
Perl version 5.12.4 documentation - threads::shared

Page 1http://perldoc.perl.org

NAME
threads::shared - Perl extension for sharing data structures between threads

VERSION
This document describes threads::shared version 1.32

SYNOPSIS
 use threads;
 use threads::shared;

 my $var :shared;
 my %hsh :shared;
 my @ary :shared;

 my ($scalar, @array, %hash);
 share($scalar);
 share(@array);
 share(%hash);

 $var = $scalar_value;
 $var = $shared_ref_value;
 $var = shared_clone($non_shared_ref_value);
 $var = shared_clone({'foo' => [qw/foo bar baz/]});

 $hsh{'foo'} = $scalar_value;
 $hsh{'bar'} = $shared_ref_value;
 $hsh{'baz'} = shared_clone($non_shared_ref_value);
 $hsh{'quz'} = shared_clone([1..3]);

 $ary[0] = $scalar_value;
 $ary[1] = $shared_ref_value;
 $ary[2] = shared_clone($non_shared_ref_value);
 $ary[3] = shared_clone([{}, []]);

 { lock(%hash); ... }

 cond_wait($scalar);
 cond_timedwait($scalar, time() + 30);
 cond_broadcast(@array);
 cond_signal(%hash);

 my $lockvar :shared;
 # condition var != lock var
 cond_wait($var, $lockvar);
 cond_timedwait($var, time()+30, $lockvar);

DESCRIPTION
By default, variables are private to each thread, and each newly created
 thread gets a private copy of
each existing variable. This module allows you
 to share variables across different threads (and
pseudo-forks on Win32). It
 is used together with the threads module.

This module supports the sharing of the following data types only: scalars
 and scalar refs, arrays and
array refs, and hashes and hash refs.

Perl version 5.12.4 documentation - threads::shared

Page 2http://perldoc.perl.org

EXPORT
The following functions are exported by this module: share, shared_clone, is_shared,
cond_wait, cond_timedwait, cond_signal
 and cond_broadcast

Note that if this module is imported when threads has not yet been loaded,
 then these functions all
become no-ops. This makes it possible to write
 modules that will work in both threaded and
non-threaded environments.

FUNCTIONS
share VARIABLE

share takes a variable and marks it as shared:

 my ($scalar, @array, %hash);
 share($scalar);
 share(@array);
 share(%hash);

share will return the shared rvalue, but always as a reference.

Variables can also be marked as shared at compile time by using the :shared attribute:

 my ($var, %hash, @array) :shared;

Shared variables can only store scalars, refs of shared variables, or
 refs of shared data
(discussed in next section):

 my ($var, %hash, @array) :shared;
 my $bork;

 # Storing scalars
 $var = 1;
 $hash{'foo'} = 'bar';
 $array[0] = 1.5;

 # Storing shared refs
 $var = \%hash;
 $hash{'ary'} = \@array;
 $array[1] = \$var;

 # The following are errors:
 # $var = \$bork; # ref of non-shared variable
 # $hash{'bork'} = []; # non-shared array ref
 # push(@array, { 'x' => 1 }); # non-shared hash ref

shared_clone REF

shared_clone takes a reference, and returns a shared version of its
 argument, performing a
deep copy on any non-shared elements. Any shared
 elements in the argument are used as is
(i.e., they are not cloned).

 my $cpy = shared_clone({'foo' => [qw/foo bar baz/]});

Object status (i.e., the class an object is blessed into) is also cloned.

 my $obj = {'foo' => [qw/foo bar baz/]};
 bless($obj, 'Foo');
 my $cpy = shared_clone($obj);
 print(ref($cpy), "\n"); # Outputs 'Foo'

For cloning empty array or hash refs, the following may also be used:

Perl version 5.12.4 documentation - threads::shared

Page 3http://perldoc.perl.org

 $var = &share([]); # Same as $var = shared_clone([]);
 $var = &share({}); # Same as $var = shared_clone({});

is_shared VARIABLE

is_shared checks if the specified variable is shared or not. If shared,
 returns the variable's
internal ID (similar to refaddr()). Otherwise, returns undef.

 if (is_shared($var)) {
 print("\$var is shared\n");
 } else {
 print("\$var is not shared\n");
 }

When used on an element of an array or hash, is_shared checks if the
 specified element
belongs to a shared array or hash. (It does not check
 the contents of that element.)

 my %hash :shared;
 if (is_shared(%hash)) {
 print("\%hash is shared\n");
 }

 $hash{'elem'} = 1;
 if (is_shared($hash{'elem'})) {
 print("\$hash{'elem'} is in a shared hash\n");
 }

lock VARIABLE

lock places a advisory lock on a variable until the lock goes out of
 scope. If the variable is
locked by another thread, the lock call will
 block until it's available. Multiple calls to lock by
the same thread from
 within dynamically nested scopes are safe -- the variable will remain
locked
 until the outermost lock on the variable goes out of scope.

lock follows references exactly one level:

 my %hash :shared;
 my $ref = \%hash;
 lock($ref); # This is equivalent to lock(%hash)

Note that you cannot explicitly unlock a variable; you can only wait for the
 lock to go out of
scope. This is most easily accomplished by locking the
 variable inside a block.

 my $var :shared;
 {
 lock($var);
 # $var is locked from here to the end of the block
 ...
 }
 # $var is now unlocked

As locks are advisory, they do not prevent data access or modification by
 another thread that
does not itself attempt to obtain a lock on the variable.

You cannot lock the individual elements of a container variable:

 my %hash :shared;
 $hash{'foo'} = 'bar';
 #lock($hash{'foo'}); # Error
 lock(%hash); # Works

Perl version 5.12.4 documentation - threads::shared

Page 4http://perldoc.perl.org

If you need more fine-grained control over shared variable access, see Thread::Semaphore.

cond_wait VARIABLE

cond_wait CONDVAR, LOCKVAR

The cond_wait function takes a locked variable as a parameter, unlocks
 the variable, and
blocks until another thread does a cond_signal or cond_broadcast for that same locked
variable. The variable that cond_wait blocked on is relocked after the cond_wait is
satisfied. If
 there are multiple threads cond_waiting on the same variable, all but one
 will
re-block waiting to reacquire the lock on the variable. (So if you're only
 using cond_wait for
synchronisation, give up the lock as soon as possible).
 The two actions of unlocking the
variable and entering the blocked wait state
 are atomic, the two actions of exiting from the
blocked wait state and
 re-locking the variable are not.

In its second form, cond_wait takes a shared, unlocked variable followed
 by a shared,
locked variable. The second variable is unlocked and thread
 execution suspended until
another thread signals the first variable.

It is important to note that the variable can be notified even if no thread cond_signal or
cond_broadcast on the variable. It is therefore
 important to check the value of the variable
and go back to waiting if the
 requirement is not fulfilled. For example, to pause until a shared
counter
 drops to zero:

 { lock($counter); cond_wait($counter) until $counter == 0; }

cond_timedwait VARIABLE, ABS_TIMEOUT

cond_timedwait CONDVAR, ABS_TIMEOUT, LOCKVAR

In its two-argument form, cond_timedwait takes a locked variable and an
 absolute timeout
as parameters, unlocks the variable, and blocks until the
 timeout is reached or another thread
signals the variable. A false value is
 returned if the timeout is reached, and a true value
otherwise. In either
 case, the variable is re-locked upon return.

Like cond_wait, this function may take a shared, locked variable as an
 additional
parameter; in this case the first parameter is an unlocked
 condition variable protected by a
distinct lock variable.

Again like cond_wait, waking up and reacquiring the lock are not atomic,
 and you should
always check your desired condition after this function
 returns. Since the timeout is an
absolute value, however, it does not have to
 be recalculated with each pass:

 lock($var);
 my $abs = time() + 15;
 until ($ok = desired_condition($var)) {
 last if !cond_timedwait($var, $abs);
 }
 # we got it if $ok, otherwise we timed out!

cond_signal VARIABLE

The cond_signal function takes a locked variable as a parameter and
 unblocks one thread
that's cond_waiting on that variable. If more than one
 thread is blocked in a cond_wait on
that variable, only one (and which one
 is indeterminate) will be unblocked.

If there are no threads blocked in a cond_wait on the variable, the signal
 is discarded. By
always locking before signaling, you can (with care), avoid
 signaling before another thread has
entered cond_wait().

cond_signal will normally generate a warning if you attempt to use it on an
 unlocked
variable. On the rare occasions where doing this may be sensible, you
 can suppress the
warning with:

 { no warnings 'threads'; cond_signal($foo); }

Perl version 5.12.4 documentation - threads::shared

Page 5http://perldoc.perl.org

cond_broadcast VARIABLE

The cond_broadcast function works similarly to cond_signal. cond_broadcast,
though, will unblock all the threads that are blocked in
 a cond_wait on the locked variable,
rather than only one.

OBJECTS
threads::shared exports a version of bless() that
 works on shared objects such that blessings
propagate across threads.

 # Create a shared 'Foo' object
 my $foo :shared = shared_clone({});
 bless($foo, 'Foo');

 # Create a shared 'Bar' object
 my $bar :shared = shared_clone({});
 bless($bar, 'Bar');

 # Put 'bar' inside 'foo'
 $foo->{'bar'} = $bar;

 # Rebless the objects via a thread
 threads->create(sub {
 # Rebless the outer object
 bless($foo, 'Yin');

 # Cannot directly rebless the inner object
 #bless($foo->{'bar'}, 'Yang');

 # Retrieve and rebless the inner object
 my $obj = $foo->{'bar'};
 bless($obj, 'Yang');
 $foo->{'bar'} = $obj;

 })->join();

 print(ref($foo), "\n"); # Prints 'Yin'
 print(ref($foo->{'bar'}), "\n"); # Prints 'Yang'
 print(ref($bar), "\n"); # Also prints 'Yang'

NOTES
threads::shared is designed to disable itself silently if threads are not
 available. This allows you to
write modules and packages that can be used
 in both threaded and non-threaded applications.

If you want access to threads, you must use threads before you use threads::shared. threads
will emit a warning if you use it after threads::shared.

BUGS AND LIMITATIONS
When share is used on arrays, hashes, array refs or hash refs, any data
 they contain will be lost.

 my @arr = qw(foo bar baz);
 share(@arr);
 # @arr is now empty (i.e., == ());

Perl version 5.12.4 documentation - threads::shared

Page 6http://perldoc.perl.org

 # Create a 'foo' object
 my $foo = { 'data' => 99 };
 bless($foo, 'foo');

 # Share the object
 share($foo); # Contents are now wiped out
 print("ERROR: \$foo is empty\n")
 if (! exists($foo->{'data'}));

Therefore, populate such variables after declaring them as shared. (Scalar
 and scalar refs are not
affected by this problem.)

It is often not wise to share an object unless the class itself has been
 written to support sharing. For
example, an object's destructor may get
 called multiple times, once for each thread's scope exit.
Another danger is
 that the contents of hash-based objects will be lost due to the above
 mentioned
limitation. See examples/class.pl (in the CPAN distribution of
 this module) for how to create a class
that supports object sharing.

Does not support splice on arrays!

Taking references to the elements of shared arrays and hashes does not
 autovivify the elements, and
neither does slicing a shared array/hash over
 non-existent indices/keys autovivify the elements.

share() allows you to share($hashref->{key}) and share($arrayref->[idx]) without
giving any error message. But the $hashref->{key} or $arrayref->[idx] is not shared,
causing
 the error "lock can only be used on shared values" to occur when you attempt
 to
lock($hasref->{key}) or lock($arrayref->[idx]) in another
 thread.

Using refaddr()) is unreliable for testing
 whether or not two shared references are equivalent (e.g.,
when testing for
 circular references). Use "is_shared VARIABLE" in is_shared(), instead:

 use threads;
 use threads::shared;
 use Scalar::Util qw(refaddr);

 # If ref is shared, use threads::shared's internal ID.
 # Otherwise, use refaddr().
 my $addr1 = is_shared($ref1) || refaddr($ref1);
 my $addr2 = is_shared($ref2) || refaddr($ref2);

 if ($addr1 == $addr2) {
 # The refs are equivalent
 }

each() does not work properly on shared references
 embedded in shared structures. For example:

 my %foo :shared;
 $foo{'bar'} = shared_clone({'a'=>'x', 'b'=>'y', 'c'=>'z'});

 while (my ($key, $val) = each(%{$foo{'bar'}})) {
 ...
 }

Either of the following will work instead:

 my $ref = $foo{'bar'};

Perl version 5.12.4 documentation - threads::shared

Page 7http://perldoc.perl.org

 while (my ($key, $val) = each(%{$ref})) {
 ...
 }

 foreach my $key (keys(%{$foo{'bar'}})) {
 my $val = $foo{'bar'}{$key};
 ...
 }

View existing bug reports at, and submit any new bugs, problems, patches, etc.
 to:
http://rt.cpan.org/Public/Dist/Display.html?Name=threads-shared

SEE ALSO
threads::shared Discussion Forum on CPAN: http://www.cpanforum.com/dist/threads-shared

Annotated POD for threads::shared:
http://annocpan.org/~JDHEDDEN/threads-shared-1.32/shared.pm

Source repository: http://code.google.com/p/threads-shared/

threads, perlthrtut

http://www.perl.com/pub/a/2002/06/11/threads.html and
http://www.perl.com/pub/a/2002/09/04/threads.html

Perl threads mailing list: http://lists.cpan.org/showlist.cgi?name=iThreads

AUTHOR
Artur Bergman <sky AT crucially DOT net>

Documentation borrowed from the old Thread.pm.

CPAN version produced by Jerry D. Hedden <jdhedden AT cpan DOT org>.

LICENSE
threads::shared is released under the same license as Perl.

