
Perl version 5.14.2 documentation - Encode::Encoder

Page 1http://perldoc.perl.org

NAME
Encode::Encoder -- Object Oriented Encoder

SYNOPSIS
 use Encode::Encoder;
 # Encode::encode("ISO-8859-1", $data);
 Encode::Encoder->new($data)->iso_8859_1; # OOP way
 # shortcut
 use Encode::Encoder qw(encoder);
 encoder($data)->iso_8859_1;
 # you can stack them!
 encoder($data)->iso_8859_1->base64; # provided base64() is defined
 # you can use it as a decoder as well
 encoder($base64)->bytes('base64')->latin1;
 # stringified
 print encoder($data)->utf8->latin1; # prints the string in latin1
 # numified
 encoder("\x{abcd}\x{ef}g")->utf8 == 6; # true. bytes::length($data)

ABSTRACT
Encode::Encoder allows you to use Encode in an object-oriented
 style. This is not only more intuitive
than a functional approach,
 but also handier when you want to stack encodings. Suppose you want

your UTF-8 string converted to Latin1 then Base64: you can simply say

 my $base64 = encoder($utf8)->latin1->base64;

instead of

 my $latin1 = encode("latin1", $utf8);
 my $base64 = encode_base64($utf8);

or the lazier and more convoluted

 my $base64 = encode_base64(encode("latin1", $utf8));

Description
Here is how to use this module.

There are at least two instance variables stored in a hash reference,
 {data} and {encoding}.

When there is no method, it takes the method name as the name of the
 encoding and
encodes the instance data with encoding. If successful,
 the instance encoding is set
accordingly.

You can retrieve the result via ->data but usually you don't have to because the stringify
operator ("") is overridden to do exactly that.

Predefined Methods
This module predefines the methods below:

$e = Encode::Encoder->new([$data, $encoding]);

returns an encoder object. Its data is initialized with $data if
 present, and its encoding is set to
$encoding if present.

When $encoding is omitted, it defaults to utf8 if $data is already in
 utf8 or "" (empty string)
otherwise.

Perl version 5.14.2 documentation - Encode::Encoder

Page 2http://perldoc.perl.org

encoder()

is an alias of Encode::Encoder->new(). This one is exported on demand.

$e->data([$data])

When $data is present, sets the instance data to $data and returns the
 object itself.
Otherwise, the current instance data is returned.

$e->encoding([$encoding])

When $encoding is present, sets the instance encoding to $encoding and
 returns the object
itself. Otherwise, the current instance encoding is
 returned.

$e->bytes([$encoding])

decodes instance data from $encoding, or the instance encoding if
 omitted. If the conversion
is successful, the instance encoding
 will be set to "".

The name bytes was deliberately picked to avoid namespace tainting
 -- this module may be
used as a base class so method names that appear
 in Encode::Encoding are avoided.

Example: base64 transcoder
This module is designed to work with Encode::Encoding.
 To make the Base64 transcoder example
above really work, you could
 write a module like this:

 package Encode::Base64;
 use base 'Encode::Encoding';
 __PACKAGE__->Define('base64');
 use MIME::Base64;
 sub encode{
 my ($obj, $data) = @_;
 return encode_base64($data);
 }
 sub decode{
 my ($obj, $data) = @_;
 return decode_base64($data);
 }
 1;
 __END__

And your caller module would be something like this:

 use Encode::Encoder;
 use Encode::Base64;

 # now you can really do the following

 encoder($data)->iso_8859_1->base64;
 encoder($base64)->bytes('base64')->latin1;

Operator Overloading
This module overloads two operators, stringify ("") and numify (0+).

Stringify dumps the data inside the object.

Numify returns the number of bytes in the instance data.

They come in handy when you want to print or find the size of data.

Perl version 5.14.2 documentation - Encode::Encoder

Page 3http://perldoc.perl.org

SEE ALSO
Encode, Encode::Encoding

