
Perl version 5.12.4 documentation - perlrebackslash

Page 1http://perldoc.perl.org

NAME
perlrebackslash - Perl Regular Expression Backslash Sequences and Escapes

DESCRIPTION
The top level documentation about Perl regular expressions
 is found in perlre.

This document describes all backslash and escape sequences. After
 explaining the role of the
backslash, it lists all the sequences that have
 a special meaning in Perl regular expressions (in
alphabetical order),
 then describes each of them.

Most sequences are described in detail in different documents; the primary
 purpose of this document
is to have a quick reference guide describing all
 backslash and escape sequences.

The backslash
In a regular expression, the backslash can perform one of two tasks:
 it either takes away the special
meaning of the character following it
 (for instance, \| matches a vertical bar, it's not an alternation),

or it is the start of a backslash or escape sequence.

The rules determining what it is are quite simple: if the character
 following the backslash is an ASCII
punctuation (non-word) character (that is,
 anything that is not a letter, digit or underscore), then the
backslash just
 takes away the special meaning (if any) of the character following it.

If the character following the backslash is an ASCII letter or an ASCII digit,
 then the sequence may be
special; if so, it's listed below. A few letters have
 not been used yet, so escaping them with a
backslash doesn't change them to be
 special. A future version of Perl may assign a special meaning
to them, so if
 you have warnings turned on, Perl will issue a warning if you use such a
 sequence. [1].

It is however guaranteed that backslash or escape sequences never have a
 punctuation character
following the backslash, not now, and not in a future
 version of Perl 5. So it is safe to put a backslash
in front of a non-word
 character.

Note that the backslash itself is special; if you want to match a backslash,
 you have to escape the
backslash with a backslash: /\\/ matches a single
 backslash.

[1]

There is one exception. If you use an alphanumerical character as the
 delimiter of your pattern
(which you probably shouldn't do for readability
 reasons), you will have to escape the delimiter
if you want to match
 it. Perl won't warn then. See also "Gory details of parsing quoted
constructs" in perlop.

All the sequences and escapes
Those not usable within a bracketed character class (like [\da-z]) are marked
 as Not in [].

 \000 Octal escape sequence.
 \1 Absolute backreference. Not in [].
 \a Alarm or bell.
 \A Beginning of string. Not in [].
 \b Word/non-word boundary. (Backspace in []).
 \B Not a word/non-word boundary. Not in [].
 \cX Control-X
 \C Single octet, even under UTF-8. Not in [].
 \d Character class for digits.
 \D Character class for non-digits.
 \e Escape character.
 \E Turn off \Q, \L and \U processing. Not in [].
 \f Form feed.
 \g{}, \g1 Named, absolute or relative backreference. Not in [].
 \G Pos assertion. Not in [].

Perl version 5.12.4 documentation - perlrebackslash

Page 2http://perldoc.perl.org

 \h Character class for horizontal whitespace.
 \H Character class for non horizontal whitespace.
 \k{}, \k<>, \k'' Named backreference. Not in [].
 \K Keep the stuff left of \K. Not in [].
 \l Lowercase next character. Not in [].
 \L Lowercase till \E. Not in [].
 \n (Logical) newline character.
 \N Any character but newline. Experimental. Not in [].
 \N{} Named or numbered (Unicode) character.
 \p{}, \pP Character with the given Unicode property.
 \P{}, \PP Character without the given Unicode property.
 \Q Quotemeta till \E. Not in [].
 \r Return character.
 \R Generic new line. Not in [].
 \s Character class for whitespace.
 \S Character class for non whitespace.
 \t Tab character.
 \u Titlecase next character. Not in [].
 \U Uppercase till \E. Not in [].
 \v Character class for vertical whitespace.
 \V Character class for non vertical whitespace.
 \w Character class for word characters.
 \W Character class for non-word characters.
 \x{}, \x00 Hexadecimal escape sequence.
 \X Unicode "extended grapheme cluster". Not in [].
 \z End of string. Not in [].
 \Z End of string. Not in [].

Character Escapes
Fixed characters

A handful of characters have a dedicated character escape. The following
 table shows them, along
with their ASCII code points (in decimal and hex),
 their ASCII name, the control escape on ASCII
platforms and a short
 description. (For EBCDIC platforms, see "OPERATOR DIFFERENCES" in
perlebcdic.)

 Seq. Code Point ASCII Cntrl Description.
 Dec Hex
 \a 7 07 BEL \cG alarm or bell
 \b 8 08 BS \cH backspace [1]
 \e 27 1B ESC \c[escape character
 \f 12 0C FF \cL form feed
 \n 10 0A LF \cJ line feed [2]
 \r 13 0D CR \cM carriage return
 \t 9 09 TAB \cI tab

[1]

\b is the backspace character only inside a character class. Outside a
 character class, \b is a
word/non-word boundary.

[2]

\n matches a logical newline. Perl will convert between \n and your
 OS's native newline
character when reading from or writing to text files.

Perl version 5.12.4 documentation - perlrebackslash

Page 3http://perldoc.perl.org

Example

 $str =~ /\t/; # Matches if $str contains a (horizontal) tab.

Control characters

\c is used to denote a control character; the character following \c
 determines the value of the
construct. For example the value of \cA is chr(1), and the value of \cb is chr(2), etc.
 The gory
details are in "Regexp Quote-Like Operators" in perlop. A complete
 list of what chr(1), etc. means
for ASCII and EBCDIC platforms is in "OPERATOR DIFFERENCES" in perlebcdic.

Note that \c\ alone at the end of a regular expression (or doubled-quoted
 string) is not valid. The
backslash must be followed by another character.
 That is, \c\X means chr(28) . 'X' for all
characters X.

To write platform-independent code, you must use \N{NAME} instead, like \N{ESCAPE} or
\N{U+001B}, see charnames.

Mnemonic: control character.

Example

 $str =~ /\cK/; # Matches if $str contains a vertical tab (control-K).

Named or numbered characters

Unicode characters have a Unicode name and numeric ordinal value. Use the \N{} construct to
specify a character by either of these values.

To specify by name, the name of the character goes between the curly braces.
 In this case, you have
to use charnames to load the Unicode names of the
 characters, otherwise Perl will complain.

To specify by Unicode ordinal number, use the form \N{U+wide hex character}, where wide hex
character is a number in
 hexadecimal that gives the ordinal number that Unicode has assigned to the

desired character. It is customary (but not required) to use leading zeros to
 pad the number to 4
digits. Thus \N{U+0041} means Latin Capital Letter A, and you will rarely see it written
without the two
 leading zeros. \N{U+0041} means "A" even on EBCDIC machines (where the

ordinal value of "A" is not 0x41).

It is even possible to give your own names to characters, and even to short
 sequences of characters.
For details, see charnames.

(There is an expanded internal form that you may see in debug output: \N{U+wide hex
character.wide hex character...}.
 The ... means any number of these wide hex character
s separated by dots.
 This represents the sequence formed by the characters. This is an internal
 form
only, subject to change, and you should not try to use it yourself.)

Mnemonic: Named character.

Note that a character that is expressed as a named or numbered character is
 considered as a
character without special meaning by the regex engine, and will
 match "as is".

Example

 use charnames ':full'; # Loads the Unicode names.
 $str =~ /\N{THAI CHARACTER SO SO}/; # Matches the Thai SO SO character

 use charnames 'Cyrillic'; # Loads Cyrillic names.
 $str =~ /\N{ZHE}\N{KA}/; # Match "ZHE" followed by "KA".

Perl version 5.12.4 documentation - perlrebackslash

Page 4http://perldoc.perl.org

Octal escapes

Octal escapes consist of a backslash followed by two or three octal digits
 matching the code point of
the character you want to use. This allows for
 512 characters (\00 up to \777) that can be expressed
this way (but
 anything above \377 is deprecated).
 Enough in pre-Unicode days, but most Unicode
characters cannot be escaped
 this way.

Note that a character that is expressed as an octal escape is considered
 as a character without
special meaning by the regex engine, and will match
 "as is".

Examples (assuming an ASCII platform)

 $str = "Perl";
 $str =~ /\120/; # Match, "\120" is "P".
 $str =~ /\120+/; # Match, "\120" is "P", it is repeated at least once.
 $str =~ /P\053/; # No match, "\053" is "+" and taken literally.

Caveat

Octal escapes potentially clash with backreferences. They both consist
 of a backslash followed by
numbers. So Perl has to use heuristics to
 determine whether it is a backreference or an octal escape.
Perl uses
 the following rules:

1 If the backslash is followed by a single digit, it's a backreference.

2 If the first digit following the backslash is a 0, it's an octal escape.

3 If the number following the backslash is N (in decimal), and Perl already has
 seen N capture
groups, Perl will consider this to be a backreference.
 Otherwise, it will consider it to be an
octal escape. Note that if N has more
 than three digits, Perl only takes the first three for the
octal escape;
 the rest are matched as is.

 my $pat = "(" x 999;
 $pat .= "a";
 $pat .= ")" x 999;
 /^($pat)\1000$/; # Matches 'aa'; there are 1000 capture groups.
 /^$pat\1000$/; # Matches 'a@0'; there are 999 capture groups
 # and \1000 is seen as \100 (a '@') and a '0'.

Hexadecimal escapes

Hexadecimal escapes start with \x and are then either followed by a
 two digit hexadecimal number,
or a hexadecimal number of arbitrary length
 surrounded by curly braces. The hexadecimal number is
the code point of
 the character you want to express.

Note that a character that is expressed as a hexadecimal escape is considered
 as a character without
special meaning by the regex engine, and will match
 "as is".

Mnemonic: hexadecimal.

Examples (assuming an ASCII platform)

 $str = "Perl";
 $str =~ /\x50/; # Match, "\x50" is "P".
 $str =~ /\x50+/; # Match, "\x50" is "P", it is repeated at least once.
 $str =~ /P\x2B/; # No match, "\x2B" is "+" and taken literally.

 /\x{2603}\x{2602}/ # Snowman with an umbrella.
 # The Unicode character 2603 is a snowman,
 # the Unicode character 2602 is an umbrella.
 /\x{263B}/ # Black smiling face.
 /\x{263b}/ # Same, the hex digits A - F are case insensitive.

Perl version 5.12.4 documentation - perlrebackslash

Page 5http://perldoc.perl.org

Modifiers
A number of backslash sequences have to do with changing the character,
 or characters following
them. \l will lowercase the character following
 it, while \u will uppercase (or, more accurately,
titlecase) the
 character following it. (They perform similar functionality as the
 functions lcfirst and
ucfirst).

To uppercase or lowercase several characters, one might want to use \L or \U, which will
lowercase/uppercase all characters following
 them, until either the end of the pattern, or the next
occurrence of \E, whatever comes first. They perform similar functionality as the
 functions lc and uc
do.

\Q is used to escape all characters following, up to the next \E
 or the end of the pattern. \Q adds a
backslash to any character that
 isn't a letter, digit or underscore. This will ensure that any character

between \Q and \E is matched literally, and will not be interpreted
 by the regexp engine.

Mnemonic: Lowercase, Uppercase, Quotemeta, End.

Examples

 $sid = "sid";
 $greg = "GrEg";
 $miranda = "(Miranda)";
 $str =~ /\u$sid/; # Matches 'Sid'
 $str =~ /\L$greg/; # Matches 'greg'
 $str =~ /\Q$miranda\E/; # Matches '(Miranda)', as if the pattern
 # had been written as /\(Miranda\)/

Character classes
Perl regular expressions have a large range of character classes. Some of
 the character classes are
written as a backslash sequence. We will briefly
 discuss those here; full details of character classes
can be found in perlrecharclass.

\w is a character class that matches any single word character (letters,
 digits, underscore). \d is a
character class that matches any decimal digit,
 while the character class \s matches any whitespace
character.
 New in perl 5.10.0 are the classes \h and \v which match horizontal
 and vertical
whitespace characters.

The uppercase variants (\W, \D, \S, \H, and \V) are
 character classes that match any character that
isn't a word character,
 digit, whitespace, horizontal whitespace nor vertical whitespace.

Mnemonics: word, digit, space, horizontal, vertical.

Unicode classes

\pP (where P is a single letter) and \p{Property} are used to
 match a character that matches the
given Unicode property; properties
 include things like "letter", or "thai character". Capitalizing the

sequence to \PP and \P{Property} make the sequence match a character
 that doesn't match the
given Unicode property. For more details, see "Backslash sequences" in perlrecharclass and
"Unicode Character Properties" in perlunicode.

Mnemonic: property.

Referencing
If capturing parenthesis are used in a regular expression, we can refer
 to the part of the source string
that was matched, and match exactly the
 same thing. There are three ways of referring to such
backreference:
 absolutely, relatively, and by name.

Perl version 5.12.4 documentation - perlrebackslash

Page 6http://perldoc.perl.org

Absolute referencing

A backslash sequence that starts with a backslash and is followed by a
 number is an absolute
reference (but be aware of the caveat mentioned above).
 If the number is N, it refers to the Nth set of
parentheses - whatever
 has been matched by that set of parenthesis has to be matched by the \N
 as
well.

Examples

 /(\w+) \1/; # Finds a duplicated word, (e.g. "cat cat").
 /(.)(.)\2\1/; # Match a four letter palindrome (e.g. "ABBA").

Relative referencing

New in perl 5.10.0 is a different way of referring to capture buffers: \g. \g takes a number as
argument, with the number in curly braces (the
 braces are optional). If the number (N) does not have
a sign, it's a reference
 to the Nth capture group (so \g{2} is equivalent to \2 - except that \g always
refers to a capture group and will never be seen as an octal
 escape). If the number is negative, the
reference is relative, referring to
 the Nth group before the \g{-N}.

The big advantage of \g{-N} is that it makes it much easier to write
 patterns with references that can
be interpolated in larger patterns,
 even if the larger pattern also contains capture groups.

Mnemonic: group.

Examples

 /(A) # Buffer 1
 (# Buffer 2
 (B) # Buffer 3
 \g{-1} # Refers to buffer 3 (B)
 \g{-3} # Refers to buffer 1 (A)
)
 /x; # Matches "ABBA".

 my $qr = qr /(.)(.)\g{-2}\g{-1}/; # Matches 'abab', 'cdcd', etc.
 /qrqr/ # Matches 'ababcdcd'.

Named referencing

Also new in perl 5.10.0 is the use of named capture buffers, which can be
 referred to by name. This is
done with \g{name}, which is a
 backreference to the capture buffer with the name name.

To be compatible with .Net regular expressions, \g{name} may also be
 written as \k{name},
\k<name> or \k'name'.

Note that \g{} has the potential to be ambiguous, as it could be a named
 reference, or an absolute
or relative reference (if its argument is numeric).
 However, names are not allowed to start with digits,
nor are they allowed to
 contain a hyphen, so there is no ambiguity.

Examples

 /(?<word>\w+) \g{word}/ # Finds duplicated word, (e.g. "cat cat")
 /(?<word>\w+) \k{word}/ # Same.
 /(?<word>\w+) \k<word>/ # Same.
 /(?<letter1>.)(?<letter2>.)\g{letter2}\g{letter1}/
 # Match a four letter palindrome (e.g. "ABBA")

Assertions
Assertions are conditions that have to be true; they don't actually
 match parts of the substring. There
are six assertions that are written as
 backslash sequences.

Perl version 5.12.4 documentation - perlrebackslash

Page 7http://perldoc.perl.org

\A

\A only matches at the beginning of the string. If the /m modifier
 isn't used, then /\A/ is
equivalent with /^/. However, if the /m
 modifier is used, then /^/ matches internal newlines,
but the meaning
 of /\A/ isn't changed by the /m modifier. \A matches at the beginning
 of the
string regardless whether the /m modifier is used.

\z, \Z

\z and \Z match at the end of the string. If the /m modifier isn't
 used, then /\Z/ is equivalent
with /$/, that is, it matches at the
 end of the string, or before the newline at the end of the
string. If the /m modifier is used, then /$/ matches at internal newlines, but the
 meaning of
/\Z/ isn't changed by the /m modifier. \Z matches at
 the end of the string (or just before a
trailing newline) regardless whether
 the /m modifier is used.

\z is just like \Z, except that it will not match before a trailing
 newline. \z will only match at
the end of the string - regardless of the
 modifiers used, and not before a newline.

\G

\G is usually only used in combination with the /g modifier. If the /g modifier is used (and the
match is done in scalar context), Perl will
 remember where in the source string the last match
ended, and the next time,
 it will start the match from where it ended the previous time.

\G matches the point where the previous match ended, or the beginning
 of the string if there
was no previous match.

Mnemonic: Global.

\b, \B

\b matches at any place between a word and a non-word character; \B
 matches at any place
between characters where \b doesn't match. \b
 and \B assume there's a non-word character
before the beginning and after
 the end of the source string; so \b will match at the beginning
(or end)
 of the source string if the source string begins (or ends) with a word
 character.
Otherwise, \B will match.

Mnemonic: boundary.

Examples

 "cat" =~ /\Acat/; # Match.
 "cat" =~ /cat\Z/; # Match.
 "cat\n" =~ /cat\Z/; # Match.
 "cat\n" =~ /cat\z/; # No match.

 "cat" =~ /\bcat\b/; # Matches.
 "cats" =~ /\bcat\b/; # No match.
 "cat" =~ /\bcat\B/; # No match.
 "cats" =~ /\bcat\B/; # Match.

 while ("cat dog" =~ /(\w+)/g) {
 print $1; # Prints 'catdog'
 }
 while ("cat dog" =~ /\G(\w+)/g) {
 print $1; # Prints 'cat'
 }

Misc
Here we document the backslash sequences that don't fall in one of the
 categories above. They are:

\C

Perl version 5.12.4 documentation - perlrebackslash

Page 8http://perldoc.perl.org

\C always matches a single octet, even if the source string is encoded
 in UTF-8 format, and
the character to be matched is a multi-octet character. \C was introduced in perl 5.6.

Mnemonic: oCtet.

\K

This is new in perl 5.10.0. Anything that is matched left of \K is
 not included in $& - and will
not be replaced if the pattern is
 used in a substitution. This will allow you to write s/PAT1 \K
PAT2/REPL/x
 instead of s/(PAT1) PAT2/${1}REPL/x or s/(?<=PAT1) PAT2/REPL/x.

Mnemonic: Keep.

\N

This is a new experimental feature in perl 5.12.0. It matches any character
 that is not a
newline. It is a short-hand for writing [^\n], and is
 identical to the . metasymbol, except
under the /s flag, which changes
 the meaning of ., but not \N.

Note that \N{...} can mean a named or numbered character.

Mnemonic: Complement of \n.

\R

\R matches a generic newline, that is, anything that is considered
 a newline by Unicode. This
includes all characters matched by \v
 (vertical whitespace), and the multi character sequence
"\x0D\x0A"
 (carriage return followed by a line feed, aka the network newline, or
 the newline
used in Windows text files). \R is equivalent to (?>\x0D\x0A)|\v). Since \R can match a
sequence of more than one
 character, it cannot be put inside a bracketed character class;
/[\R]/ is an
 error; use \v instead. \R was introduced in perl 5.10.0.

Mnemonic: none really. \R was picked because PCRE already uses \R,
 and more importantly
because Unicode recommends such a regular expression
 metacharacter, and suggests \R as
the notation.

\X

This matches a Unicode extended grapheme cluster.

\X matches quite well what normal (non-Unicode-programmer) usage
 would consider a single
character. As an example, consider a G with some sort
 of diacritic mark, such as an arrow.
There is no such single character in
 Unicode, but one can be composed by using a G followed
by a Unicode "COMBINING
 UPWARDS ARROW BELOW", and would be displayed by
Unicode-aware software as if it
 were a single character.

Mnemonic: eXtended Unicode character.

Examples

 "\x{256}" =~ /^\C\C$/; # Match as chr (256) takes 2 octets in UTF-8.

 $str =~ s/foo\Kbar/baz/g; # Change any 'bar' following a 'foo' to 'baz'.
 $str =~ s/(.)\K\1//g; # Delete duplicated characters.

 "\n" =~ /^\R$/; # Match, \n is a generic newline.
 "\r" =~ /^\R$/; # Match, \r is a generic newline.
 "\r\n" =~ /^\R$/; # Match, \r\n is a generic newline.

 "P\x{0307}" =~ /^\X$/ # \X matches a P with a dot above.

