
Perl version 5.14.2 documentation - Attribute::Handlers

Page 1http://perldoc.perl.org

NAME
Attribute::Handlers - Simpler definition of attribute handlers

VERSION
This document describes version 0.89 of Attribute::Handlers,
 released April 5, 2010.

SYNOPSIS
	 package MyClass;
	 require 5.006;
	 use Attribute::Handlers;
	 no warnings 'redefine';

	 sub Good : ATTR(SCALAR) {
		 my ($package, $symbol, $referent, $attr, $data) = @_;

		 # Invoked for any scalar variable with a :Good attribute,
		 # provided the variable was declared in MyClass (or
		 # a derived class) or typed to MyClass.

		 # Do whatever to $referent here (executed in CHECK phase).
		 ...
	 }

	 sub Bad : ATTR(SCALAR) {
		 # Invoked for any scalar variable with a :Bad attribute,
		 # provided the variable was declared in MyClass (or
		 # a derived class) or typed to MyClass.
		 ...
	 }

	 sub Good : ATTR(ARRAY) {
		 # Invoked for any array variable with a :Good attribute,
		 # provided the variable was declared in MyClass (or
		 # a derived class) or typed to MyClass.
		 ...
	 }

	 sub Good : ATTR(HASH) {
		 # Invoked for any hash variable with a :Good attribute,
		 # provided the variable was declared in MyClass (or
		 # a derived class) or typed to MyClass.
		 ...
	 }

	 sub Ugly : ATTR(CODE) {
		 # Invoked for any subroutine declared in MyClass (or a
		 # derived class) with an :Ugly attribute.
		 ...
	 }

	 sub Omni : ATTR {
		 # Invoked for any scalar, array, hash, or subroutine
		 # with an :Omni attribute, provided the variable or

Perl version 5.14.2 documentation - Attribute::Handlers

Page 2http://perldoc.perl.org

		 # subroutine was declared in MyClass (or a derived class)
		 # or the variable was typed to MyClass.
		 # Use ref($_[2]) to determine what kind of referent it was.
		 ...
	 }

	 use Attribute::Handlers autotie => { Cycle => Tie::Cycle };

	 my $next : Cycle(['A'..'Z']);

DESCRIPTION
This module, when inherited by a package, allows that package's class to
 define attribute handler
subroutines for specific attributes. Variables
 and subroutines subsequently defined in that package, or
in packages
 derived from that package may be given attributes with the same names as
 the attribute
handler subroutines, which will then be called in one of
 the compilation phases (i.e. in a BEGIN,
CHECK, INIT, or END
 block). (UNITCHECK blocks don't correspond to a global compilation
 phase, so
they can't be specified here.)

To create a handler, define it as a subroutine with the same name as
 the desired attribute, and
declare the subroutine itself with the attribute :ATTR. For example:

 package LoudDecl;
 use Attribute::Handlers;

 sub Loud :ATTR {
	 my ($package, $symbol, $referent, $attr, $data, $phase, $filename,
$linenum) = @_;
	 print STDERR
	 ref($referent), " ",
	 *{$symbol}{NAME}, " ",
	 "($referent) ", "was just declared ",
	 "and ascribed the ${attr} attribute ",
	 "with data ($data)\n",
	 "in phase $phase\n",
	 "in file $filename at line $linenum\n";
 }

This creates a handler for the attribute :Loud in the class LoudDecl.
 Thereafter, any subroutine
declared with a :Loud attribute in the class
 LoudDecl:

	 package LoudDecl;

	 sub foo: Loud {...}

causes the above handler to be invoked, and passed:

[0]

the name of the package into which it was declared;

[1]

a reference to the symbol table entry (typeglob) containing the subroutine;

[2]

a reference to the subroutine;

Perl version 5.14.2 documentation - Attribute::Handlers

Page 3http://perldoc.perl.org

[3]

the name of the attribute;

[4]

any data associated with that attribute;

[5]

the name of the phase in which the handler is being invoked;

[6]

the filename in which the handler is being invoked;

[7]

the line number in this file.

Likewise, declaring any variables with the :Loud attribute within the
 package:

 package LoudDecl;

 my $foo :Loud;
 my @foo :Loud;
 my %foo :Loud;

will cause the handler to be called with a similar argument list (except,
 of course, that $_[2] will be a
reference to the variable).

The package name argument will typically be the name of the class into
 which the subroutine was
declared, but it may also be the name of a derived
 class (since handlers are inherited).

If a lexical variable is given an attribute, there is no symbol table to which it belongs, so the symbol
table argument ($_[1]) is set to the
 string 'LEXICAL' in that case. Likewise, ascribing an attribute
to
 an anonymous subroutine results in a symbol table argument of 'ANON'.

The data argument passes in the value (if any) associated with the
 attribute. For example, if &foo had
been declared:

 sub foo :Loud("turn it up to 11, man!") {...}

then a reference to an array containing the string "turn it up to 11, man!" would be passed
as the last argument.

Attribute::Handlers makes strenuous efforts to convert
 the data argument ($_[4]) to a useable form
before passing it to
 the handler (but see Non-interpretive attribute handlers).
 If those efforts succeed,
the interpreted data is passed in an array
 reference; if they fail, the raw data is passed as a string.
 For
example, all of these:

 sub foo :Loud(till=>ears=>are=>bleeding) {...}
 sub foo :Loud(qw/till ears are bleeding/) {...}
 sub foo :Loud(qw/my, ears, are, bleeding/) {...}
 sub foo :Loud(till,ears,are,bleeding) {...}

causes it to pass ['till','ears','are','bleeding'] as the handler's
 data argument. While:

 sub foo :Loud(['till','ears','are','bleeding']) {...}

causes it to pass [['till','ears','are','bleeding']]; the array
 reference specified in
the data being passed inside the standard
 array reference indicating successful interpretation.

Perl version 5.14.2 documentation - Attribute::Handlers

Page 4http://perldoc.perl.org

However, if the data can't be parsed as valid Perl, then
 it is passed as an uninterpreted string. For
example:

 sub foo :Loud(my,ears,are,bleeding) {...}
 sub foo :Loud(qw/my ears are bleeding) {...}

cause the strings 'my,ears,are,bleeding' and 'qw/my ears are bleeding' respectively to
be passed as the
 data argument.

If no value is associated with the attribute, undef is passed.

Typed lexicals
Regardless of the package in which it is declared, if a lexical variable is
 ascribed an attribute, the
handler that is invoked is the one belonging to
 the package to which it is typed. For example, the
following declarations:

 package OtherClass;

 my LoudDecl $loudobj : Loud;
 my LoudDecl @loudobjs : Loud;
 my LoudDecl %loudobjex : Loud;

causes the LoudDecl::Loud handler to be invoked (even if OtherClass also
 defines a handler for
:Loud attributes).

Type-specific attribute handlers
If an attribute handler is declared and the :ATTR specifier is
 given the name of a built-in type (
SCALAR, ARRAY, HASH, or CODE),
 the handler is only applied to declarations of that type. For
example,
 the following definition:

 package LoudDecl;

 sub RealLoud :ATTR(SCALAR) { print "Yeeeeow!" }

creates an attribute handler that applies only to scalars:

 package Painful;
 use base LoudDecl;

 my $metal : RealLoud; # invokes &LoudDecl::RealLoud
 my @metal : RealLoud; # error: unknown attribute
 my %metal : RealLoud; # error: unknown attribute
 sub metal : RealLoud {...} # error: unknown attribute

You can, of course, declare separate handlers for these types as well
 (but you'll need to specify no
warnings 'redefine' to do it quietly):

 package LoudDecl;
 use Attribute::Handlers;
 no warnings 'redefine';

 sub RealLoud :ATTR(SCALAR) { print "Yeeeeow!" }
 sub RealLoud :ATTR(ARRAY) { print "Urrrrrrrrrr!" }
 sub RealLoud :ATTR(HASH) { print "Arrrrrgggghhhhhh!" }
 sub RealLoud :ATTR(CODE) { croak "Real loud sub torpedoed" }

Perl version 5.14.2 documentation - Attribute::Handlers

Page 5http://perldoc.perl.org

You can also explicitly indicate that a single handler is meant to be
 used for all types of referents like
so:

 package LoudDecl;
 use Attribute::Handlers;

 sub SeriousLoud :ATTR(ANY) { warn "Hearing loss imminent" }

(I.e. ATTR(ANY) is a synonym for :ATTR).

Non-interpretive attribute handlers
Occasionally the strenuous efforts Attribute::Handlers makes to convert
 the data argument ($_[4]) to
a useable form before passing it to
 the handler get in the way.

You can turn off that eagerness-to-help by declaring
 an attribute handler with the keyword RAWDATA.
For example:

 sub Raw : ATTR(RAWDATA) {...}
 sub Nekkid : ATTR(SCALAR,RAWDATA) {...}
 sub Au::Naturale : ATTR(RAWDATA,ANY) {...}

Then the handler makes absolutely no attempt to interpret the data it
 receives and simply passes it as
a string:

 my $power : Raw(1..100); # handlers receives "1..100"

Phase-specific attribute handlers
By default, attribute handlers are called at the end of the compilation
 phase (in a CHECK block). This
seems to be optimal in most cases because
 most things that can be defined are defined by that point
but nothing has
 been executed.

However, it is possible to set up attribute handlers that are called at
 other points in the program's
compilation or execution, by explicitly
 stating the phase (or phases) in which you wish the attribute
handler to
 be called. For example:

 sub Early :ATTR(SCALAR,BEGIN) {...}
 sub Normal :ATTR(SCALAR,CHECK) {...}
 sub Late :ATTR(SCALAR,INIT) {...}
 sub Final :ATTR(SCALAR,END) {...}
 sub Bookends :ATTR(SCALAR,BEGIN,END) {...}

As the last example indicates, a handler may be set up to be (re)called in
 two or more phases. The
phase name is passed as the handler's final argument.

Note that attribute handlers that are scheduled for the BEGIN phase
 are handled as soon as the
attribute is detected (i.e. before any
 subsequently defined BEGIN blocks are executed).

Attributes as tie interfaces
Attributes make an excellent and intuitive interface through which to tie
 variables. For example:

 use Attribute::Handlers;
 use Tie::Cycle;

 sub UNIVERSAL::Cycle : ATTR(SCALAR) {
 my ($package, $symbol, $referent, $attr, $data, $phase) =
@_;

Perl version 5.14.2 documentation - Attribute::Handlers

Page 6http://perldoc.perl.org

 $data = [$data] unless ref $data eq 'ARRAY';
 tie $$referent, 'Tie::Cycle', $data;
 }

 # and thereafter...

 package main;

 my $next : Cycle('A'..'Z'); # $next is now a tied variable

 while (<>) {
 print $next;
 }

Note that, because the Cycle attribute receives its arguments in the $data variable, if the attribute is
given a list of arguments, $data
 will consist of a single array reference; otherwise, it will consist of the
single argument directly. Since Tie::Cycle requires its cycling values to
 be passed as an array
reference, this means that we need to wrap
 non-array-reference arguments in an array constructor:

 $data = [$data] unless ref $data eq 'ARRAY';

Typically, however, things are the other way around: the tieable class expects
 its arguments as a
flattened list, so the attribute looks like:

 sub UNIVERSAL::Cycle : ATTR(SCALAR) {
 my ($package, $symbol, $referent, $attr, $data, $phase) =
@_;
 my @data = ref $data eq 'ARRAY' ? @$data : $data;
 tie $$referent, 'Tie::Whatever', @data;
 }

This software pattern is so widely applicable that Attribute::Handlers
 provides a way to automate it:
specifying 'autotie' in the use Attribute::Handlers statement. So, the cycling example,

could also be written:

 use Attribute::Handlers autotie => { Cycle => 'Tie::Cycle' };

 # and thereafter...

 package main;

 my $next : Cycle(['A'..'Z']); # $next is now a tied variable

 while (<>) {
 print $next;

Note that we now have to pass the cycling values as an array reference,
 since the autotie
mechanism passes tie a list of arguments as a list
 (as in the Tie::Whatever example), not as an
array reference (as in
 the original Tie::Cycle example at the start of this section).

The argument after 'autotie' is a reference to a hash in which each key is
 the name of an attribute
to be created, and each value is the class to which
 variables ascribed that attribute should be tied.

Note that there is no longer any need to import the Tie::Cycle module --
 Attribute::Handlers takes care

Perl version 5.14.2 documentation - Attribute::Handlers

Page 7http://perldoc.perl.org

of that automagically. You can even pass
 arguments to the module's import subroutine, by
appending them to the
 class name. For example:

	 use Attribute::Handlers
		 autotie => { Dir => 'Tie::Dir qw(DIR_UNLINK)' };

If the attribute name is unqualified, the attribute is installed in the
 current package. Otherwise it is
installed in the qualifier's package:

 package Here;

 use Attribute::Handlers autotie => {
 Other::Good => Tie::SecureHash, # tie attr installed in
Other::
 Bad => Tie::Taxes, # tie attr installed in
Here::
 UNIVERSAL::Ugly => Software::Patent # tie attr installed
everywhere
 };

Autoties are most commonly used in the module to which they actually tie, and need to export their
attributes to any module that calls them. To
 facilitate this, Attribute::Handlers recognizes a special
"pseudo-class" -- __CALLER__, which may be specified as the qualifier of an attribute:

 package Tie::Me::Kangaroo:Down::Sport;

 use Attribute::Handlers autotie => { '__CALLER__::Roo' =>
__PACKAGE__ };

This causes Attribute::Handlers to define the Roo attribute in the package
 that imports the
Tie::Me::Kangaroo:Down::Sport module.

Note that it is important to quote the __CALLER__::Roo identifier because
 a bug in perl 5.8 will refuse
to parse it and cause an unknown error.

Passing the tied object to tie

Occasionally it is important to pass a reference to the object being tied
 to the TIESCALAR, TIEHASH,
etc. that ties it.

The autotie mechanism supports this too. The following code:

	 use Attribute::Handlers autotieref => { Selfish => Tie::Selfish };
	 my $var : Selfish(@args);

has the same effect as:

	 tie my $var, 'Tie::Selfish', @args;

But when "autotieref" is used instead of "autotie":

	 use Attribute::Handlers autotieref => { Selfish => Tie::Selfish };
	 my $var : Selfish(@args);

the effect is to pass the tie call an extra reference to the variable
 being tied:

 tie my $var, 'Tie::Selfish', \$var, @args;

Perl version 5.14.2 documentation - Attribute::Handlers

Page 8http://perldoc.perl.org

EXAMPLES
If the class shown in SYNOPSIS were placed in the MyClass.pm
 module, then the following code:

 package main;
 use MyClass;

 my MyClass $slr :Good :Bad(1**1-1) :Omni(-vorous);

 package SomeOtherClass;
 use base MyClass;

 sub tent { 'acle' }

 sub fn :Ugly(sister) :Omni('po',tent()) {...}
 my @arr :Good :Omni(s/cie/nt/);
 my %hsh :Good(q/bye/) :Omni(q/bus/);

would cause the following handlers to be invoked:

 # my MyClass $slr :Good :Bad(1**1-1) :Omni(-vorous);

 MyClass::Good:ATTR(SCALAR)('MyClass', # class
 'LEXICAL', # no typeglob
 \$slr, # referent
 'Good', # attr name
 undef # no attr data
 'CHECK', # compiler phase
);

 MyClass::Bad:ATTR(SCALAR)('MyClass', # class
 'LEXICAL', # no typeglob
 \$slr, # referent
 'Bad', # attr name
 0 # eval'd attr data
 'CHECK', # compiler phase
);

 MyClass::Omni:ATTR(SCALAR)('MyClass', # class
 'LEXICAL', # no typeglob
 \$slr, # referent
 'Omni', # attr name
 '-vorous' # eval'd attr data
 'CHECK', # compiler phase
);

 # sub fn :Ugly(sister) :Omni('po',tent()) {...}

 MyClass::UGLY:ATTR(CODE)('SomeOtherClass', # class
 *SomeOtherClass::fn, # typeglob
 \&SomeOtherClass::fn, # referent
 'Ugly', # attr name
 'sister' # eval'd attr data
 'CHECK', # compiler phase

Perl version 5.14.2 documentation - Attribute::Handlers

Page 9http://perldoc.perl.org

);

 MyClass::Omni:ATTR(CODE)('SomeOtherClass', # class
 *SomeOtherClass::fn, # typeglob
 \&SomeOtherClass::fn, # referent
 'Omni', # attr name
 ['po','acle'] # eval'd attr data
 'CHECK', # compiler phase
);

 # my @arr :Good :Omni(s/cie/nt/);

 MyClass::Good:ATTR(ARRAY)('SomeOtherClass', # class
 'LEXICAL', # no typeglob
 \@arr, # referent
 'Good', # attr name
 undef # no attr data
 'CHECK', # compiler phase
);

 MyClass::Omni:ATTR(ARRAY)('SomeOtherClass', # class
 'LEXICAL', # no typeglob
 \@arr, # referent
 'Omni', # attr name
 "" # eval'd attr data
 'CHECK', # compiler phase
);

 # my %hsh :Good(q/bye) :Omni(q/bus/);

 MyClass::Good:ATTR(HASH)('SomeOtherClass', # class
 'LEXICAL', # no typeglob
 \%hsh, # referent
 'Good', # attr name
 'q/bye' # raw attr data
 'CHECK', # compiler phase
);

 MyClass::Omni:ATTR(HASH)('SomeOtherClass', # class
 'LEXICAL', # no typeglob
 \%hsh, # referent
 'Omni', # attr name
 'bus' # eval'd attr data
 'CHECK', # compiler phase
);

Installing handlers into UNIVERSAL, makes them...err..universal.
 For example:

 package Descriptions;
 use Attribute::Handlers;

 my %name;
 sub name { return $name{$_[2]}||*{$_[1]}{NAME} }

Perl version 5.14.2 documentation - Attribute::Handlers

Page 10http://perldoc.perl.org

 sub UNIVERSAL::Name :ATTR {
 $name{$_[2]} = $_[4];
 }

 sub UNIVERSAL::Purpose :ATTR {
 print STDERR "Purpose of ", &name, " is $_[4]\n";
 }

 sub UNIVERSAL::Unit :ATTR {
 print STDERR &name, " measured in $_[4]\n";
 }

Let's you write:

 use Descriptions;

 my $capacity : Name(capacity)
 : Purpose(to store max storage capacity for files)
 : Unit(Gb);

 package Other;

 sub foo : Purpose(to foo all data before barring it) { }

 # etc.

UTILITY FUNCTIONS
This module offers a single utility function, findsym().

findsym

 my $symbol = Attribute::Handlers::findsym($package, $referent);

The function looks in the symbol table of $package for the typeglob for $referent, which is
a reference to a variable or subroutine (SCALAR, ARRAY,
 HASH, or CODE). If it finds the
typeglob, it returns it. Otherwise, it returns
 undef. Note that findsym memoizes the typeglobs
it has previously
 successfully found, so subsequent calls with the same arguments should be

much faster.

DIAGNOSTICS
Bad attribute type: ATTR(%s)

An attribute handler was specified with an :ATTR(ref_type), but the
 type of referent it was
defined to handle wasn't one of the five permitted: SCALAR, ARRAY, HASH, CODE, or ANY.

Attribute handler %s doesn't handle %s attributes

A handler for attributes of the specified name was defined, but not
 for the specified type of
declaration. Typically encountered whe trying
 to apply a VAR attribute handler to a subroutine,
or a SCALAR
 attribute handler to some other type of variable.

Declaration of %s attribute in package %s may clash with future reserved
word

A handler for an attributes with an all-lowercase name was declared. An
 attribute with an
all-lowercase name might have a meaning to Perl
 itself some day, even though most don't yet.
Use a mixed-case attribute
 name, instead.

Perl version 5.14.2 documentation - Attribute::Handlers

Page 11http://perldoc.perl.org

Can't have two ATTR specifiers on one subroutine

You just can't, okay?
 Instead, put all the specifications together with commas between them
 in
a single ATTR(specification).

Can't autotie a %s

You can only declare autoties for types "SCALAR", "ARRAY", and "HASH". They're the only
things (apart from typeglobs -- which are
 not declarable) that Perl can tie.

Internal error: %s symbol went missing

Something is rotten in the state of the program. An attributed
 subroutine ceased to exist
between the point it was declared and the point
 at which its attribute handler(s) would have
been called.

Won't be able to apply END handler

You have defined an END handler for an attribute that is being applied
 to a lexical variable.
Since the variable may not be available during END
 this won't happen.

AUTHOR
Damian Conway (damian@conway.org). The maintainer of this module is now Rafael
 Garcia-Suarez
(rgarciasuarez@gmail.com).

Maintainer of the CPAN release is Steffen Mueller (smueller@cpan.org).
 Contact him with technical
difficulties with respect to the packaging of the
 CPAN module.

BUGS
There are undoubtedly serious bugs lurking somewhere in code this funky :-)
 Bug reports and other
feedback are most welcome.

COPYRIGHT AND LICENSE
 Copyright (c) 2001-2009, Damian Conway. All Rights Reserved.
 This module is free software. It may be used, redistributed
 and/or modified under the same terms as Perl itself.

