
Perl version 5.14.2 documentation - File::Fetch

Page 1http://perldoc.perl.org

NAME
File::Fetch - A generic file fetching mechanism

SYNOPSIS
 use File::Fetch;

 ### build a File::Fetch object ###
 my $ff = File::Fetch->new(uri => 'http://some.where.com/dir/a.txt');

 ### fetch the uri to cwd() ###
 my $where = $ff->fetch() or die $ff->error;

 ### fetch the uri to /tmp ###
 my $where = $ff->fetch(to => '/tmp');

 ### parsed bits from the uri ###
 $ff->uri;
 $ff->scheme;
 $ff->host;
 $ff->path;
 $ff->file;

DESCRIPTION
File::Fetch is a generic file fetching mechanism.

It allows you to fetch any file pointed to by a ftp, http, file, or rsync uri by a number of different
means.

See the HOW IT WORKS section further down for details.

ACCESSORS
A File::Fetch object has the following accessors

$ff->uri

The uri you passed to the constructor

$ff->scheme

The scheme from the uri (like 'file', 'http', etc)

$ff->host

The hostname in the uri. Will be empty if host was originally 'localhost' for a 'file://' url.

$ff->vol

On operating systems with the concept of a volume the second element
 of a file:// is
considered to the be volume specification for the file.
 Thus on Win32 this routine returns the
volume, on other operating
 systems this returns nothing.

On Windows this value may be empty if the uri is to a network share, in which case the 'share'
property will be defined. Additionally, volume specifications that use '|' as ':' will be converted
on read to use ':'.

On VMS, which has a volume concept, this field will be empty because VMS
 file specifications
are converted to absolute UNIX format and the volume
 information is transparently included.

$ff->share

On systems with the concept of a network share (currently only Windows) returns the

Perl version 5.14.2 documentation - File::Fetch

Page 2http://perldoc.perl.org

sharename from a file://// url. On other operating systems returns empty.

$ff->path

The path from the uri, will be at least a single '/'.

$ff->file

The name of the remote file. For the local file name, the
 result of $ff->output_file will be used.

$ff->output_file

The name of the output file. This is the same as $ff->file,
 but any query parameters are
stripped off. For example:

 http://example.com/index.html?x=y

would make the output file be index.html rather than index.html?x=y.

METHODS
$ff = File::Fetch->new(uri => 'http://some.where.com/dir/file.txt');

Parses the uri and creates a corresponding File::Fetch::Item object,
 that is ready to be fetched and
returns it.

Returns false on failure.

$where = $ff->fetch([to => /my/output/dir/ | \$scalar])
Fetches the file you requested and returns the full path to the file.

By default it writes to cwd(), but you can override that by specifying the to argument:

 ### file fetch to /tmp, full path to the file in $where
 $where = $ff->fetch(to => '/tmp');

 ### file slurped into $scalar, full path to the file in $where
 ### file is downloaded to a temp directory and cleaned up at exit time
 $where = $ff->fetch(to => \$scalar);

Returns the full path to the downloaded file on success, and false
 on failure.

$ff->error([BOOL])
Returns the last encountered error as string.
 Pass it a true value to get the Carp::longmess()
output instead.

HOW IT WORKS
File::Fetch is able to fetch a variety of uris, by using several
 external programs and modules.

Below is a mapping of what utilities will be used in what order
 for what schemes, if available:

 file => LWP, lftp, file
 http => LWP, HTTP::Lite, wget, curl, lftp, fetch, lynx, iosock
 ftp => LWP, Net::FTP, wget, curl, lftp, fetch, ncftp, ftp
 rsync => rsync

If you'd like to disable the use of one or more of these utilities
 and/or modules, see the $BLACKLIST
variable further down.

If a utility or module isn't available, it will be marked in a cache
 (see the $METHOD_FAIL variable
further down), so it will not be
 tried again. The fetch method will only fail when all options are

exhausted, and it was not able to retrieve the file.

Perl version 5.14.2 documentation - File::Fetch

Page 3http://perldoc.perl.org

The fetch utility is available on FreeBSD. NetBSD and Dragonfly BSD
 may also have it from
pkgsrc. We only check for fetch on those three platforms.

iosock is a very limited IO::Socket::INET based mechanism for
 retrieving http schemed urls. It
doesn't follow redirects for instance.

A special note about fetching files from an ftp uri:

By default, all ftp connections are done in passive mode. To change
 that, see the $FTP_PASSIVE
variable further down.

Furthermore, ftp uris only support anonymous connections, so no
 named user/password pair can be
passed along.

/bin/ftp is blacklisted by default; see the $BLACKLIST variable
 further down.

GLOBAL VARIABLES
The behaviour of File::Fetch can be altered by changing the following
 global variables:

$File::Fetch::FROM_EMAIL
This is the email address that will be sent as your anonymous ftp
 password.

Default is File-Fetch@example.com.

$File::Fetch::USER_AGENT
This is the useragent as LWP will report it.

Default is File::Fetch/$VERSION.

$File::Fetch::FTP_PASSIVE
This variable controls whether the environment variable FTP_PASSIVE
 and any passive switches to
commandline tools will be set to true.

Default value is 1.

Note: When $FTP_PASSIVE is true, ncftp will not be used to fetch
 files, since passive mode can
only be set interactively for this binary

$File::Fetch::TIMEOUT
When set, controls the network timeout (counted in seconds).

Default value is 0.

$File::Fetch::WARN
This variable controls whether errors encountered internally by File::Fetch should be carp'd or
not.

Set to false to silence warnings. Inspect the output of the error()
 method manually to see what
went wrong.

Defaults to true.

$File::Fetch::DEBUG
This enables debugging output when calling commandline utilities to
 fetch files.
 This also enables
Carp::longmess errors, instead of the regular carp errors.

Good for tracking down why things don't work with your particular
 setup.

Default is 0.

Perl version 5.14.2 documentation - File::Fetch

Page 4http://perldoc.perl.org

$File::Fetch::BLACKLIST
This is an array ref holding blacklisted modules/utilities for fetching
 files with.

To disallow the use of, for example, LWP and Net::FTP, you could
 set $File::Fetch::BLACKLIST to:

 $File::Fetch::BLACKLIST = [qw|lwp netftp|]

The default blacklist is [qw|ftp|], as /bin/ftp is rather unreliable.

See the note on MAPPING below.

$File::Fetch::METHOD_FAIL
This is a hashref registering what modules/utilities were known to fail
 for fetching files (mostly
because they weren't installed).

You can reset this cache by assigning an empty hashref to it, or
 individually remove keys.

See the note on MAPPING below.

MAPPING
Here's a quick mapping for the utilities/modules, and their names for
 the $BLACKLIST,
$METHOD_FAIL and other internal functions.

 LWP => lwp
 HTTP::Lite => httplite
 HTTP::Tiny => httptiny
 Net::FTP => netftp
 wget => wget
 lynx => lynx
 ncftp => ncftp
 ftp => ftp
 curl => curl
 rsync => rsync
 lftp => lftp
 fetch => fetch
 IO::Socket => iosock

FREQUENTLY ASKED QUESTIONS
So how do I use a proxy with File::Fetch?

File::Fetch currently only supports proxies with LWP::UserAgent.
 You will need to set your
environment variables accordingly. For
 example, to use an ftp proxy:

 $ENV{ftp_proxy} = 'foo.com';

Refer to the LWP::UserAgent manpage for more details.

I used 'lynx' to fetch a file, but its contents is all wrong!
lynx can only fetch remote files by dumping its contents to STDOUT,
 which we in turn capture. If that
content is a 'custom' error file
 (like, say, a 404 handler), you will get that contents instead.

Sadly, lynx doesn't support any options to return a different exit
 code on non-200 OK status, giving
us no way to tell the difference
 between a 'successful' fetch and a custom error page.

Therefor, we recommend to only use lynx as a last resort. This is why it is at the back of our list of
methods to try as well.

Perl version 5.14.2 documentation - File::Fetch

Page 5http://perldoc.perl.org

Files I'm trying to fetch have reserved characters or non-ASCII characters in them. What do I
do?

File::Fetch is relatively smart about things. When trying to write a file to disk, it removes the
query parameters (see the output_file method for details) from the file name before creating

it. In most cases this suffices.

If you have any other characters you need to escape, please install the URI::Escape module from
CPAN, and pre-encode your URI before
 passing it to File::Fetch. You can read about the details
of URIs and URI encoding here:

 http://www.faqs.org/rfcs/rfc2396.html

TODO
Implement $PREFER_BIN

To indicate to rather use commandline tools than modules

BUG REPORTS
Please report bugs or other issues to <bug-file-fetch@rt.cpan.org<gt>.

AUTHOR
This module by Jos Boumans <kane@cpan.org>.

COPYRIGHT
This library is free software; you may redistribute and/or modify it under the same terms as Perl itself.

