of the subgroup a* is influenced by the following
 group ab (see
Backtracking). In particular, a* inside a*ab will match fewer characters than a
standalone a*, since
 this makes the tail match.

An effect similar to (?>pattern) may be achieved by writing (?=(pattern))\1
. This matches the same substring as a standalone a+, and the following \1 eats
the matched string; it therefore
 makes a zero-length assertion into an analogue of
(?>...).
 (The difference between these two constructs is that the second one

uses a capturing group, thus shifting ordinals of backreferences
 in the rest of a
regular expression.)

Consider this pattern:

 m{ \(
 (
 [^()]+		 # x+
 |
 \([^()]* \)
)+
 \)
 }x

That will efficiently match a nonempty group with matching parentheses
 two levels
deep or less. However, if there is no such group, it
 will take virtually forever on a
long string. That's because there
 are so many different ways to split a long string
into several
 substrings. This is what (.+)+ is doing, and (.+)+ is similar
 to a
subpattern of the above pattern. Consider how the pattern
 above detects no-match
on ((()aaaaaaaaaaaaaaaaaa in several
 seconds, but that each extra letter
doubles this time. This
 exponential performance will make it appear that your
program has
 hung. However, a tiny change to this pattern

 m{ \(
 (
 (?> [^()]+)	 # change x+ above to (?> x+)
 |
 \([^()]* \)
)+

Perl version 5.12.4 documentation - perlre

Page 17http://perldoc.perl.org

 \)
 }x

which uses (?>...) matches exactly when the one above does (verifying
 this
yourself would be a productive exercise), but finishes in a fourth
 the time when
used on a similar string with 1000000 as. Be aware,
 however, that this pattern
currently triggers a warning message under
 the use warnings pragma or -w
switch saying it "matches null string many times in regex".

On simple groups, such as the pattern (?> [^()]+), a comparable
 effect may
be achieved by negative look-ahead, as in [^()]+ (?! [^()]).
 This was only
4 times slower on a string with 1000000 as.

The "grab all you can, and do not give anything back" semantic is desirable
 in
many situations where on the first sight a simple ()* looks like
 the correct solution.
Suppose we parse text with comments being delimited
 by # followed by some
optional (horizontal) whitespace. Contrary to
 its appearance, #[\t]* is not the
correct subexpression to match
 the comment delimiter, because it may "give up"
some whitespace if
 the remainder of the pattern can be made to match that way.
The correct
 answer is either one of these:

 (?>#[\t]*)
 #[\t]*(?![\t])

For example, to grab non-empty comments into $1, one should use either
 one of
these:

 / (?> \# [\t]*) (.+) /x;
 / \# [\t]* ([^ \t] .*) /x;

Which one you pick depends on which of these expressions better reflects
 the
above specification of comments.

In some literature this construct is called "atomic matching" or
 "possessive
matching".

Possessive quantifiers are equivalent to putting the item they are applied
 to inside
of one of these constructs. The following equivalences apply:

 Quantifier Form Bracketing Form
 --------------- ---------------
 PAT*+ (?>PAT*)
 PAT++ (?>PAT+)
 PAT?+ (?>PAT?)
 PAT{min,max}+ (?>PAT{min,max})

Special Backtracking Control Verbs
WARNING: These patterns are experimental and subject to change or
 removal in a future version of
Perl. Their usage in production code should
 be noted to avoid problems during upgrades.

These special patterns are generally of the form (*VERB:ARG). Unless
 otherwise stated the ARG
argument is optional; in some cases, it is
 forbidden.

Any pattern containing a special backtracking verb that allows an argument
 has the special behaviour
that when executed it sets the current package's $REGERROR and $REGMARK variables. When doing
so the following
 rules apply:

On failure, the $REGERROR variable will be set to the ARG value of the
 verb pattern, if the verb was
involved in the failure of the match. If the
 ARG part of the pattern was omitted, then $REGERROR will
be set to the
 name of the last (*MARK:NAME) pattern executed, or to TRUE if there was
 none. Also,
the $REGMARK variable will be set to FALSE.

Perl version 5.12.4 documentation - perlre

Page 18http://perldoc.perl.org

On a successful match, the $REGERROR variable will be set to FALSE, and
 the $REGMARK variable
will be set to the name of the last (*MARK:NAME) pattern executed. See the explanation for the
(*MARK:NAME) verb below for more details.

NOTE: $REGERROR and $REGMARK are not magic variables like $1
 and most other regex related
variables. They are not local to a scope, nor
 readonly, but instead are volatile package variables
similar to $AUTOLOAD.
 Use local to localize changes to them to a specific scope if necessary.

If a pattern does not contain a special backtracking verb that allows an
 argument, then $REGERROR
and $REGMARK are not touched at all.

Verbs that take an argument

(*PRUNE) (*PRUNE:NAME)

This zero-width pattern prunes the backtracking tree at the current point
 when
backtracked into on failure. Consider the pattern A (*PRUNE) B,
 where A and B are
complex patterns. Until the (*PRUNE) verb is reached,
 A may backtrack as necessary
to match. Once it is reached, matching
 continues in B, which may also backtrack as
necessary; however, should B
 not match, then no further backtracking will take place,
and the pattern
 will fail outright at the current starting position.

The following example counts all the possible matching strings in a
 pattern (without
actually matching any of them).

 'aaab' =~ /a+b?(?{print "$&\n"; $count++})(*FAIL)/;
 print "Count=$count\n";

which produces:

 aaab
 aaa
 aa
 a
 aab
 aa
 a
 ab
 a
 Count=9

If we add a (*PRUNE) before the count like the following

 'aaab' =~ /a+b?(*PRUNE)(?{print "$&\n"; $count++})(*FAIL)/;
 print "Count=$count\n";

we prevent backtracking and find the count of the longest matching
 at each matching
starting point like so:

 aaab
 aab
 ab
 Count=3

Any number of (*PRUNE) assertions may be used in a pattern.

See also (?>pattern) and possessive quantifiers for other ways to
 control
backtracking. In some cases, the use of (*PRUNE) can be
 replaced with a
(?>pattern) with no functional difference; however, (*PRUNE) can be used to
handle cases that cannot be expressed using a (?>pattern) alone.

(*SKIP) (*SKIP:NAME)

Perl version 5.12.4 documentation - perlre

Page 19http://perldoc.perl.org

This zero-width pattern is similar to (*PRUNE), except that on
 failure it also signifies
that whatever text that was matched leading up
 to the (*SKIP) pattern being
executed cannot be part of any match
 of this pattern. This effectively means that the
regex engine "skips" forward
 to this position on failure and tries to match again,
(assuming that
 there is sufficient room to match).

The name of the (*SKIP:NAME) pattern has special significance. If a (*MARK:NAME)
was encountered while matching, then it is that position
 which is used as the "skip
point". If no (*MARK) of that name was
 encountered, then the (*SKIP) operator has
no effect. When used
 without a name the "skip point" is where the match point was
when
 executing the (*SKIP) pattern.

Compare the following to the examples in (*PRUNE), note the string
 is twice as long:

 'aaabaaab' =~ /a+b?(*SKIP)(?{print "$&\n";
$count++})(*FAIL)/;
 print "Count=$count\n";

outputs

 aaab
 aaab
 Count=2

Once the 'aaab' at the start of the string has matched, and the (*SKIP)
 executed, the
next starting point will be where the cursor was when the (*SKIP) was executed.

(*MARK:NAME) (*:NAME) (*MARK:NAME) (*:NAME)

This zero-width pattern can be used to mark the point reached in a string
 when a
certain part of the pattern has been successfully matched. This
 mark may be given a
name. A later (*SKIP) pattern will then skip
 forward to that point if backtracked into
on failure. Any number of (*MARK) patterns are allowed, and the NAME portion may
be duplicated.

In addition to interacting with the (*SKIP) pattern, (*MARK:NAME)
 can be used to
"label" a pattern branch, so that after matching, the
 program can determine which
branches of the pattern were involved in the
 match.

When a match is successful, the $REGMARK variable will be set to the
 name of the
most recently executed (*MARK:NAME) that was involved
 in the match.

This can be used to determine which branch of a pattern was matched
 without using a
separate capture buffer for each branch, which in turn
 can result in a performance
improvement, as perl cannot optimize /(?:(x)|(y)|(z))/ as efficiently as
something like /(?:x(*MARK:x)|y(*MARK:y)|z(*MARK:z))/.

When a match has failed, and unless another verb has been involved in
 failing the
match and has provided its own name to use, the $REGERROR
 variable will be set to
the name of the most recently executed (*MARK:NAME).

See (*SKIP) for more details.

As a shortcut (*MARK:NAME) can be written (*:NAME).

(*THEN) (*THEN:NAME)

This is similar to the "cut group" operator :: from Perl 6. Like (*PRUNE), this verb
always matches, and when backtracked into on
 failure, it causes the regex engine to
try the next alternation in the
 innermost enclosing group (capturing or otherwise).

Its name comes from the observation that this operation combined with the
 alternation
operator (|) can be used to create what is essentially a
 pattern-based if/then/else
block:

 (COND (*THEN) FOO | COND2 (*THEN) BAR | COND3 (*THEN) BAZ)

Perl version 5.12.4 documentation - perlre

Page 20http://perldoc.perl.org

Note that if this operator is used and NOT inside of an alternation then
 it acts exactly
like the (*PRUNE) operator.

 / A (*PRUNE) B /

is the same as

 / A (*THEN) B /

but

 / (A (*THEN) B | C (*THEN) D) /

is not the same as

 / (A (*PRUNE) B | C (*PRUNE) D) /

as after matching the A but failing on the B the (*THEN) verb will
 backtrack and try C;
but the (*PRUNE) verb will simply fail.

(*COMMIT)

This is the Perl 6 "commit pattern" <commit> or :::. It's a
 zero-width pattern similar
to (*SKIP), except that when backtracked
 into on failure it causes the match to fail
outright. No further attempts
 to find a valid match by advancing the start pointer will
occur again.
 For example,

 'aaabaaab' =~ /a+b?(*COMMIT)(?{print "$&\n";
$count++})(*FAIL)/;
 print "Count=$count\n";

outputs

 aaab
 Count=1

In other words, once the (*COMMIT) has been entered, and if the pattern
 does not
match, the regex engine will not try any further matching on the
 rest of the string.

Verbs without an argument

(*FAIL) (*F)

This pattern matches nothing and always fails. It can be used to force the
 engine to
backtrack. It is equivalent to (?!), but easier to read. In
 fact, (?!) gets optimised into
(*FAIL) internally.

It is probably useful only when combined with (?{}) or (??{}).

(*ACCEPT)

WARNING: This feature is highly experimental. It is not recommended
 for production
code.

This pattern matches nothing and causes the end of successful matching at
 the point
at which the (*ACCEPT) pattern was encountered, regardless of
 whether there is
actually more to match in the string. When inside of a
 nested pattern, such as
recursion, or in a subpattern dynamically generated
 via (??{}), only the innermost
pattern is ended immediately.

If the (*ACCEPT) is inside of capturing buffers then the buffers are
 marked as ended
at the point at which the (*ACCEPT) was encountered.
 For instance:

 'AB' =~ /(A (A|B(*ACCEPT)|C) D)(E)/x;

will match, and $1 will be AB and $2 will be B, $3 will not
 be set. If another branch in

Perl version 5.12.4 documentation - perlre

Page 21http://perldoc.perl.org

the inner parentheses were matched, such as in the
 string 'ACDE', then the D and E
would have to be matched as well.

Backtracking
NOTE: This section presents an abstract approximation of regular
 expression behavior. For a more
rigorous (and complicated) view of
 the rules involved in selecting a match among possible
alternatives,
 see Combining RE Pieces.

A fundamental feature of regular expression matching involves the
 notion called backtracking, which
is currently used (when needed)
 by all regular non-possessive expression quantifiers, namely *, *?, +
, +?, {n,m}, and {n,m}?. Backtracking is often optimized
 internally, but the general principle outlined
here is valid.

For a regular expression to match, the entire regular expression must
 match, not just part of it. So if
the beginning of a pattern containing a
 quantifier succeeds in a way that causes later parts in the
pattern to
 fail, the matching engine backs up and recalculates the beginning
 part--that's why it's called
backtracking.

Here is an example of backtracking: Let's say you want to find the
 word following "foo" in the string
"Food is on the foo table.":

 $_ = "Food is on the foo table.";
 if (/\b(foo)\s+(\w+)/i) {
	 print "$2 follows $1.\n";
 }

When the match runs, the first part of the regular expression (\b(foo))
 finds a possible match right
at the beginning of the string, and loads up
 $1 with "Foo". However, as soon as the matching engine
sees that there's
 no whitespace following the "Foo" that it had saved in $1, it realizes its
 mistake and
starts over again one character after where it had the
 tentative match. This time it goes all the way
until the next occurrence
 of "foo". The complete regular expression matches this time, and you get
 the
expected output of "table follows foo."

Sometimes minimal matching can help a lot. Imagine you'd like to match
 everything between "foo"
and "bar". Initially, you write something
 like this:

 $_ = "The food is under the bar in the barn.";
 if (/foo(.*)bar/) {
	 print "got <$1>\n";
 }

Which perhaps unexpectedly yields:

 got <d is under the bar in the >

That's because .* was greedy, so you get everything between the first "foo" and the last "bar". Here
it's more effective
 to use minimal matching to make sure you get the text between a "foo"
 and the first
"bar" thereafter.

 if (/foo(.*?)bar/) { print "got <$1>\n" }
 got <d is under the >

Here's another example. Let's say you'd like to match a number at the end
 of a string, and you also
want to keep the preceding part of the match.
 So you write this:

 $_ = "I have 2 numbers: 53147";
 if (/(.*)(\d*)/) {				 # Wrong!

Perl version 5.12.4 documentation - perlre

Page 22http://perldoc.perl.org

	 print "Beginning is <$1>, number is <$2>.\n";
 }

That won't work at all, because .* was greedy and gobbled up the
 whole string. As \d* can match
on an empty string the complete
 regular expression matched successfully.

 Beginning is <I have 2 numbers: 53147>, number is <>.

Here are some variants, most of which don't work:

 $_ = "I have 2 numbers: 53147";
 @pats = qw{
	 (.*)(\d*)
	 (.*)(\d+)
	 (.*?)(\d*)
	 (.*?)(\d+)
	 (.*)(\d+)$
	 (.*?)(\d+)$
	 (.*)\b(\d+)$
	 (.*\D)(\d+)$
 };

 for $pat (@pats) {
	 printf "%-12s ", $pat;
	 if (/$pat/) {
	 print "<$1> <$2>\n";
	 } else {
	 print "FAIL\n";
	 }
 }

That will print out:

 (.*)(\d*) <I have 2 numbers: 53147> <>
 (.*)(\d+) <I have 2 numbers: 5314> <7>
 (.*?)(\d*) <> <>
 (.*?)(\d+) <I have > <2>
 (.*)(\d+)$ <I have 2 numbers: 5314> <7>
 (.*?)(\d+)$ <I have 2 numbers: > <53147>
 (.*)\b(\d+)$ <I have 2 numbers: > <53147>
 (.*\D)(\d+)$ <I have 2 numbers: > <53147>

As you see, this can be a bit tricky. It's important to realize that a
 regular expression is merely a set of
assertions that gives a definition
 of success. There may be 0, 1, or several different ways that the

definition might succeed against a particular string. And if there are
 multiple ways it might succeed,
you need to understand backtracking to
 know which variety of success you will achieve.

When using look-ahead assertions and negations, this can all get even
 trickier. Imagine you'd like to
find a sequence of non-digits not
 followed by "123". You might try to write that as

 $_ = "ABC123";
 if (/^\D*(?!123)/) {		 # Wrong!
	 print "Yup, no 123 in $_\n";
 }

But that isn't going to match; at least, not the way you're hoping. It
 claims that there is no 123 in the

Perl version 5.12.4 documentation - perlre

Page 23http://perldoc.perl.org

string. Here's a clearer picture of
 why that pattern matches, contrary to popular expectations:

 $x = 'ABC123';
 $y = 'ABC445';

 print "1: got $1\n" if $x =~ /^(ABC)(?!123)/;
 print "2: got $1\n" if $y =~ /^(ABC)(?!123)/;

 print "3: got $1\n" if $x =~ /^(\D*)(?!123)/;
 print "4: got $1\n" if $y =~ /^(\D*)(?!123)/;

This prints

 2: got ABC
 3: got AB
 4: got ABC

You might have expected test 3 to fail because it seems to a more
 general purpose version of test 1.
The important difference between
 them is that test 3 contains a quantifier (\D*) and so can use

backtracking, whereas test 1 will not. What's happening is
 that you've asked "Is it true that at the start
of $x, following 0 or more
 non-digits, you have something that's not 123?" If the pattern matcher had

let \D* expand to "ABC", this would have caused the whole pattern to
 fail.

The search engine will initially match \D* with "ABC". Then it will
 try to match (?!123 with "123",
which fails. But because
 a quantifier (\D*) has been used in the regular expression, the
 search
engine can backtrack and retry the match differently
 in the hope of matching the complete regular
expression.

The pattern really, really wants to succeed, so it uses the
 standard pattern back-off-and-retry and lets
\D* expand to just "AB" this
 time. Now there's indeed something following "AB" that is not
 "123". It's
"C123", which suffices.

We can deal with this by using both an assertion and a negation.
 We'll say that the first part in $1
must be followed both by a digit
 and by something that's not "123". Remember that the look-aheads

are zero-width expressions--they only look, but don't consume any
 of the string in their match. So
rewriting this way produces what
 you'd expect; that is, case 5 will fail, but case 6 succeeds:

 print "5: got $1\n" if $x =~ /^(\D*)(?=\d)(?!123)/;
 print "6: got $1\n" if $y =~ /^(\D*)(?=\d)(?!123)/;

 6: got ABC

In other words, the two zero-width assertions next to each other work as though
 they're ANDed
together, just as you'd use any built-in assertions: /^$/
 matches only if you're at the beginning of the
line AND the end of the
 line simultaneously. The deeper underlying truth is that juxtaposition in

regular expressions always means AND, except when you write an explicit OR
 using the vertical bar.
/ab/ means match "a" AND (then) match "b",
 although the attempted matches are made at different
positions because "a"
 is not a zero-width assertion, but a one-width assertion.

WARNING: Particularly complicated regular expressions can take
 exponential time to solve because
of the immense number of possible
 ways they can use backtracking to try for a match. For example,
without
 internal optimizations done by the regular expression engine, this will
 take a painfully long
time to run:

 'aaaaaaaaaaaa' =~ /((a{0,5}){0,5})*[c]/

Perl version 5.12.4 documentation - perlre

Page 24http://perldoc.perl.org

And if you used *'s in the internal groups instead of limiting them
 to 0 through 5 matches, then it
would take forever--or until you ran
 out of stack space. Moreover, these internal optimizations are not

always applicable. For example, if you put {0,5} instead of *
 on the external group, no current
optimization is applicable, and the
 match takes a long time to finish.

A powerful tool for optimizing such beasts is what is known as an
 "independent group",
 which does
not backtrack (see (?>pattern)). Note also that
 zero-length look-ahead/look-behind assertions will
not backtrack to make
 the tail match, since they are in "logical" context: only
 whether they match is
considered relevant. For an example
 where side-effects of look-ahead might have influenced the

following match, see (?>pattern).

Version 8 Regular Expressions
In case you're not familiar with the "regular" Version 8 regex
 routines, here are the pattern-matching
rules not described above.

Any single character matches itself, unless it is a metacharacter
 with a special meaning described
here or above. You can cause
 characters that normally function as metacharacters to be interpreted

literally by prefixing them with a "\" (e.g., "\." matches a ".", not any
 character; "\\" matches a "\"). This
escape mechanism is also required
 for the character used as the pattern delimiter.

A series of characters matches that series of characters in the target
 string, so the pattern blurfl
would match "blurfl" in the target
 string.

You can specify a character class, by enclosing a list of characters
 in [], which will match any
character from the list. If the
 first character after the "[" is "^", the class matches any character not
 in
the list. Within a list, the "-" character specifies a
 range, so that a-z represents all characters between
"a" and "z",
 inclusive. If you want either "-" or "]" itself to be a member of a
 class, put it at the start of
the list (possibly after a "^"), or
 escape it with a backslash. "-" is also taken literally when it is
 at the
end of the list, just before the closing "]". (The
 following all specify the same class of three characters:
[-az], [az-], and [a\-z]. All are different from [a-z], which
 specifies a class containing
twenty-six characters, even on EBCDIC-based
 character sets.) Also, if you try to use the character

classes \w, \W, \s, \S, \d, or \D as endpoints of
 a range, the "-" is understood literally.

Note also that the whole range idea is rather unportable between
 character sets--and even within
character sets they may cause results
 you probably didn't expect. A sound principle is to use only
ranges
 that begin from and end at either alphabetics of equal case ([a-e],
 [A-E]), or digits ([0-9]).
Anything else is unsafe. If in doubt,
 spell out the character sets in full.

Characters may be specified using a metacharacter syntax much like that
 used in C: "\n" matches a
newline, "\t" a tab, "\r" a carriage return,
 "\f" a form feed, etc. More generally, \nnn, where nnn is a
string
 of octal digits, matches the character whose coded character set value
 is nnn. Similarly, \xnn,
where nn are hexadecimal digits,
 matches the character whose numeric value is nn. The expression
\cx
 matches the character control-x. Finally, the "." metacharacter
 matches any character except "\n"
(unless you use /s).

You can specify a series of alternatives for a pattern using "|" to
 separate them, so that
fee|fie|foe will match any of "fee", "fie",
 or "foe" in the target string (as would f(e|i|o)e). The

first alternative includes everything from the last pattern delimiter
 ("(", "[", or the beginning of the
pattern) up to the first "|", and
 the last alternative contains everything from the last "|" to the next

pattern delimiter. That's why it's common practice to include
 alternatives in parentheses: to minimize
confusion about where they
 start and end.

Alternatives are tried from left to right, so the first
 alternative found for which the entire expression
matches, is the one that
 is chosen. This means that alternatives are not necessarily greedy. For

example: when matching foo|foot against "barefoot", only the "foo"
 part will match, as that is the
first alternative tried, and it successfully
 matches the target string. (This might not seem important, but
it is
 important when you are capturing matched text using parentheses.)

Also remember that "|" is interpreted as a literal within square brackets,
 so if you write

Perl version 5.12.4 documentation - perlre

Page 25http://perldoc.perl.org

[fee|fie|foe] you're really only matching [feio|].

Within a pattern, you may designate subpatterns for later reference
 by enclosing them in parentheses,
and you may refer back to the nth subpattern later in the pattern using the metacharacter
 \n.
Subpatterns are numbered based on the left to right order
 of their opening parenthesis. A
backreference matches whatever
 actually matched the subpattern in the string being examined, not

the rules for that subpattern. Therefore, (0|0x)\d*\s\1\d* will
 match "0x1234 0x4321", but not
"0x1234 01234", because subpattern
 1 matched "0x", even though the rule 0|0x could potentially
match
 the leading 0 in the second number.

Warning on \1 Instead of $1
Some people get too used to writing things like:

 $pattern =~ s/(\W)/\\\1/g;

This is grandfathered (for \1 to \9) for the RHS of a substitute to avoid
 shocking the sed addicts, but
it's a dirty habit to get into. That's because in
 PerlThink, the righthand side of an s/// is a
double-quoted string. \1 in
 the usual double-quoted string means a control-A. The customary Unix

meaning of \1 is kludged in for s///. However, if you get into the habit
 of doing that, you get yourself
into trouble if you then add an /e
 modifier.

 s/(\d+)/ \1 + 1 /eg; 	 # causes warning under -w

Or if you try to do

 s/(\d+)/\1000/;

You can't disambiguate that by saying \{1}000, whereas you can fix it with ${1}000. The operation
of interpolation should not be confused
 with the operation of matching a backreference. Certainly they
mean two
 different things on the left side of the s///.

Repeated Patterns Matching a Zero-length Substring
WARNING: Difficult material (and prose) ahead. This section needs a rewrite.

Regular expressions provide a terse and powerful programming language. As
 with most other power
tools, power comes together with the ability
 to wreak havoc.

A common abuse of this power stems from the ability to make infinite
 loops using regular expressions,
with something as innocuous as:

 'foo' =~ m{ (o?)* }x;

The o? matches at the beginning of 'foo', and since the position
 in the string is not moved by the
match, o? would match again and again
 because of the * quantifier. Another common way to create a
similar cycle
 is with the looping modifier //g:

 @matches = ('foo' =~ m{ o? }xg);

or

 print "match: <$&>\n" while 'foo' =~ m{ o? }xg;

or the loop implied by split().

However, long experience has shown that many programming tasks may
 be significantly simplified by
using repeated subexpressions that
 may match zero-length substrings. Here's a simple example
being:

Perl version 5.12.4 documentation - perlre

Page 26http://perldoc.perl.org

 @chars = split //, $string;		 # // is not magic in split
 ($whitewashed = $string) =~ s/()/ /g; # parens avoid magic s// /

Thus Perl allows such constructs, by forcefully breaking
 the infinite loop. The rules for this are
different for lower-level
 loops given by the greedy quantifiers *+{}, and for higher-level
 ones like the
/g modifier or split() operator.

The lower-level loops are interrupted (that is, the loop is
 broken) when Perl detects that a repeated
expression matched a
 zero-length substring. Thus

 m{ (?: NON_ZERO_LENGTH | ZERO_LENGTH)* }x;

is made equivalent to

 m{ (?: NON_ZERO_LENGTH)*
 |
 (?: ZERO_LENGTH)?
 }x;

The higher level-loops preserve an additional state between iterations:
 whether the last match was
zero-length. To break the loop, the following
 match after a zero-length match is prohibited to have a
length of zero.
 This prohibition interacts with backtracking (see Backtracking),
 and so the second best
match is chosen if the best match is of
 zero length.

For example:

 $_ = 'bar';
 s/\w??/<$&>/g;

results in <><><a><><r><>. At each position of the string the best
 match given by non-greedy
?? is the zero-length match, and the second
 best match is what is matched by \w. Thus zero-length
matches
 alternate with one-character-long matches.

Similarly, for repeated m/()/g the second-best match is the match at the
 position one notch further in
the string.

The additional state of being matched with zero-length is associated with
 the matched string, and is
reset by each assignment to pos().
 Zero-length matches at the end of the previous match are ignored

during split.

Combining RE Pieces
Each of the elementary pieces of regular expressions which were described
 before (such as ab or \Z)
could match at most one substring
 at the given position of the input string. However, in a typical
regular
 expression these elementary pieces are combined into more complicated
 patterns using
combining operators ST, S|T, S* etc
 (in these examples S and T are regular subexpressions).

Such combinations can include alternatives, leading to a problem of choice:
 if we match a regular
expression a|ab against "abc", will it match
 substring "a" or "ab"? One way to describe which
substring is
 actually matched is the concept of backtracking (see Backtracking).
 However, this
description is too low-level and makes you think
 in terms of a particular implementation.

Another description starts with notions of "better"/"worse". All the
 substrings which may be matched
by the given regular expression can be
 sorted from the "best" match to the "worst" match, and it is the
"best"
 match which is chosen. This substitutes the question of "what is chosen?"
 by the question of
"which matches are better, and which are worse?".

Again, for elementary pieces there is no such question, since at most
 one match at a given position is
possible. This section describes the
 notion of better/worse for combining operators. In the description

Perl version 5.12.4 documentation - perlre

Page 27http://perldoc.perl.org

below S and T are regular subexpressions.

ST

Consider two possible matches, AB and A'B', A and A' are
 substrings which can be matched
by S, B and B' are substrings
 which can be matched by T.

If A is better match for S than A', AB is a better
 match than A'B'.

If A and A' coincide: AB is a better match than AB' if B is better match for T than B'.

S|T

When S can match, it is a better match than when only T can match.

Ordering of two matches for S is the same as for S. Similar for
 two matches for T.

S{REPEAT_COUNT}

Matches as SSS...S (repeated as many times as necessary).

S{min,max}

Matches as S{max}|S{max-1}|...|S{min+1}|S{min}.

S{min,max}?

Matches as S{min}|S{min+1}|...|S{max-1}|S{max}.

S?, S*, S+

Same as S{0,1}, S{0,BIG_NUMBER}, S{1,BIG_NUMBER} respectively.

S??, S*?, S+?

Same as S{0,1}?, S{0,BIG_NUMBER}?, S{1,BIG_NUMBER}? respectively.

(?>S)

Matches the best match for S and only that.

(?=S), (?<=S)

Only the best match for S is considered. (This is important only if S has capturing parentheses,
and backreferences are used somewhere
 else in the whole regular expression.)

(?!S), (?<!S)

For this grouping operator there is no need to describe the ordering, since
 only whether or not
S can match is important.

(??{ EXPR }), (?PARNO)

The ordering is the same as for the regular expression which is
 the result of EXPR, or the
pattern contained by capture buffer PARNO.

(?(condition)yes-pattern|no-pattern)

Recall that which of yes-pattern or no-pattern actually matches is
 already determined.
The ordering of the matches is the same as for the
 chosen subexpression.

The above recipes describe the ordering of matches at a given position.
 One more rule is needed to
understand how a match is determined for the
 whole regular expression: a match at an earlier
position is always better
 than a match at a later position.

Creating Custom RE Engines
Overloaded constants (see overload) provide a simple way to extend
 the functionality of the RE
engine.

Suppose that we want to enable a new RE escape-sequence \Y| which
 matches at a boundary
between whitespace characters and non-whitespace
 characters. Note that

Perl version 5.12.4 documentation - perlre

Page 28http://perldoc.perl.org

(?=\S)(?<!\S)|(?!\S)(?<=\S) matches exactly
 at these positions, so we want to have each
\Y| in the place of the
 more complicated version. We can create a module customre to do
 this:

 package customre;
 use overload;

 sub import {
 shift;
 die "No argument to customre::import allowed" if @_;
 overload::constant 'qr' => \&convert;
 }

 sub invalid { die "/$_[0]/: invalid escape '\\$_[1]'"}

 # We must also take care of not escaping the legitimate \\Y|
 # sequence, hence the presence of '\\' in the conversion rules.
 my %rules = ('\\' => '\\\\',
		 'Y|' => qr/(?=\S)(?<!\S)|(?!\S)(?<=\S)/);
 sub convert {
 my $re = shift;
 $re =~ s{
 \\ (\\ | Y .)
 }
 { $rules{$1} or invalid($re,$1) }sgex;
 return $re;
 }

Now use customre enables the new escape in constant regular
 expressions, i.e., those without any
runtime variable interpolations.
 As documented in overload, this conversion will work only over
 literal
parts of regular expressions. For \Y|$re\Y| the variable
 part of this regular expression needs to be
converted explicitly
 (but only if the special meaning of \Y| should be enabled inside $re):

 use customre;
 $re = <>;
 chomp $re;
 $re = customre::convert $re;
 /\Y|$re\Y|/;

PCRE/Python Support
As of Perl 5.10.0, Perl supports several Python/PCRE specific extensions
 to the regex syntax. While
Perl programmers are encouraged to use the
 Perl specific syntax, the following are also accepted:

(?P<NAME>pattern)

Define a named capture buffer. Equivalent to (?<NAME>pattern).

(?P=NAME)

Backreference to a named capture buffer. Equivalent to \g{NAME}.

(?P>NAME)

Subroutine call to a named capture buffer. Equivalent to (?&NAME).

BUGS
There are numerous problems with case insensitive matching of characters
 outside the ASCII range,
especially with those whose folds are multiple
 characters, such as ligatures like LATIN SMALL
LIGATURE FF.

Perl version 5.12.4 documentation - perlre

Page 29http://perldoc.perl.org

In a bracketed character class with case insensitive matching, ranges only work
 for ASCII characters.
For example, m/[\N{CYRILLIC CAPITAL LETTER A}-\N{CYRILLIC CAPITAL LETTER
YA}]/i
 doesn't match all the Russian upper and lower case letters.

Many regular expression constructs don't work on EBCDIC platforms.

This document varies from difficult to understand to completely
 and utterly opaque. The wandering
prose riddled with jargon is
 hard to fathom in several places.

This document needs a rewrite that separates the tutorial content
 from the reference content.

SEE ALSO
perlrequick.

perlretut.

"Regexp Quote-Like Operators" in perlop.

"Gory details of parsing quoted constructs" in perlop.

perlfaq6.

"pos" in perlfunc.

perllocale.

perlebcdic.

Mastering Regular Expressions by Jeffrey Friedl, published
 by O'Reilly and Associates.

