
Perl version 5.14.2 documentation - Pod::Simple::HTMLBatch

Page 1http://perldoc.perl.org

NAME
Pod::Simple::HTMLBatch - convert several Pod files to several HTML files

SYNOPSIS
 perl -MPod::Simple::HTMLBatch -e 'Pod::Simple::HTMLBatch::go' in out

DESCRIPTION
This module is used for running batch-conversions of a lot of HTML
 documents

This class is NOT a subclass of Pod::Simple::HTML
 (nor of bad old Pod::Html) -- although it uses

Pod::Simple::HTML for doing the conversion of each document.

The normal use of this class is like so:

 use Pod::Simple::HTMLBatch;
 my $batchconv = Pod::Simple::HTMLBatch->new;
 $batchconv->some_option(some_value);
 $batchconv->some_other_option(some_other_value);
 $batchconv->batch_convert(\@search_dirs, $output_dir);

FROM THE COMMAND LINE
Note that this class also provides
 (but does not export) the function Pod::Simple::HTMLBatch::go.

This is basically just a shortcut for Pod::Simple::HTMLBatch->batch_convert(@ARGV).
 It's
meant to be handy for calling from the command line.

However, the shortcut requires that you specify exactly two command-line
 arguments, indirs and
outdir.

Example:

 % mkdir out_html
 % perl -MPod::Simple::HTMLBatch -e Pod::Simple::HTMLBatch::go @INC
out_html
 (to convert the pod from Perl's @INC
 files under the directory ../htmlversion)

(Note that the command line there contains a literal atsign-I-N-C. This
 is handled as a special case by
batch_convert, in order to save you having
 to enter the odd-looking "" as the first command-line
parameter when you
 mean "just use whatever's in @INC".)

Example:

 % mkdir ../seekrut
 % chmod og-rx ../seekrut
 % perl -MPod::Simple::HTMLBatch -e Pod::Simple::HTMLBatch::go .
../htmlversion
 (to convert the pod under the current dir into HTML
 files under the directory ../htmlversion)

Example:

 % perl -MPod::Simple::HTMLBatch -e Pod::Simple::HTMLBatch::go happydocs .
 (to convert all pod from happydocs into the current directory)

Perl version 5.14.2 documentation - Pod::Simple::HTMLBatch

Page 2http://perldoc.perl.org

MAIN METHODS
$batchconv = Pod::Simple::HTMLBatch->new;

This TODO

$batchconv->batch_convert(indirs, outdir);

this TODO

$batchconv->batch_convert(undef , ...);

$batchconv->batch_convert(q{@INC}, ...);

These two values for indirs specify that the normal Perl @INC

$batchconv->batch_convert(\@dirs , ...);

This specifies that the input directories are the items in
 the arrayref \@dirs.

$batchconv->batch_convert("somedir" , ...);

This specifies that the director "somedir" is the input.
 (This can be an absolute or relative path,
it doesn't matter.)

A common value you might want would be just "." for the current
 directory:

 $batchconv->batch_convert("." , ...);

$batchconv->batch_convert('somedir:someother:also' , ...);

This specifies that you want the dirs "somedir", "someother", and "also"
 scanned, just as if
you'd passed the arrayref [qw(somedir someother also)]. Note that a ":"-separator is
normal
 under Unix, but Under MSWin, you'll need 'somedir;someother;also'
 instead,
since the pathsep on MSWin is ";" instead of ":". (And that is because ":" often comes up in
paths, like "c:/perl/lib".)

(Exactly what separator character should be used, is gotten from
$Config::Config{'path_sep'}, via the Config module.)

$batchconv->batch_convert(... , undef);

This specifies that you want the HTML output to go into the current
 directory.

(Note that a missing or undefined value means a different thing in
 the first slot than in the
second. That's so that batch_convert()
 with no arguments (or undef arguments) means
"go from @INC, into
 the current directory.)

$batchconv->batch_convert(... , 'somedir');

This specifies that you want the HTML output to go into the
 directory 'somedir'.
 (This can be
an absolute or relative path, it doesn't matter.)

Note that you can also call batch_convert as a class method,
 like so:

 Pod::Simple::HTMLBatch->batch_convert(...);

That is just short for this:

 Pod::Simple::HTMLBatch-> new-> batch_convert(...);

That is, it runs a conversion with default options, for
 whatever inputdirs and output dir you specify.

ACCESSOR METHODS
The following are all accessor methods -- that is, they don't do anything
 on their own, but just alter the
contents of the conversion object,
 which comprises the options for this particular batch conversion.

We show the "put" form of the accessors below (i.e., the syntax you use
 for setting the accessor to a

Perl version 5.14.2 documentation - Pod::Simple::HTMLBatch

Page 3http://perldoc.perl.org

specific value). But you can also
 call each method with no parameters to get its current value. For

example, $self->contents_file() returns the current value of
 the contents_file attribute.

$batchconv->verbose(nonnegative_integer);

This controls how verbose to be during batch conversion, as far as
 notes to STDOUT (or
whatever is select'd) about how the conversion
 is going. If 0, no progress information is
printed.
 If 1 (the default value), some progress information is printed.
 Higher values print more
information.

$batchconv->index(true-or-false);

This controls whether or not each HTML page is liable to have a little
 table of contents at the
top (which we call an "index" for historical
 reasons). This is true by default.

$batchconv->contents_file(filename);

If set, should be the name of a file (in the output directory)
 to write the HTML index to. The
default value is "index.html".
 If you set this to a false value, no contents file will be written.

$batchconv->contents_page_start(HTML_string);

This specifies what string should be put at the beginning of
 the contents page.
 The default is a
string more or less like this:

 <html>
 <head><title>Perl Documentation</title></head>
 <body class='contentspage'>
 <h1>Perl Documentation</h1>

$batchconv->contents_page_end(HTML_string);

This specifies what string should be put at the end of the contents page.
 The default is a string
more or less like this:

 <p class='contentsfooty'>Generated by
 Pod::Simple::HTMLBatch v3.01 under Perl v5.008

At Fri May 14 22:26:42 2004 GMT,
 which is Fri May 14 14:26:42 2004 local time.</p>

$batchconv->add_css($url);

TODO

$batchconv->add_javascript($url);

TODO

$batchconv->css_flurry(true-or-false);

If true (the default value), we autogenerate some CSS files in the
 output directory, and set our
HTML files to use those.
 TODO: continue

$batchconv->javascript_flurry(true-or-false);

If true (the default value), we autogenerate a JavaScript in the
 output directory, and set our
HTML files to use it. Currently,
 the JavaScript is used only to get the browser to remember
what
 stylesheet it prefers.
 TODO: continue

$batchconv->no_contents_links(true-or-false);

TODO

$batchconv->html_render_class(classname);

This sets what class is used for rendering the files.
 The default is "Pod::Simple::HTML". If you
set it to something else,
 it should probably be a subclass of Pod::Simple::HTML, and you

Perl version 5.14.2 documentation - Pod::Simple::HTMLBatch

Page 4http://perldoc.perl.org

should require or use that class so that's it's loaded before
 Pod::Simple::HTMLBatch tries
loading it.

$batchconv->search_class(classname);

This sets what class is used for searching for the files.
 The default is "Pod::Simple::Search". If
you set it to something else,
 it should probably be a subclass of Pod::Simple::Search, and you
should require or use that class so that's it's loaded before
 Pod::Simple::HTMLBatch tries
loading it.

NOTES ON CUSTOMIZATION
TODO

 call add_css($someurl) to add stylesheet as alternate
 call add_css($someurl,1) to add as primary stylesheet

 call add_javascript

 subclass Pod::Simple::HTML and set $batchconv->html_render_class to
 that classname
 and maybe override
 $page->batch_mode_page_object_init($self, $module, $infile, $outfile,
$depth)
 or maybe override
 $batchconv->batch_mode_page_object_init($page, $module, $infile,
$outfile, $depth)
 subclass Pod::Simple::Search and set $batchconv->search_class to
 that classname

ASK ME!
If you want to do some kind of big pod-to-HTML version with some
 particular kind of option that you
don't see how to achieve using this
 module, email me (sburke@cpan.org) and I'll probably have a
good idea
 how to do it. For reasons of concision and energetic laziness, some
 methods and options in
this module (and the dozen modules it depends on)
 are undocumented; but one of those
undocumented bits might be just what
 you're looking for.

SEE ALSO
Pod::Simple, Pod::Simple::HTMLBatch, perlpod, perlpodspec

SUPPORT
Questions or discussion about POD and Pod::Simple should be sent to the
 pod-people@perl.org mail
list. Send an empty email to
 pod-people-subscribe@perl.org to subscribe.

This module is managed in an open GitHub repository, http://github.com/theory/pod-simple/. Feel free
to fork and contribute, or
 to clone git://github.com/theory/pod-simple.git and send patches!

Patches against Pod::Simple are welcome. Please send bug reports to

<bug-pod-simple@rt.cpan.org>.

COPYRIGHT AND DISCLAIMERS
Copyright (c) 2002 Sean M. Burke.

This library is free software; you can redistribute it and/or modify it
 under the same terms as Perl
itself.

This program is distributed in the hope that it will be useful, but
 without any warranty; without even the
implied warranty of
 merchantability or fitness for a particular purpose.

Perl version 5.14.2 documentation - Pod::Simple::HTMLBatch

Page 5http://perldoc.perl.org

AUTHOR
Pod::Simple was created by Sean M. Burke <sburke@cpan.org>.
 But don't bother him, he's retired.

Pod::Simple is maintained by:

* Allison Randal allison@perl.org

* Hans Dieter Pearcey hdp@cpan.org

* David E. Wheeler dwheeler@cpan.org

