
Perl version 5.14.2 documentation - Devel::DProf

Page 1http://perldoc.perl.org

NAME
Devel::DProf - a DEPRECATED Perl code profiler

SYNOPSIS
	 perl -d:DProf test.pl

ACHTUNG!
Devel::DProf is DEPRECATED and will be removed from a future version of
 Perl. We strongly
recommend that you install and use Devel::NYTProf instead,
 as it offers significantly improved
profiling and reporting.

DESCRIPTION
The Devel::DProf package is a Perl code profiler. This will collect
 information on the execution time of
a Perl script and of the subs in that
 script. This information can be used to determine which
subroutines are
 using the most time and which subroutines are being called most often. This

information can also be used to create an execution graph of the script,
 showing subroutine
relationships.

To profile a Perl script run the perl interpreter with the -d debugging
 switch. The profiler uses the
debugging hooks. So to profile script test.pl the following command should be used:

	 perl -d:DProf test.pl

When the script terminates (or when the output buffer is filled) the
 profiler will dump the profile
information to a file called tmon.out. A tool like dprofpp can be used to interpret the
 information which
is in that profile. The following command will
 print the top 15 subroutines which used the most time:

	 dprofpp

To print an execution graph of the subroutines in the script use the
 following command:

	 dprofpp -T

Consult dprofpp for other options.

PROFILE FORMAT
The old profile is a text file which looks like this:

	 #fOrTyTwO
	 $hz=100;
	 $XS_VERSION='DProf 19970606';
	 # All values are given in HZ
	 $rrun_utime=2; $rrun_stime=0; $rrun_rtime=7
	 PART2
	 + 26 28 566822884 DynaLoader::import
	 - 26 28 566822884 DynaLoader::import
	 + 27 28 566822885 main::bar
	 - 27 28 566822886 main::bar
	 + 27 28 566822886 main::baz
	 + 27 28 566822887 main::bar
	 - 27 28 566822888 main::bar
	 [....]

The first line is the magic number. The second line is the hertz value, or
 clock ticks, of the machine
where the profile was collected. The third line
 is the name and version identifier of the tool which

Perl version 5.14.2 documentation - Devel::DProf

Page 2http://perldoc.perl.org

created the profile.
 The fourth line is a comment. The fifth line contains three variables
 holding the
user time, system time, and realtime of the process while it was
 being profiled. The sixth line indicates
the beginning of the sub
 entry/exit profile section.

The columns in PART2 are:

	 sub entry(+)/exit(-) mark
	 app's user time at sub entry/exit mark, in ticks
	 app's system time at sub entry/exit mark, in ticks
	 app's realtime at sub entry/exit mark, in ticks
	 fully-qualified sub name, when possible

With newer perls another format is used, which may look like this:

 #fOrTyTwO
 $hz=10000;
 $XS_VERSION='DProf 19971213';
 # All values are given in HZ
 $over_utime=5917; $over_stime=0; $over_rtime=5917;
 $over_tests=10000;
 $rrun_utime=1284; $rrun_stime=0; $rrun_rtime=1284;
 $total_marks=6;

 PART2
 @ 406 0 406
 & 2 main bar
 + 2
 @ 456 0 456
 - 2
 @ 1 0 1
 & 3 main baz
 + 3
 @ 141 0 141
 + 2
 @ 141 0 141
 - 2
 @ 1 0 1
 & 4 main foo
 + 4
 @ 142 0 142
 + & Devel::DProf::write
 @ 5 0 5
 - & Devel::DProf::write

(with high value of $ENV{PERL_DPROF_TICKS}).

New $over_* values show the measured overhead of making $over_tests
 calls to the profiler These
values are used by the profiler to
 subtract the overhead from the runtimes.

Lines starting with @ mark the amount of time passed since the
 previous @ line. The numbers
following the @ are integer tick
 counts representing user, system, and real time. Divide these numbers
by the $hz value in the header to get seconds.

Lines starting with & map subroutine identifiers (an integer) to
 subroutine packages and names.
These should only occur once per
 subroutine.

Lines starting with + or - mark normal entering and exit of
 subroutines. The number following is a

Perl version 5.14.2 documentation - Devel::DProf

Page 3http://perldoc.perl.org

reference to a subroutine
 identifier.

Lines starting with * mark where subroutines are entered by goto
 &subr, but note that the return
will still be marked as coming from
 the original sub. The sequence might look like this:

	 + 5
	 * 6
	 - 5

Lines starting with / is like - but mark where subroutines are
 exited by dying. Example:

	 + 5
	 + 6
	 / 6
	 / 5

Finally you might find @ time stamp marks surrounded by + &
 Devel::DProf::write and - &
Devel::DProf::write lines. These 3
 lines are outputted when printing of the mark above actually
consumed
 measurable time.

AUTOLOAD
When Devel::DProf finds a call to an &AUTOLOAD subroutine it looks at the $AUTOLOAD variable to
find the real name of the sub being called. See "Autoloading" in perlsub.

ENVIRONMENT
PERL_DPROF_BUFFER sets size of output buffer in words. Defaults to 2**14.

PERL_DPROF_TICKS sets number of ticks per second on some systems where
 a replacement for
times() is used. Defaults to the value of HZ macro.

PERL_DPROF_OUT_FILE_NAME sets the name of the output file. If not set,
 defaults to tmon.out.

BUGS
Builtin functions cannot be measured by Devel::DProf.

With a newer Perl DProf relies on the fact that the numeric slot of
 $DB::sub contains an address of a
subroutine. Excessive manipulation
 of this variable may overwrite this slot, as in

 $DB::sub = 'current_sub';
 ...
 $addr = $DB::sub + 0;

will set this numeric slot to numeric value of the string current_sub, i.e., to 0. This will cause a
segfault on the exit
 from this subroutine. Note that the first assignment above does not
 change the
numeric slot (it will mark it as invalid, but will not
 write over it).

Another problem is that if a subroutine exits using goto(LABEL),
 last(LABEL) or next(LABEL) then perl
may crash or Devel::DProf will die
 with the error:

 panic: Devel::DProf inconsistent subroutine return

For example, this code will break under Devel::DProf:

 sub foo {
 last FOO;
 }
 FOO: {
 foo();

Perl version 5.14.2 documentation - Devel::DProf

Page 4http://perldoc.perl.org

 }

A pattern like this is used by Test::More's skip() function, for
 example. See perldiag for more details.

SEE ALSO
perl, dprofpp, times(2)

