
Perl version 5.14.2 documentation - Object::Accessor

Page 1http://perldoc.perl.org

NAME
Object::Accessor - interface to create per object accessors

SYNOPSIS
 ### using the object
 $obj = Object::Accessor->new; # create object
 $obj = Object::Accessor->new(@list); # create object with accessors
 $obj = Object::Accessor->new(\%h); # create object with accessors
 # and their allow handlers

 $bool = $obj->mk_accessors('foo'); # create accessors
 $bool = $obj->mk_accessors(# create accessors with input
 {foo => ALLOW_HANDLER}); # validation

 $bool = $obj->mk_aliases(# create an alias to an existing
 alias_name => 'method'); # method name

 $clone = $obj->mk_clone; # create a clone of original
 # object without data
 $bool = $obj->mk_flush; # clean out all data

 @list = $obj->ls_accessors; # retrieves a list of all
 # accessors for this object

 $bar = $obj->foo('bar'); # set 'foo' to 'bar'
 $bar = $obj->foo(); # retrieve 'bar' again

 $sub = $obj->can('foo'); # retrieve coderef for
 # 'foo' accessor
 $bar = $sub->('bar'); # set 'foo' via coderef
 $bar = $sub->(); # retrieve 'bar' by coderef

 ### using the object as base class
 package My::Class;
 use base 'Object::Accessor';

 $obj = My::Class->new; # create base object
 $bool = $obj->mk_accessors('foo'); # create accessors, etc...

 ### make all attempted access to non-existent accessors fatal
 ### (defaults to false)
 $Object::Accessor::FATAL = 1;

 ### enable debugging
 $Object::Accessor::DEBUG = 1;

 ### advanced usage -- callbacks
 { my $obj = Object::Accessor->new('foo');
 $obj->register_callback(sub { ... });

 $obj->foo(1); # these calls invoke the callback you registered
 $obj->foo() # which allows you to change the get/set

Perl version 5.14.2 documentation - Object::Accessor

Page 2http://perldoc.perl.org

 # behaviour and what is returned to the caller.
 }

 ### advanced usage -- lvalue attributes
 { my $obj = Object::Accessor::Lvalue->new('foo');
 print $obj->foo = 1; # will print 1
 }

 ### advanced usage -- scoped attribute values
 { my $obj = Object::Accessor->new('foo');

 $obj->foo(1);
 print $obj->foo; # will print 1

 ### bind the scope of the value of attribute 'foo'
 ### to the scope of '$x' -- when $x goes out of
 ### scope, 'foo's previous value will be restored
 { $obj->foo(2 => \my $x);
 print $obj->foo, ' ', $x; # will print '2 2'
 }
 print $obj->foo; # will print 1
 }

DESCRIPTION
Object::Accessor provides an interface to create per object
 accessors (as opposed to per Class
accessors, as, for example, Class::Accessor provides).

You can choose to either subclass this module, and thus using its
 accessors on your own module, or
to store an Object::Accessor
 object inside your own object, and access the accessors from there.
See the SYNOPSIS for examples.

METHODS
$object = Object::Accessor->new([ARGS]);

Creates a new (and empty) Object::Accessor object. This method is
 inheritable.

Any arguments given to new are passed straight to mk_accessors.

If you want to be able to assign to your accessors as if they
 were lvalues, you should create your
object in the Object::Accessor::Lvalue namespace instead. See the section
 on LVALUE
ACCESSORS below.

$bool = $object->mk_accessors(@ACCESSORS | \%ACCESSOR_MAP);
Creates a list of accessors for this object (and NOT for other ones
 in the same class!).
 Will not clobber
existing data, so if an accessor already exists,
 requesting to create again is effectively a no-op.

When providing a hashref as argument, rather than a normal list,
 you can specify a list of key/value
pairs of accessors and their
 respective input validators. The validators can be anything that
Params::Check's allow function accepts. Please see its manpage
 for details.

For example:

 $object->mk_accessors({
 foo => qr/^\d+$/, # digits only
 bar => [0,1], # booleans
 zot => \&my_sub # a custom verification sub
 });

Perl version 5.14.2 documentation - Object::Accessor

Page 3http://perldoc.perl.org

Returns true on success, false on failure.

Accessors that are called on an object, that do not exist return undef by default, but you can make
this a fatal error by setting the
 global variable $FATAL to true. See the section on GLOBAL

VARIABLES for details.

Note that you can bind the values of attributes to a scope. This allows
 you to temporarily change a
value of an attribute, and have it's original value restored up on the end of it's bound variable's scope;

For example, in this snippet of code, the attribute foo will temporarily be set to 2, until the end of the
scope of $x, at which point the original value of 1 will be restored.

 my $obj = Object::Accessor->new;

 $obj->mk_accessors('foo');
 $obj->foo(1);
 print $obj->foo; # will print 1

 ### bind the scope of the value of attribute 'foo'
 ### to the scope of '$x' -- when $x goes out of
 ### scope, 'foo' previous value will be restored
 { $obj->foo(2 => \my $x);
 print $obj->foo, ' ', $x; # will print '2 2'
 }
 print $obj->foo; # will print 1

Note that all accessors are read/write for everyone. See the TODO
 section for details.

@list = $self->ls_accessors;
Returns a list of accessors that are supported by the current object.
 The corresponding coderefs can
be retrieved by passing this list one
 by one to the can method.

$ref = $self->ls_allow(KEY)
Returns the allow handler for the given key, which can be used with Params::Check's allow()
handler. If there was no allow handler
 specified, an allow handler that always returns true will be
returned.

$bool = $self->mk_aliases(alias => method, [alias2 => method2, ...]);
Creates an alias for a given method name. For all intents and purposes,
 these two accessors are now
identical for this object. This is akin to
 doing the following on the symbol table level:

 *alias = *method

This allows you to do the following:

 $self->mk_accessors('foo');
 $self->mk_aliases(bar => 'foo');

 $self->bar(42);
 print $self->foo; # will print 42

$clone = $self->mk_clone;
Makes a clone of the current object, which will have the exact same
 accessors as the current object,
but without the data stored in them.

Perl version 5.14.2 documentation - Object::Accessor

Page 4http://perldoc.perl.org

$bool = $self->mk_flush;
Flushes all the data from the current object; all accessors will be
 set back to their default state of
undef.

Returns true on success and false on failure.

$bool = $self->mk_verify;
Checks if all values in the current object are in accordance with their
 own allow handler. Specifically
useful to check if an empty initialised
 object has been filled with values satisfying their own allow
criteria.

$bool = $self->register_callback(sub { ... });
This method allows you to register a callback, that is invoked
 every time an accessor is called. This
allows you to munge input
 data, access external data stores, etc.

You are free to return whatever you wish. On a set call, the
 data is even stored in the object.

Below is an example of the use of a callback.

 $object->some_method("some_value");

 my $callback = sub {
 my $self = shift; # the object
 my $meth = shift; # "some_method"
 my $val = shift; # ["some_value"]
 # could be undef -- check 'exists';
 # if scalar @$val is empty, it was a 'get'

 # your code here

 return $new_val; # the value you want to be set/returned
 }

To access the values stored in the object, circumventing the
 callback structure, you should use the
___get and ___set methods
 documented further down.

$bool = $self->can(METHOD_NAME)
This method overrides UNIVERAL::can in order to provide coderefs to
 accessors which are loaded
on demand. It will behave just like UNIVERSAL::can where it can -- returning a class method if it
exists,
 or a closure pointing to a valid accessor of this particular object.

You can use it as follows:

 $sub = $object->can('some_accessor'); # retrieve the coderef
 $sub->('foo'); # 'some_accessor' now set
 # to 'foo' for $object
 $foo = $sub->(); # retrieve the contents
 # of 'some_accessor'

See the SYNOPSIS for more examples.

$val = $self->___get(METHOD_NAME);
Method to directly access the value of the given accessor in the
 object. It circumvents all calls to allow
checks, callbacks, etc.

Use only if you Know What You Are Doing! General usage for this functionality would be in your

Perl version 5.14.2 documentation - Object::Accessor

Page 5http://perldoc.perl.org

own custom callbacks.

$bool = $self->___set(METHOD_NAME => VALUE);
Method to directly set the value of the given accessor in the
 object. It circumvents all calls to allow
checks, callbacks, etc.

Use only if you Know What You Are Doing! General usage for this functionality would be in your
own custom callbacks.

$bool = $self->___alias(ALIAS => METHOD);
Method to directly alias one accessor to another for
 this object. It circumvents all sanity checks, etc.

Use only if you Know What You Are Doing!

LVALUE ACCESSORS
Object::Accessor supports lvalue attributes as well. To enable
 these, you should create your
objects in the designated namespace, Object::Accessor::Lvalue. For example:

 my $obj = Object::Accessor::Lvalue->new('foo');
 $obj->foo += 1;
 print $obj->foo;

will actually print 1 and work as expected. Since this is an
 optional feature, that's not desirable in all
cases, we require
 you to explicitly use the Object::Accessor::Lvalue class.

Doing the same on the standard Object>Accessor> class would
 generate the following code &
errors:

 my $obj = Object::Accessor->new('foo');
 $obj->foo += 1;

 Can't modify non-lvalue subroutine call

Note that lvalue support on AUTOLOAD routines is a perl 5.8.x feature. See perldoc perl58delta
for details.

CAVEATS
* Allow handlers

Due to the nature of lvalue subs, we never get access to the
 value you are assigning, so
we can not check it against your allow
 handler. Allow handlers are therefor unsupported under
lvalue
 conditions.

See perldoc perlsub for details.

* Callbacks

Due to the nature of lvalue subs, we never get access to the
 value you are assigning, so
we can not check provide this value
 to your callback. Furthermore, we can not distinguish
between
 a get and a set call. Callbacks are therefor unsupported under lvalue conditions.

See perldoc perlsub for details.

GLOBAL VARIABLES
$Object::Accessor::FATAL

Set this variable to true to make all attempted access to non-existent
 accessors be fatal.
 This defaults
to false.

Perl version 5.14.2 documentation - Object::Accessor

Page 6http://perldoc.perl.org

$Object::Accessor::DEBUG
Set this variable to enable debugging output.
 This defaults to false.

TODO
Create read-only accessors

Currently all accessors are read/write for everyone. Perhaps a future
 release should make it possible
to have read-only accessors as well.

CAVEATS
If you use codereferences for your allow handlers, you will not be able
 to freeze the data structures
using Storable.

Due to a bug in storable (until at least version 2.15), qr// compiled regexes also don't de-serialize
properly. Although this bug has been reported, you should be aware of this issue when serializing
your objects.

You can track the bug here:

 http://rt.cpan.org/Ticket/Display.html?id=1827

BUG REPORTS
Please report bugs or other issues to <bug-object-accessor@rt.cpan.org>.

AUTHOR
This module by Jos Boumans <kane@cpan.org>.

COPYRIGHT
This library is free software; you may redistribute and/or modify it under the same terms as Perl itself.

