
Perl version 5.14.2 documentation - Net::Ping

Page 1http://perldoc.perl.org

NAME
Net::Ping - check a remote host for reachability

SYNOPSIS
 use Net::Ping;

 $p = Net::Ping->new();
 print "$host is alive.\n" if $p->ping($host);
 $p->close();

 $p = Net::Ping->new("icmp");
 $p->bind($my_addr); # Specify source interface of pings
 foreach $host (@host_array)
 {
 print "$host is ";
 print "NOT " unless $p->ping($host, 2);
 print "reachable.\n";
 sleep(1);
 }
 $p->close();

 $p = Net::Ping->new("tcp", 2);
 # Try connecting to the www port instead of the echo port
 $p->port_number(getservbyname("http", "tcp"));
 while ($stop_time > time())
 {
 print "$host not reachable ", scalar(localtime()), "\n"
 unless $p->ping($host);
 sleep(300);
 }
 undef($p);

 # Like tcp protocol, but with many hosts
 $p = Net::Ping->new("syn");
 $p->port_number(getservbyname("http", "tcp"));
 foreach $host (@host_array) {
 $p->ping($host);
 }
 while (($host,$rtt,$ip) = $p->ack) {
 print "HOST: $host [$ip] ACKed in $rtt seconds.\n";
 }

 # High precision syntax (requires Time::HiRes)
 $p = Net::Ping->new();
 $p->hires();
 ($ret, $duration, $ip) = $p->ping($host, 5.5);
 printf("$host [ip: $ip] is alive (packet return time: %.2f ms)\n", 1000
 * $duration)
 if $ret;
 $p->close();

 # For backward compatibility
 print "$host is alive.\n" if pingecho($host);

Perl version 5.14.2 documentation - Net::Ping

Page 2http://perldoc.perl.org

DESCRIPTION
This module contains methods to test the reachability of remote
 hosts on a network. A ping object is
first created with optional
 parameters, a variable number of hosts may be pinged multiple
 times and
then the connection is closed.

You may choose one of six different protocols to use for the
 ping. The "tcp" protocol is the default.
Note that a live remote host
 may still fail to be pingable by one or more of these protocols. For

example, www.microsoft.com is generally alive but not "icmp" pingable.

With the "tcp" protocol the ping() method attempts to establish a
 connection to the remote host's echo
port. If the connection is
 successfully established, the remote host is considered reachable. No
 data is
actually echoed. This protocol does not require any special
 privileges but has higher overhead than
the "udp" and "icmp" protocols.

Specifying the "udp" protocol causes the ping() method to send a udp
 packet to the remote host's
echo port. If the echoed packet is
 received from the remote host and the received packet contains the
same data as the packet that was sent, the remote host is considered
 reachable. This protocol does
not require any special privileges.
 It should be borne in mind that, for a udp ping, a host
 will be
reported as unreachable if it is not running the
 appropriate echo service. For Unix-like systems see
inetd(8)
 for more information.

If the "icmp" protocol is specified, the ping() method sends an icmp
 echo message to the remote host,
which is what the UNIX ping program
 does. If the echoed message is received from the remote host
and
 the echoed information is correct, the remote host is considered
 reachable. Specifying the "icmp"
protocol requires that the program
 be run as root or that the program be setuid to root.

If the "external" protocol is specified, the ping() method attempts to
 use the Net::Ping::External
module to ping the remote host. Net::Ping::External interfaces with your system's default ping

utility to perform the ping, and generally produces relatively
 accurate results. If
Net::Ping::External if not installed on your
 system, specifying the "external" protocol will result
in an error.

If the "syn" protocol is specified, the ping() method will only
 send a TCP SYN packet to the remote
host then immediately return.
 If the syn packet was sent successfully, it will return a true value,

otherwise it will return false. NOTE: Unlike the other protocols,
 the return value does NOT determine if
the remote host is alive or
 not since the full TCP three-way handshake may not have completed
 yet.
The remote host is only considered reachable if it receives
 a TCP ACK within the timeout specified.
To begin waiting for the
 ACK packets, use the ack() method as explained below. Use the
 "syn"
protocol instead the "tcp" protocol to determine reachability
 of multiple destinations simultaneously by
sending parallel TCP
 SYN packets. It will not block while testing each remote host.
 demo/fping is
provided in this distribution to demonstrate the
 "syn" protocol as an example.
 This protocol does not
require any special privileges.

Functions
Net::Ping->new([$proto [, $def_timeout [, $bytes [, $device [, $tos]]]]]);

Create a new ping object. All of the parameters are optional. $proto
 specifies the protocol to
use when doing a ping. The current choices
 are "tcp", "udp", "icmp", "stream", "syn", or
"external".
 The default is "tcp".

If a default timeout ($def_timeout) in seconds is provided, it is used
 when a timeout is not
given to the ping() method (below). The timeout
 must be greater than 0 and the default, if not
specified, is 5 seconds.

If the number of data bytes ($bytes) is given, that many data bytes
 are included in the ping
packet sent to the remote host. The number of
 data bytes is ignored if the protocol is "tcp".
The minimum (and
 default) number of data bytes is 1 if the protocol is "udp" and 0
 otherwise.
The maximum number of data bytes that can be specified is
 1024.

If $device is given, this device is used to bind the source endpoint
 before sending the ping

Perl version 5.14.2 documentation - Net::Ping

Page 3http://perldoc.perl.org

packet. I believe this only works with
 superuser privileges and with udp and icmp protocols at
this time.

If $tos is given, this ToS is configured into the socket.

$p->ping($host [, $timeout]);

Ping the remote host and wait for a response. $host can be either the
 hostname or the IP
number of the remote host. The optional timeout
 must be greater than 0 seconds and defaults
to whatever was specified
 when the ping object was created. Returns a success flag. If the

hostname cannot be found or there is a problem with the IP number, the
 success flag returned
will be undef. Otherwise, the success flag will
 be 1 if the host is reachable and 0 if it is not. For
most practical
 purposes, undef and 0 and can be treated as the same case. In array
 context,
the elapsed time as well as the string form of the ip the
 host resolved to are also returned. The
elapsed time value will
 be a float, as returned by the Time::HiRes::time() function, if hires()
 has
been previously called, otherwise it is returned as an integer.

$p->source_verify({ 0 | 1 });

Allows source endpoint verification to be enabled or disabled.
 This is useful for those remote
destinations with multiples
 interfaces where the response may not originate from the same

endpoint that the original destination endpoint was sent to.
 This only affects udp and icmp
protocol pings.

This is enabled by default.

$p->service_check({ 0 | 1 });

Set whether or not the connect behavior should enforce
 remote service availability as well as
reachability. Normally,
 if the remote server reported ECONNREFUSED, it must have been

reachable because of the status packet that it reported.
 With this option enabled, the full
three-way tcp handshake
 must have been established successfully before it will
 claim it is
reachable. NOTE: It still does nothing more
 than connect and disconnect. It does not speak
any protocol
 (i.e., HTTP or FTP) to ensure the remote server is sane in
 any way. The remote
server CPU could be grinding to a halt
 and unresponsive to any clients connecting, but if the
kernel
 throws the ACK packet, it is considered alive anyway. To
 really determine if the server
is responding well would be
 application specific and is beyond the scope of Net::Ping.
 For udp
protocol, enabling this option demands that the
 remote server replies with the same udp data
that it was sent
 as defined by the udp echo service.

This affects the "udp", "tcp", and "syn" protocols.

This is disabled by default.

$p->tcp_service_check({ 0 | 1 });

Deprecated method, but does the same as service_check() method.

$p->hires({ 0 | 1 });

Causes this module to use Time::HiRes module, allowing milliseconds
 to be returned by
subsequent calls to ping().

This is disabled by default.

$p->bind($local_addr);

Sets the source address from which pings will be sent. This must be
 the address of one of the
interfaces on the local host. $local_addr
 may be specified as a hostname or as a text IP
address such as
 "192.168.1.1".

If the protocol is set to "tcp", this method may be called any
 number of times, and each call to
the ping() method (below) will use
 the most recent $local_addr. If the protocol is "icmp" or
"udp",
 then bind() must be called at most once per object, and (if it is
 called at all) must be
called before the first call to ping() for that
 object.

Perl version 5.14.2 documentation - Net::Ping

Page 4http://perldoc.perl.org

$p->open($host);

When you are using the "stream" protocol, this call pre-opens the
 tcp socket. It's only
necessary to do this if you want to
 provide a different timeout when creating the connection, or
remove the overhead of establishing the connection from the
 first ping. If you don't call
open(), the connection is
 automatically opened the first time ping() is called.
 This call
simply does nothing if you are using any protocol other
 than stream.

$p->ack([$host]);

When using the "syn" protocol, use this method to determine
 the reachability of the remote
host. This method is meant
 to be called up to as many times as ping() was called. Each
 call
returns the host (as passed to ping()) that came back
 with the TCP ACK. The order in which
the hosts are returned
 may not necessarily be the same order in which they were
 SYN queued
using the ping() method. If the timeout is
 reached before the TCP ACK is received, or if the
remote
 host is not listening on the port attempted, then the TCP
 connection will not be
established and ack() will return
 undef. In list context, the host, the ack time, and the
 dotted ip
string will be returned instead of just the host.
 If the optional $host argument is specified, the
return
 value will be pertaining to that host only.
 This call simply does nothing if you are using
any protocol
 other than syn.

$p->nack($failed_ack_host);

The reason that host $failed_ack_host did not receive a
 valid ACK. Useful to find out why
when ack($fail_ack_host)
 returns a false value.

$p->close();

Close the network connection for this ping object. The network
 connection is also closed by
"undef $p". The network connection is
 automatically closed if the ping object goes out of
scope (e.g. $p is
 local to a subroutine and you leave the subroutine).

$p->port_number([$port_number])

When called with a port number, the port number used to ping is set to
 $port_number rather
than using the echo port. It also has the effect
 of calling $p->service_check(1) causing a
ping to return a successful
 response only if that specific port is accessible. This function
returns
 the value of the port that ping() will connect to.

pingecho($host [, $timeout]);

To provide backward compatibility with the previous version of
 Net::Ping, a pingecho()
subroutine is available with the same
 functionality as before. pingecho() uses the tcp protocol.
The
 return values and parameters are the same as described for the ping()
 method. This
subroutine is obsolete and may be removed in a future
 version of Net::Ping.

NOTES
There will be less network overhead (and some efficiency in your
 program) if you specify either the
udp or the icmp protocol. The tcp
 protocol will generate 2.5 times or more traffic for each ping than

either udp or icmp. If many hosts are pinged frequently, you may wish
 to implement a small wait (e.g.
25ms or more) between each ping to
 avoid flooding your network with packets.

The icmp protocol requires that the program be run as root or that it
 be setuid to root. The other
protocols do not require special
 privileges, but not all network devices implement tcp or udp echo.

Local hosts should normally respond to pings within milliseconds.
 However, on a very congested
network it may take up to 3 seconds or
 longer to receive an echo packet from the remote host. If the
timeout
 is set too low under these conditions, it will appear that the remote
 host is not reachable
(which is almost the truth).

Reachability doesn't necessarily mean that the remote host is actually
 functioning beyond its ability to
echo packets. tcp is slightly better
 at indicating the health of a system than icmp because it uses more
of the networking stack to respond.

Perl version 5.14.2 documentation - Net::Ping

Page 5http://perldoc.perl.org

Because of a lack of anything better, this module uses its own
 routines to pack and unpack ICMP
packets. It would be better for a
 separate module to be written which understands all of the different

kinds of ICMP packets.

INSTALL
The latest source tree is available via cvs:

 cvs -z3 -q -d
:pserver:anonymous@cvs.roobik.com.:/usr/local/cvsroot/freeware checkout
Net-Ping
 cd Net-Ping

The tarball can be created as follows:

 perl Makefile.PL ; make ; make dist

The latest Net::Ping release can be found at CPAN:

 $CPAN/modules/by-module/Net/

1) Extract the tarball

 gtar -zxvf Net-Ping-xxxx.tar.gz
 cd Net-Ping-xxxx

2) Build:

 make realclean
 perl Makefile.PL
 make
 make test

3) Install

 make install

Or install it RPM Style:

 rpm -ta SOURCES/Net-Ping-xxxx.tar.gz

 rpm -ih RPMS/noarch/perl-Net-Ping-xxxx.rpm

BUGS
For a list of known issues, visit:

https://rt.cpan.org/NoAuth/Bugs.html?Dist=Net-Ping

To report a new bug, visit:

https://rt.cpan.org/NoAuth/ReportBug.html?Queue=Net-Ping

AUTHORS
 Current maintainer:
 bbb@cpan.org (Rob Brown)

 External protocol:

Perl version 5.14.2 documentation - Net::Ping

Page 6http://perldoc.perl.org

 colinm@cpan.org (Colin McMillen)

 Stream protocol:
 bronson@trestle.com (Scott Bronson)

 Original pingecho():
 karrer@bernina.ethz.ch (Andreas Karrer)
 pmarquess@bfsec.bt.co.uk (Paul Marquess)

 Original Net::Ping author:
 mose@ns.ccsn.edu (Russell Mosemann)

COPYRIGHT
Copyright (c) 2002-2003, Rob Brown. All rights reserved.

Copyright (c) 2001, Colin McMillen. All rights reserved.

This program is free software; you may redistribute it and/or
 modify it under the same terms as Perl
itself.

