
Perl version 5.14.2 documentation - Unicode::UCD

Page 1http://perldoc.perl.org

NAME
Unicode::UCD - Unicode character database

SYNOPSIS
 use Unicode::UCD 'charinfo';
 my $charinfo = charinfo($codepoint);

 use Unicode::UCD 'casefold';
 my $casefold = casefold(0xFB00);

 use Unicode::UCD 'casespec';
 my $casespec = casespec(0xFB00);

 use Unicode::UCD 'charblock';
 my $charblock = charblock($codepoint);

 use Unicode::UCD 'charscript';
 my $charscript = charscript($codepoint);

 use Unicode::UCD 'charblocks';
 my $charblocks = charblocks();

 use Unicode::UCD 'charscripts';
 my $charscripts = charscripts();

 use Unicode::UCD qw(charscript charinrange);
 my $range = charscript($script);
 print "looks like $script\n" if charinrange($range, $codepoint);

 use Unicode::UCD qw(general_categories bidi_types);
 my $categories = general_categories();
 my $types = bidi_types();

 use Unicode::UCD 'compexcl';
 my $compexcl = compexcl($codepoint);

 use Unicode::UCD 'namedseq';
 my $namedseq = namedseq($named_sequence_name);

 my $unicode_version = Unicode::UCD::UnicodeVersion();

 my $convert_to_numeric =
 Unicode::UCD::num("\N{RUMI DIGIT ONE}\N{RUMI DIGIT TWO}");

DESCRIPTION
The Unicode::UCD module offers a series of functions that
 provide a simple interface to the Unicode

Character Database.

code point argument
Some of the functions are called with a code point argument, which is either
 a decimal or a
hexadecimal scalar designating a Unicode code point, or U+
 followed by hexadecimals designating a

Perl version 5.14.2 documentation - Unicode::UCD

Page 2http://perldoc.perl.org

Unicode code point. In other words, if
 you want a code point to be interpreted as a hexadecimal
number, you must
 prefix it with either 0x or U+, because a string like e.g. 123 will be
 interpreted as a
decimal code point. Note that the largest code point in
 Unicode is U+10FFFF.
 =cut

my $BLOCKSFH;
 my $VERSIONFH;
 my $CASEFOLDFH;
 my $CASESPECFH;
 my
$NAMEDSEQFH;

sub openunicode {
 my ($rfh, @path) = @_;
 my $f;
 unless (defined $$rfh) {
 for my $d (@INC) {
 use
File::Spec;
 $f = File::Spec->catfile($d, "unicore", @path);
 last if open($$rfh, $f);
 undef $f;
 }
 croak
__PACKAGE__, ": failed to find ",
 File::Spec->catfile(@path), " in @INC"
 unless defined $f;
 }
 return $f;
}

charinfo()
 use Unicode::UCD 'charinfo';

 my $charinfo = charinfo(0x41);

This returns information about the input code point argument
 as a reference to a hash of fields as
defined by the Unicode
 standard. If the code point argument is not assigned in the standard
 (i.e., has
the general category Cn meaning Unassigned)
 or is a non-character (meaning it is guaranteed to
never be assigned in
 the standard), undef is returned.

Fields that aren't applicable to the particular code point argument exist in the
 returned hash, and are
empty.

The keys in the hash with the meanings of their values are:

code

the input code point argument expressed in hexadecimal, with leading zeros
 added if
necessary to make it contain at least four hexdigits

name

name of code, all IN UPPER CASE.
 Some control-type code points do not have names.
 This
field will be empty for Surrogate and Private Use code points,
 and for the others without
a name,
 it will contain a description enclosed in angle brackets, like <control>.

category

The short name of the general category of code.
 This will match one of the keys in the hash
returned by general_categories().

combining

the combining class number for code used in the Canonical Ordering Algorithm.
 For Unicode
5.1, this is described in Section 3.11 Canonical Ordering Behavior
 available at
http://www.unicode.org/versions/Unicode5.1.0/

bidi

bidirectional type of code.
 This will match one of the keys in the hash returned by bidi_types().

decomposition

is empty if code has no decomposition; or is one or more codes
 (separated by spaces) that
taken in order represent a decomposition for code. Each has at least four hexdigits.
 The codes
may be preceded by a word enclosed in angle brackets then a space,
 like <compat> , giving
the type of decomposition

This decomposition may be an intermediate one whose components are also
 decomposable.
Use Unicode::Normalize to get the final decomposition.

decimal

Perl version 5.14.2 documentation - Unicode::UCD

Page 3http://perldoc.perl.org

if code is a decimal digit this is its integer numeric value

digit

if code represents some other digit-like number, this is its integer
 numeric value

numeric

if code represents a whole or rational number, this is its numeric value.
 Rational values are
expressed as a string like 1/4.

mirrored

Y or N designating if code is mirrored in bidirectional text

unicode10

name of code in the Unicode 1.0 standard if one
 existed for this code point and is different
from the current name

comment

As of Unicode 6.0, this is always empty.

upper

is empty if there is no single code point uppercase mapping for code
 (its uppercase mapping
is itself);
 otherwise it is that mapping expressed as at least four hexdigits.
 (casespec() should
be used in addition to charinfo()
 for case mappings when the calling program can cope with
multiple code point
 mappings.)

lower

is empty if there is no single code point lowercase mapping for code
 (its lowercase mapping is
itself);
 otherwise it is that mapping expressed as at least four hexdigits.
 (casespec() should be
used in addition to charinfo()
 for case mappings when the calling program can cope with
multiple code point
 mappings.)

title

is empty if there is no single code point titlecase mapping for code
 (its titlecase mapping is
itself);
 otherwise it is that mapping expressed as at least four hexdigits.
 (casespec() should be
used in addition to charinfo()
 for case mappings when the calling program can cope with
multiple code point
 mappings.)

block

block code belongs to (used in \p{Blk=...}).
 See Blocks versus Scripts.

script

script code belongs to.
 See Blocks versus Scripts.

Note that you cannot do (de)composition and casing based solely on the decomposition, combining,
lower, upper, and title fields;
 you will need also the compexcl(), and casespec() functions.

charblock()
 use Unicode::UCD 'charblock';

 my $charblock = charblock(0x41);
 my $charblock = charblock(1234);
 my $charblock = charblock(0x263a);
 my $charblock = charblock("U+263a");

 my $range = charblock('Armenian');

Perl version 5.14.2 documentation - Unicode::UCD

Page 4http://perldoc.perl.org

With a code point argument charblock() returns the block the code point
 belongs to, e.g. Basic
Latin.
 If the code point is unassigned, this returns the block it would belong to if
 it were assigned
(which it may in future versions of the Unicode Standard).

See also Blocks versus Scripts.

If supplied with an argument that can't be a code point, charblock() tries
 to do the opposite and
interpret the argument as a code point block. The
 return value is a range: an anonymous list of lists
that contain start-of-range, end-of-range code point pairs. You can test whether
 a code point is in a
range using the charinrange() function. If the
 argument is not a known code point block, undef is
returned.

charscript()
 use Unicode::UCD 'charscript';

 my $charscript = charscript(0x41);
 my $charscript = charscript(1234);
 my $charscript = charscript("U+263a");

 my $range = charscript('Thai');

With a code point argument charscript() returns the script the
 code point belongs to, e.g. Latin,
Greek, Han.
 If the code point is unassigned, it returns undef

If supplied with an argument that can't be a code point, charscript() tries
 to do the opposite and
interpret the argument as a code point script. The
 return value is a range: an anonymous list of lists
that contain start-of-range, end-of-range code point pairs. You can test whether a
 code point is in a
range using the charinrange() function. If the
 argument is not a known code point script, undef is
returned.

See also Blocks versus Scripts.

charblocks()
 use Unicode::UCD 'charblocks';

 my $charblocks = charblocks();

charblocks() returns a reference to a hash with the known block names
 as the keys, and the code
point ranges (see charblock()) as the values.

See also Blocks versus Scripts.

charscripts()
 use Unicode::UCD 'charscripts';

 my $charscripts = charscripts();

charscripts() returns a reference to a hash with the known script
 names as the keys, and the code
point ranges (see charscript()) as
 the values.

See also Blocks versus Scripts.

charinrange()
In addition to using the \p{Blk=...} and \P{Blk=...} constructs, you
 can also test whether a
code point is in the range as returned by charblock() and charscript() or as the values of the hash
returned
 by charblocks() and charscripts() by using charinrange():

Perl version 5.14.2 documentation - Unicode::UCD

Page 5http://perldoc.perl.org

 use Unicode::UCD qw(charscript charinrange);

 $range = charscript('Hiragana');
 print "looks like hiragana\n" if charinrange($range, $codepoint);

general_categories()
 use Unicode::UCD 'general_categories';

 my $categories = general_categories();

This returns a reference to a hash which has short
 general category names (such as Lu, Nd, Zs, S)
as keys and long
 names (such as UppercaseLetter, DecimalNumber, SpaceSeparator,
Symbol) as values. The hash is reversible in case you need to go
 from the long names to the short
names. The general category is the
 one returned from charinfo() under the category key.

bidi_types()
 use Unicode::UCD 'bidi_types';

 my $categories = bidi_types();

This returns a reference to a hash which has the short
 bidi (bidirectional) type names (such as L, R)
as keys and long
 names (such as Left-to-Right, Right-to-Left) as values. The
 hash is
reversible in case you need to go from the long names to the
 short names. The bidi type is the one
returned from charinfo()
 under the bidi key. For the exact meaning of the various bidi classes
 the
Unicode TR9 is recommended reading: http://www.unicode.org/reports/tr9/
 (as of Unicode 5.0.0)

compexcl()
 use Unicode::UCD 'compexcl';

 my $compexcl = compexcl(0x09dc);

This routine is included for backwards compatibility, but as of Perl 5.12, for
 most purposes it is
probably more convenient to use one of the following
 instead:

 my $compexcl = chr(0x09dc) =~ /\p{Comp_Ex};
 my $compexcl = chr(0x09dc) =~ /\p{Full_Composition_Exclusion};

or even

 my $compexcl = chr(0x09dc) =~ /\p{CE};
 my $compexcl = chr(0x09dc) =~ /\p{Composition_Exclusion};

The first two forms return true if the code point argument should not
 be produced by composition
normalization. The final two forms
 additionally require that this fact not otherwise be determinable
from
 the Unicode data base for them to return true.

This routine behaves identically to the final two forms. That is,
 it does not return true if the code point
has a decomposition
 consisting of another single code point, nor if its decomposition starts
 with a
code point whose combining class is non-zero. Code points that meet
 either of these conditions
should also not be produced by composition
 normalization, which is probably why you should use the
Full_Composition_Exclusion property instead, as shown above.

The routine returns false otherwise.

Perl version 5.14.2 documentation - Unicode::UCD

Page 6http://perldoc.perl.org

casefold()
 use Unicode::UCD 'casefold';

 my $casefold = casefold(0xDF);
 if (defined $casefold) {
 my @full_fold_hex = split / /, $casefold->{'full'};
 my $full_fold_string =
 join "", map {chr(hex($_))} @full_fold_hex;
 my @turkic_fold_hex =
 split / /, ($casefold->{'turkic'} ne "")
 ? $casefold->{'turkic'}
 : $casefold->{'full'};
 my $turkic_fold_string =
 join "", map {chr(hex($_))} @turkic_fold_hex;
 }
 if (defined $casefold && $casefold->{'simple'} ne "") {
 my $simple_fold_hex = $casefold->{'simple'};
 my $simple_fold_string = chr(hex($simple_fold_hex));
 }

This returns the (almost) locale-independent case folding of the
 character specified by the code point
argument.

If there is no case folding for that code point, undef is returned.

If there is a case folding for that code point, a reference to a hash
 with the following fields is returned:

code

the input code point argument expressed in hexadecimal, with leading zeros
 added if
necessary to make it contain at least four hexdigits

full

one or more codes (separated by spaces) that taken in order give the
 code points for the case
folding for code.
 Each has at least four hexdigits.

simple

is empty, or is exactly one code with at least four hexdigits which can be used
 as an
alternative case folding when the calling program cannot cope with the
 fold being a sequence
of multiple code points. If full is just one code
 point, then simple equals full. If there is no single
code point folding
 defined for code, then simple is the empty string. Otherwise, it is an
 inferior,
but still better-than-nothing alternative folding to full.

mapping

is the same as simple if simple is not empty, and it is the same as full
 otherwise. It can be
considered to be the simplest possible folding for code. It is defined primarily for backwards
compatibility.

status

is C (for common) if the best possible fold is a single code point
 (simple equals full equals
mapping). It is S if there are distinct
 folds, simple and full (mapping equals simple). And it is F
if
 there only a full fold (mapping equals full; simple is empty). Note
 that this
 describes the
contents of mapping. It is defined primarily for backwards
 compatibility.

On versions 3.1 and earlier of Unicode, status can also be I which is the same as C but is a
special case for dotted uppercase I and
 dotless lowercase i:

If you use this I mapping, the result is case-insensitive,
 but dotless and dotted I's are

Perl version 5.14.2 documentation - Unicode::UCD

Page 7http://perldoc.perl.org

not distinguished

If you exclude this I mapping, the result is not fully case-insensitive, but
 dotless and
dotted I's are distinguished

turkic

contains any special folding for Turkic languages. For versions of Unicode
 starting with 3.2,
this field is empty unless code has a different folding
 in Turkic languages, in which case it is
one or more codes (separated by
 spaces) that taken in order give the code points for the case
folding for code in those languages.
 Each code has at least four hexdigits.
 Note that this
folding does not maintain canonical equivalence without
 additional processing.

For versions of Unicode 3.1 and earlier, this field is empty unless there is a
 special folding for
Turkic languages, in which case status is I, and mapping, full, simple, and turkic are all equal.

Programs that want complete generality and the best folding results should use
 the folding contained
in the full field. But note that the fold for some
 code points will be a sequence of multiple code points.

Programs that can't cope with the fold mapping being multiple code points can
 use the folding
contained in the simple field, with the loss of some
 generality. In Unicode 5.1, about 7% of the defined
foldings have no single
 code point folding.

The mapping and status fields are provided for backwards compatibility for
 existing programs. They
contain the same values as in previous versions of
 this function.

Locale is not completely independent. The turkic field contains results to
 use when the locale is a
Turkic language.

For more information about case mappings see http://www.unicode.org/unicode/reports/tr21

casespec()
 use Unicode::UCD 'casespec';

 my $casespec = casespec(0xFB00);

This returns the potentially locale-dependent case mappings of the code point argument. The
mappings may be longer than a single code point (which the basic
 Unicode case mappings as
returned by charinfo() never are).

If there are no case mappings for the code point argument, or if all three
 possible mappings (lower,
title and upper) result in single code
 points and are locale independent and unconditional, undef is
returned
 (which means that the case mappings, if any, for the code point are those
 returned by
charinfo()).

Otherwise, a reference to a hash giving the mappings (or a reference to a hash
 of such hashes,
explained below) is returned with the following keys and their
 meanings:

The keys in the bottom layer hash with the meanings of their values are:

code

the input code point argument expressed in hexadecimal, with leading zeros
 added if
necessary to make it contain at least four hexdigits

lower

one or more codes (separated by spaces) that taken in order give the
 code points for the
lower case of code.
 Each has at least four hexdigits.

title

one or more codes (separated by spaces) that taken in order give the
 code points for the title

Perl version 5.14.2 documentation - Unicode::UCD

Page 8http://perldoc.perl.org

case of code.
 Each has at least four hexdigits.

upper

one or more codes (separated by spaces) that taken in order give the
 code points for the
upper case of code.
 Each has at least four hexdigits.

condition

the conditions for the mappings to be valid.
 If undef, the mappings are always valid.
 When
defined, this field is a list of conditions,
 all of which must be true for the mappings to be valid.

The list consists of one or more locales (see below)
 and/or contexts (explained in the next
paragraph),
 separated by spaces.
 (Other than as used to separate elements, spaces are to be
ignored.)
 Case distinctions in the condition list are not significant.
 Conditions preceded by
"NON_" represent the negation of the condition.

A context is one of those defined in the Unicode standard.
 For Unicode 5.1, they are defined
in Section 3.13 Default Case Operations
 available at
http://www.unicode.org/versions/Unicode5.1.0/.
 These are for context-sensitive casing.

The hash described above is returned for locale-independent casing, where
 at least one of the
mappings has length longer than one. If undef is returned, the code point may have mappings, but if
so, all are length one,
 and are returned by charinfo().
 Note that when this function does return a value,
it will be for the complete
 set of mappings for a code point, even those whose length is one.

If there are additional casing rules that apply only in certain locales,
 an additional key for each will be
defined in the returned hash. Each such key
 will be its locale name, defined as a 2-letter ISO 3166
country code, possibly
 followed by a "_" and a 2-letter ISO language code (possibly followed by a "_"

and a variant code). You can find the lists of all possible locales, see Locale::Country and
Locale::Language.
 (In Unicode 6.0, the only locales returned by this function
 are lt, tr, and az.)

Each locale key is a reference to a hash that has the form above, and gives
 the casing rules for that
particular locale, which take precedence over the
 locale-independent ones when in that locale.

If the only casing for a code point is locale-dependent, then the returned
 hash will not have any of the
base keys, like code, upper, etc., but
 will contain only locale keys.

For more information about case mappings see http://www.unicode.org/unicode/reports/tr21/

namedseq()
 use Unicode::UCD 'namedseq';

 my $namedseq = namedseq("KATAKANA LETTER AINU P");
 my @namedseq = namedseq("KATAKANA LETTER AINU P");
 my %namedseq = namedseq();

If used with a single argument in a scalar context, returns the string
 consisting of the code points of
the named sequence, or undef if no
 named sequence by that name exists. If used with a single
argument in
 a list context, it returns the list of the ordinals of the code points. If used
 with no

arguments in a list context, returns a hash with the names of the
 named sequences as the keys and
the named sequences as strings as
 the values. Otherwise, it returns undef or an empty list depending
on the context.

This function only operates on officially approved (not provisional) named
 sequences.

Note that as of Perl 5.14, \N{KATAKANA LETTER AINU P} will insert the named
 sequence into
double-quoted strings, and charnames::string_vianame("KATAKANA
 LETTER AINU P") will
return the same string this function does, but will also
 operate on character names that aren't named
sequences, without you having to
 know which are which. See charnames.

Perl version 5.14.2 documentation - Unicode::UCD

Page 9http://perldoc.perl.org

num
num returns the numeric value of the input Unicode string; or undef if it
 doesn't think the entire string
has a completely valid, safe numeric value.

If the string is just one character in length, the Unicode numeric value
 is returned if it has one, or
undef otherwise. Note that this need
 not be a whole number. num("\N{TIBETAN DIGIT HALF
ZERO}"), for
 example returns -0.5.

If the string is more than one character, undef is returned unless
 all its characters are decimal digits
(that is they would match \d+),
 from the same script. For example if you have an ASCII '0' and a
Bengali
 '3', mixed together, they aren't considered a valid number, and undef
 is returned. A further
restriction is that the digits all have to be of
 the same form. A half-width digit mixed with a full-width
one will
 return undef. The Arabic script has two sets of digits; num will
 return undef unless all the
digits in the string come from the same
 set.

num errs on the side of safety, and there may be valid strings of
 decimal digits that it doesn't
recognize. Note that Unicode defines
 a number of "digit" characters that aren't "decimal digit"
characters.
 "Decimal digits" have the property that they have a positional value, i.e.,
 there is a units
position, a 10's position, a 100's, etc, AND they are
 arranged in Unicode in blocks of 10 contiguous
code points. The Chinese
 digits, for example, are not in such a contiguous block, and so Unicode

doesn't view them as decimal digits, but merely digits, and so \d will not
 match them. A
single-character string containing one of these digits will
 have its decimal value returned by num, but
any longer string containing
 only these digits will return undef.

Strings of multiple sub- and superscripts are not recognized as numbers. You
 can use either of the
compatibility decompositions in Unicode::Normalize to
 change these into digits, and then call num on
the result.

Unicode::UCD::UnicodeVersion
This returns the version of the Unicode Character Database, in other words, the
 version of the
Unicode standard the database implements. The version is a
 string of numbers delimited by dots ('.'
).

Blocks versus Scripts
The difference between a block and a script is that scripts are closer
 to the linguistic notion of a set of
code points required to present
 languages, while block is more of an artifact of the Unicode code point
numbering and separation into blocks of (mostly) 256 code points.

For example the Latin script is spread over several blocks, such
 as Basic Latin, Latin 1
Supplement, Latin Extended-A, and Latin Extended-B. On the other hand, the Latin script
does not
 contain all the characters of the Basic Latin block (also known as
 ASCII): it includes only
the letters, and not, for example, the digits
 or the punctuation.

For blocks see http://www.unicode.org/Public/UNIDATA/Blocks.txt

For scripts see UTR #24: http://www.unicode.org/unicode/reports/tr24/

Matching Scripts and Blocks
Scripts are matched with the regular-expression construct \p{...} (e.g. \p{Tibetan} matches
characters of the Tibetan script),
 while \p{Blk=...} is used for blocks (e.g. \p{Blk=Tibetan}
matches
 any of the 256 code points in the Tibetan block).

Implementation Note
The first use of charinfo() opens a read-only filehandle to the Unicode
 Character Database (the
database is included in the Perl distribution).
 The filehandle is then kept open for further queries. In
other words,
 if you are wondering where one of your filehandles went, that's where.

Perl version 5.14.2 documentation - Unicode::UCD

Page 10http://perldoc.perl.org

BUGS
Does not yet support EBCDIC platforms.

AUTHOR
Jarkko Hietaniemi

