@ Pefl Perl version 5.14.2 documentation - App::Prove

NAME

App::Prove - Implements the prove command.

VERSION
Version 3.23

DESCRIPTION

Test::Harness provides a command, prove, which runs a TAP based test suite and prints a report.
The prove command is a minimal wrapper around an instance of this module.

SYNOPSIS

use App::Prove;

my $app = App::Prove->new;
$app->process_args(@ARGV) ;

$app->run;
METHODS
Class Methods
new

Create a new App: :Prove. Optionally a hash ref of attribute initializers may be passed.

state_class

Getter/setter for the name of the class used for maintaining state. This class should either subclass
from App: :Prove: :State or provide an identical interface.

state_manager
Getter/setter for the instance of the state_class.

add_rc file
$prove->add_rc_file("myproj/.proverct);

Called before process_args to prepend the contents of an rc file to the options.

process_args
$prove->process_args(@args);

Processes the command-line arguments. Attributes will be set appropriately. Any filenames may be
found in the argyv attribute.
Dies on invalid arguments.

run
Perform whatever actions the command line args specified. The prove command line tool consists of
the following code:

use App::Prove;
my $app = App::Prove->new;

$app->process_args(@ARGY) ;
exit($app->run ? 0 : 1); # if you need the exit code

http://perldoc.perl.org Page 1

O Perl

Perl version 5.14.2 documentation - App::Prove

require_harness
Load a harness replacement class.

$prove->require_harness($for => $class_name);

print_version

Display the version numbers of the loaded TAP::Harness and the current Perl.

Attributes

After command line parsing the following attributes reflect the values of the corresponding command
line switches. They may be altered before calling run.

archive
argv
backwards
blib

color
directives
dry

exec
extensions
failures
comments
formatter
harness
ignore_exit
includes
jobs

lib

merge
modules
parse
plugins
quiet
really _quiet
recurse
rules
show_count
show_help
show_man
show_version
shuffle
state

state _class
taint_fail

http://perldoc.perl.org

Page 2

@ Pefl Perl version 5.14.2 documentation - App::Prove

taint_warn

test_args
timer

verbose
warnings_Tfail
warnings_warn
tapversion
trap

PLUGINS

App: :Prove provides support for 3rd-party plugins. These are currently loaded at run-time, after
arguments have been parsed (so you can not change the way arguments are processed, sorry),
typically with the -Pplugin switch, eg:

prove -PMyPlugin

This will search for a module named App: :Prove: :Plugin: :MyPlugin, or failing that, MyPlugin.
If the plugin can't be found, prove will complain & exit.

You can pass an argument to your plugin by appending an = after the plugin name, eg
-PMyPlugin=fo00. You can pass multiple arguments using commas:

prove -PMyPlugin=foo,bar,baz

These are passed in to your plugin's load () class method (if it has one), along with a reference to
the App: :Prove object that is invoking your plugin:

sub load {
my ($class, $p) = @_;

my @args = @{ $p->{args} };
@args will contain ("foo", "bar®, "baz")
$p->{app_prove}->do_something;

}

Note that the user's arguments are also passed to your plugin's import() function as a list, eg:

sub import {
my ($class, @args) = @_;
@args will contain ("foo", "bar®, "baz")

}

This is for backwards compatibility, and may be deprecated in the future.

Sample Plugin
Here's a sample plugin, for your reference:

package App::Prove::Plugin::Foo;
Sample plugin, try running with:

prove -PFoo=bar -r -j3
prove -PFoo -Q

http://perldoc.perl.org Page 3

@ Pefl Perl version 5.14.2 documentation - App::Prove

prove -PFoo=bar,My::Formatter

use strict;
use warnings;

sub load {
my ($class, $p) = @_;

my @args = @{ $p->{args} }:
my $app = $p->{app_prove};

print "loading plugin: $class, args: ', join(", ", @args), '"\n";

turn on verbosity
$app->verbose(1);

set the formatter?
$app->Formatter($args[1l]) if @args > 1;

print some of App::Prove"s state:

for my $attr (gw(jobs quiet really quiet recurse verbose)) {
my $val = $app->$attr;
$val = "undef” unless defined($val);
print "$attr: $val\n";

}

return 1;

b
1;

SEE ALSO

prove, TAP::Harness

http://perldoc.perl.org Page 4

