
Perl version 5.14.2 documentation - perl561delta

Page 1http://perldoc.perl.org

NAME
perl561delta - what's new for perl v5.6.x

DESCRIPTION
This document describes differences between the 5.005 release and the 5.6.1
 release.

Summary of changes between 5.6.0 and 5.6.1
This section contains a summary of the changes between the 5.6.0 release
 and the 5.6.1 release.
More details about the changes mentioned here
 may be found in the Changes files that accompany
the Perl source
 distribution. See perlhack for pointers to online resources where you
 can inspect the
individual patches described by these changes.

Security Issues
suidperl will not run /bin/mail anymore, because some platforms have
 a /bin/mail that is vulnerable to
buffer overflow attacks.

Note that suidperl is neither built nor installed by default in
 any recent version of perl. Use of suidperl
is highly discouraged.
 If you think you need it, try alternatives such as sudo first.
 See
http://www.courtesan.com/sudo/ .

Core bug fixes
This is not an exhaustive list. It is intended to cover only the
 significant user-visible changes.

UNIVERSAL::isa()

A bug in the caching mechanism used by UNIVERSAL::isa() that affected
 base.pm has
been fixed. The bug has existed since the 5.005 releases,
 but wasn't tickled by base.pm in
those releases.

Memory leaks

Various cases of memory leaks and attempts to access uninitialized memory
 have been
cured. See Known Problems below for further issues.

Numeric conversions

Numeric conversions did not recognize changes in the string value
 properly in certain
circumstances.

In other situations, large unsigned numbers (those above 2**31) could
 sometimes lose their
unsignedness, causing bogus results in arithmetic
 operations.

Integer modulus on large unsigned integers sometimes returned
 incorrect values.

Perl 5.6.0 generated "not a number" warnings on certain conversions where
 previous versions
didn't.

These problems have all been rectified.

Infinity is now recognized as a number.

qw(a\\b)

In Perl 5.6.0, qw(a\\b) produced a string with two backslashes instead
 of one, in a departure
from the behavior in previous versions. The
 older behavior has been reinstated.

caller()

caller() could cause core dumps in certain situations. Carp was sometimes
 affected by this
problem.

Bugs in regular expressions

Pattern matches on overloaded values are now handled correctly.

Perl 5.6.0 parsed m/\x{ab}/ incorrectly, leading to spurious warnings.
 This has been corrected.

Perl version 5.14.2 documentation - perl561delta

Page 2http://perldoc.perl.org

The RE engine found in Perl 5.6.0 accidentally pessimised certain kinds
 of simple pattern
matches. These are now handled better.

Regular expression debug output (whether through use re 'debug'
 or via -Dr) now looks
better.

Multi-line matches like "a\nxb\n" =~ /(?!\A)x/m were flawed. The
 bug has been fixed.

Use of $& could trigger a core dump under some situations. This
 is now avoided.

Match variables $1 et al., weren't being unset when a pattern match
 was backtracking, and the
anomaly showed up inside /...(?{ ... }).../
 etc. These variables are now tracked
correctly.

pos() did not return the correct value within s///ge in earlier
 versions. This is now handled
correctly.

"slurp" mode

readline() on files opened in "slurp" mode could return an extra "" at
 the end in certain
situations. This has been corrected.

Autovivification of symbolic references to special variables

Autovivification of symbolic references of special variables described
 in perlvar (as in
${$num}) was accidentally disabled. This works
 again now.

Lexical warnings

Lexical warnings now propagate correctly into eval "...".

use warnings qw(FATAL all) did not work as intended. This has been
 corrected.

Lexical warnings could leak into other scopes in some situations.
 This is now fixed.

warnings::enabled() now reports the state of $^W correctly if the caller
 isn't using lexical
warnings.

Spurious warnings and errors

Perl 5.6.0 could emit spurious warnings about redefinition of dl_error()
 when statically building
extensions into perl. This has been corrected.

"our" variables could result in bogus "Variable will not stay shared"
 warnings. This is now
fixed.

"our" variables of the same name declared in two sibling blocks
 resulted in bogus warnings
about "redeclaration" of the variables.
 The problem has been corrected.

glob()

Compatibility of the builtin glob() with old csh-based glob has been
 improved with the addition
of GLOB_ALPHASORT option. See File::Glob.

File::Glob::glob() has been renamed to File::Glob::bsd_glob()
 because the name clashes with
the builtin glob(). The older
 name is still available for compatibility, but is deprecated.

Spurious syntax errors generated in certain situations, when glob()
 caused File::Glob to be
loaded for the first time, have been fixed.

Tainting

Some cases of inconsistent taint propagation (such as within hash
 values) have been fixed.

The tainting behavior of sprintf() has been rationalized. It does
 not taint the result of floating
point formats anymore, making the
 behavior consistent with that of string interpolation.

sort()

Arguments to sort() weren't being provided the right wantarray() context.
 The comparison
block is now run in scalar context, and the arguments to
 be sorted are always provided list
context.

Perl version 5.14.2 documentation - perl561delta

Page 3http://perldoc.perl.org

sort() is also fully reentrant, in the sense that the sort function
 can itself call sort(). This did not
work reliably in previous releases.

#line directives

#line directives now work correctly when they appear at the very
 beginning of eval "...".

Subroutine prototypes

The (\&) prototype now works properly.

map()

map() could get pathologically slow when the result list it generates
 is larger than the source
list. The performance has been improved for
 common scenarios.

Debugger

Debugger exit code now reflects the script exit code.

Condition "0" in breakpoints is now treated correctly.

The d command now checks the line number.

$. is no longer corrupted by the debugger.

All debugger output now correctly goes to the socket if RemotePort
 is set.

PERL5OPT

PERL5OPT can be set to more than one switch group. Previously,
 it used to be limited to one
group of options only.

chop()

chop(@list) in list context returned the characters chopped in reverse
 order. This has been
reversed to be in the right order.

Unicode support

Unicode support has seen a large number of incremental improvements,
 but continues to be
highly experimental. It is not expected to be
 fully supported in the 5.6.x maintenance releases.

substr(), join(), repeat(), reverse(), quotemeta() and string
 concatenation were all handling
Unicode strings incorrectly in
 Perl 5.6.0. This has been corrected.

Support for tr///CU and tr///UC etc., have been removed since
 we realized the interface
is broken. For similar functionality,
 see "pack" in perlfunc.

The Unicode Character Database has been updated to version 3.0.1
 with additions made
available to the public as of August 30, 2000.

The Unicode character classes \p{Blank} and \p{SpacePerl} have been
 added. "Blank" is like
C isblank(), that is, it contains only
 "horizontal whitespace" (the space character is, the
newline isn't),
 and the "SpacePerl" is the Unicode equivalent of \s (\p{Space}
 isn't, since that
includes the vertical tabulator character, whereas \s doesn't.)

If you are experimenting with Unicode support in perl, the development
 versions of Perl may
have more to offer. In particular, I/O layers
 are now available in the development track, but not
in the maintenance
 track, primarily to do backward compatibility issues. Unicode support
 is
also evolving rapidly on a daily basis in the development track--the
 maintenance track only
reflects the most conservative of these changes.

64-bit support

Support for 64-bit platforms has been improved, but continues to be
 experimental. The level of
support varies greatly among platforms.

Compiler

The B Compiler and its various backends have had many incremental
 improvements, but they

Perl version 5.14.2 documentation - perl561delta

Page 4http://perldoc.perl.org

continue to remain highly experimental. Use in
 production environments is discouraged.

The perlcc tool has been rewritten so that the user interface is much
 more like that of a C
compiler.

The perlbc tools has been removed. Use perlcc -B instead.

Lvalue subroutines

There have been various bugfixes to support lvalue subroutines better.
 However, the feature
still remains experimental.

IO::Socket

IO::Socket::INET failed to open the specified port if the service
 name was not known. It now
correctly uses the supplied port number
 as is.

File::Find

File::Find now chdir()s correctly when chasing symbolic links.

xsubpp

xsubpp now tolerates embedded POD sections.

no Module;

no Module; does not produce an error even if Module does not have an
 unimport() method.
This parallels the behavior of use vis-a-vis import.

Tests

A large number of tests have been added.

Core features
untie() will now call an UNTIE() hook if it exists. See perltie
 for details.

The -DT command line switch outputs copious tokenizing information.
 See perlrun.

Arrays are now always interpolated in double-quotish strings. Previously, "foo@bar.com" used to
be a fatal error at compile time, if an array @bar was not used or declared. This transitional behavior
was
 intended to help migrate perl4 code, and is deemed to be no longer useful.
 See Arrays now
always interpolate into double-quoted strings.

keys(), each(), pop(), push(), shift(), splice() and unshift()
 can all be overridden now.

my __PACKAGE__ $obj now does the expected thing.

Configuration issues
On some systems (IRIX and Solaris among them) the system malloc is demonstrably
 better. While
the defaults haven't been changed in order to retain binary
 compatibility with earlier releases, you may
be better off building perl
 with Configure -Uusemymalloc ... as discussed in the INSTALL file.

Configure has been enhanced in various ways:

Minimizes use of temporary files.

By default, does not link perl with libraries not used by it, such as
 the various dbm libraries.
SunOS 4.x hints preserve behavior on that
 platform.

Support for pdp11-style memory models has been removed due to obsolescence.

Building outside the source tree is supported on systems that have
 symbolic links. This is
done by running

 sh /path/to/source/Configure -Dmksymlinks ...
 make all test install

Perl version 5.14.2 documentation - perl561delta

Page 5http://perldoc.perl.org

in a directory other than the perl source directory. See INSTALL.

Configure -S can be run non-interactively.

Documentation
README.aix, README.solaris and README.macos have been added.
 README.posix-bc has been
renamed to README.bs2000. These are
 installed as perlaix, perlsolaris, perlmacos, and perlbs2000
respectively.

The following pod documents are brand new:

 perlclib	 Internal replacements for standard C library functions
 perldebtut	 Perl debugging tutorial
 perlebcdic	 Considerations for running Perl on EBCDIC platforms
 perlnewmod	 Perl modules: preparing a new module for distribution
 perlrequick	 Perl regular expressions quick start
 perlretut	 Perl regular expressions tutorial
 perlutil	 utilities packaged with the Perl distribution

The INSTALL file has been expanded to cover various issues, such as
 64-bit support.

A longer list of contributors has been added to the source distribution.
 See the file AUTHORS.

Numerous other changes have been made to the included documentation and FAQs.

Bundled modules
The following modules have been added.

B::Concise

Walks Perl syntax tree, printing concise info about ops. See B::Concise.

File::Temp

Returns name and handle of a temporary file safely. See File::Temp.

Pod::LaTeX

Converts Pod data to formatted LaTeX. See Pod::LaTeX.

Pod::Text::Overstrike

Converts POD data to formatted overstrike text. See Pod::Text::Overstrike.

The following modules have been upgraded.

CGI

CGI v2.752 is now included.

CPAN

CPAN v1.59_54 is now included.

Class::Struct

Various bugfixes have been added.

DB_File

DB_File v1.75 supports newer Berkeley DB versions, among other
 improvements.

Devel::Peek

Devel::Peek has been enhanced to support dumping of memory statistics,
 when perl is built
with the included malloc().

Perl version 5.14.2 documentation - perl561delta

Page 6http://perldoc.perl.org

File::Find

File::Find now supports pre and post-processing of the files in order
 to sort() them, etc.

Getopt::Long

Getopt::Long v2.25 is included.

IO::Poll

Various bug fixes have been included.

IPC::Open3

IPC::Open3 allows use of numeric file descriptors.

Math::BigFloat

The fmod() function supports modulus operations. Various bug fixes
 have also been included.

Math::Complex

Math::Complex handles inf, NaN etc., better.

Net::Ping

ping() could fail on odd number of data bytes, and when the echo service
 isn't running. This
has been corrected.

Opcode

A memory leak has been fixed.

Pod::Parser

Version 1.13 of the Pod::Parser suite is included.

Pod::Text

Pod::Text and related modules have been upgraded to the versions
 in podlators suite v2.08.

SDBM_File

On dosish platforms, some keys went missing because of lack of support for
 files with "holes".
A workaround for the problem has been added.

Sys::Syslog

Various bug fixes have been included.

Tie::RefHash

Now supports Tie::RefHash::Nestable to automagically tie hashref values.

Tie::SubstrHash

Various bug fixes have been included.

Platform-specific improvements
The following new ports are now available.

NCR MP-RAS

NonStop-UX

Perl now builds under Amdahl UTS.

Perl has also been verified to build under Amiga OS.

Support for EPOC has been much improved. See README.epoc.

Building perl with -Duseithreads or -Duse5005threads now works
 under HP-UX 10.20 (previously it

Perl version 5.14.2 documentation - perl561delta

Page 7http://perldoc.perl.org

only worked under 10.30 or later).
 You will need a thread library package installed. See
README.hpux.

Long doubles should now work under Linux.

Mac OS Classic is now supported in the mainstream source package.
 See README.macos.

Support for MPE/iX has been updated. See README.mpeix.

Support for OS/2 has been improved. See os2/Changes and README.os2.

Dynamic loading on z/OS (formerly OS/390) has been improved. See
 README.os390.

Support for VMS has seen many incremental improvements, including
 better support for operators
like backticks and system(), and better
 %ENV handling. See README.vms and perlvms.

Support for Stratus VOS has been improved. See vos/Changes and README.vos.

Support for Windows has been improved.

fork() emulation has been improved in various ways, but still continues
 to be experimental.
See perlfork for known bugs and caveats.

%SIG has been enabled under USE_ITHREADS, but its use is completely
 unsupported under
all configurations.

Borland C++ v5.5 is now a supported compiler that can build Perl.
 However, the generated
binaries continue to be incompatible with those
 generated by the other supported compilers
(GCC and Visual C++).

Non-blocking waits for child processes (or pseudo-processes) are
 supported via
waitpid($pid, &POSIX::WNOHANG).

A memory leak in accept() has been fixed.

wait(), waitpid() and backticks now return the correct exit status under
 Windows 9x.

Trailing new %ENV entries weren't propagated to child processes. This
 is now fixed.

Current directory entries in %ENV are now correctly propagated to child
 processes.

Duping socket handles with open(F, ">&MYSOCK") now works under Windows 9x.

The makefiles now provide a single switch to bulk-enable all the features
 enabled in
ActiveState ActivePerl (a popular binary distribution).

Win32::GetCwd() correctly returns C:\ instead of C: when at the drive root.
 Other bugs in
chdir() and Cwd::cwd() have also been fixed.

fork() correctly returns undef and sets EAGAIN when it runs out of
 pseudo-process handles.

ExtUtils::MakeMaker now uses $ENV{LIB} to search for libraries.

UNC path handling is better when perl is built to support fork().

A handle leak in socket handling has been fixed.

send() works from within a pseudo-process.

Unless specifically qualified otherwise, the remainder of this document
 covers changes between the
5.005 and 5.6.0 releases.

Perl version 5.14.2 documentation - perl561delta

Page 8http://perldoc.perl.org

Core Enhancements
Interpreter cloning, threads, and concurrency

Perl 5.6.0 introduces the beginnings of support for running multiple
 interpreters concurrently in
different threads. In conjunction with
 the perl_clone() API call, which can be used to selectively
duplicate
 the state of any given interpreter, it is possible to compile a
 piece of code once in an
interpreter, clone that interpreter
 one or more times, and run all the resulting interpreters in distinct

threads.

On the Windows platform, this feature is used to emulate fork() at the
 interpreter level. See perlfork for
details about that.

This feature is still in evolution. It is eventually meant to be used
 to selectively clone a subroutine and
data reachable from that
 subroutine in a separate interpreter and run the cloned subroutine
 in a
separate thread. Since there is no shared data between the
 interpreters, little or no locking will be
needed (unless parts of
 the symbol table are explicitly shared). This is obviously intended
 to be an
easy-to-use replacement for the existing threads support.

Support for cloning interpreters and interpreter concurrency can be
 enabled using the -Dusethreads
Configure option (see win32/Makefile for
 how to enable it on Windows.) The resulting perl executable
will be
 functionally identical to one that was built with -Dmultiplicity, but
 the perl_clone() API call will
only be available in the former.

-Dusethreads enables the cpp macro USE_ITHREADS by default, which in turn
 enables Perl source
code changes that provide a clear separation between
 the op tree and the data it operates with. The
former is immutable, and
 can therefore be shared between an interpreter and all of its clones,
 while
the latter is considered local to each interpreter, and is therefore
 copied for each clone.

Note that building Perl with the -Dusemultiplicity Configure option
 is adequate if you wish to run
multiple independent interpreters
 concurrently in different threads. -Dusethreads only provides the

additional functionality of the perl_clone() API call and other
 support for running cloned interpreters
concurrently.

 NOTE: This is an experimental feature. Implementation details are
 subject to change.

Lexically scoped warning categories
You can now control the granularity of warnings emitted by perl at a finer
 level using the use
warnings pragma. warnings and perllexwarn
 have copious documentation on this feature.

Unicode and UTF-8 support
Perl now uses UTF-8 as its internal representation for character
 strings. The utf8 and bytes
pragmas are used to control this support
 in the current lexical scope. See perlunicode, utf8 and bytes
for
 more information.

This feature is expected to evolve quickly to support some form of I/O
 disciplines that can be used to
specify the kind of input and output data
 (bytes or characters). Until that happens, additional modules
from CPAN
 will be needed to complete the toolkit for dealing with Unicode.

 NOTE: This should be considered an experimental feature.
Implementation
 details are subject to change.

Support for interpolating named characters
The new \N escape interpolates named characters within strings.
 For example, "Hi! \N{WHITE
SMILING FACE}" evaluates to a string
 with a Unicode smiley face at the end.

Perl version 5.14.2 documentation - perl561delta

Page 9http://perldoc.perl.org

"our" declarations
An "our" declaration introduces a value that can be best understood
 as a lexically scoped symbolic
alias to a global variable in the
 package that was current where the variable was declared. This is

mostly useful as an alternative to the vars pragma, but also provides
 the opportunity to introduce
typing and other attributes for such
 variables. See "our" in perlfunc.

Support for strings represented as a vector of ordinals
Literals of the form v1.2.3.4 are now parsed as a string composed
 of characters with the specified
ordinals. This is an alternative, more
 readable way to construct (possibly Unicode) strings instead of

interpolating characters, as in "\x{1}\x{2}\x{3}\x{4}". The leading v may be omitted if there
are more than two ordinals, so 1.2.3 is
 parsed the same as v1.2.3.

Strings written in this form are also useful to represent version "numbers".
 It is easy to compare such
version "numbers" (which are really just plain
 strings) using any of the usual string comparison
operators eq, ne, lt, gt, etc., or perform bitwise string operations on them using |, &, etc.

In conjunction with the new $^V magic variable (which contains
 the perl version as a string), such
literals can be used as a readable way
 to check if you're running a particular version of Perl:

 # this will parse in older versions of Perl also
 if ($^V and $^V gt v5.6.0) {
 # new features supported
 }

require and use also have some special magic to support such literals.
 They will be interpreted as
a version rather than as a module name:

 require v5.6.0;		 # croak if $^V lt v5.6.0
 use v5.6.0;			 # same, but croaks at compile-time

Alternatively, the v may be omitted if there is more than one dot:

 require 5.6.0;
 use 5.6.0;

Also, sprintf and printf support the Perl-specific format flag %v
 to print ordinals of characters in
arbitrary strings:

 printf "v%vd", $^V;		 # prints current version, such as "v5.5.650"
 printf "%*vX", ":", $addr;	 # formats IPv6 address
 printf "%*vb", " ", $bits;	 # displays bitstring

See "Scalar value constructors" in perldata for additional information.

Improved Perl version numbering system
Beginning with Perl version 5.6.0, the version number convention has been
 changed to a "dotted
integer" scheme that is more commonly found in open
 source projects.

Maintenance versions of v5.6.0 will be released as v5.6.1, v5.6.2 etc.
 The next development series
following v5.6.0 will be numbered v5.7.x,
 beginning with v5.7.0, and the next major production release
following
 v5.6.0 will be v5.8.0.

The English module now sets $PERL_VERSION to $^V (a string value) rather
 than $] (a numeric
value). (This is a potential incompatibility.
 Send us a report via perlbug if you are affected by this.)

The v1.2.3 syntax is also now legal in Perl.
 See Support for strings represented as a vector of ordinals
for more on that.

Perl version 5.14.2 documentation - perl561delta

Page 10http://perldoc.perl.org

To cope with the new versioning system's use of at least three significant
 digits for each version
component, the method used for incrementing the
 subversion number has also changed slightly. We
assume that versions older
 than v5.6.0 have been incrementing the subversion component in
multiples of
 10. Versions after v5.6.0 will increment them by 1. Thus, using the new
 notation,
5.005_03 is the "same" as v5.5.30, and the first maintenance
 version following v5.6.0 will be v5.6.1
(which should be read as being
 equivalent to a floating point value of 5.006_001 in the older format,

stored in $]).

New syntax for declaring subroutine attributes
Formerly, if you wanted to mark a subroutine as being a method call or
 as requiring an automatic
lock() when it is entered, you had to declare
 that with a use attrs pragma in the body of the
subroutine.
 That can now be accomplished with declaration syntax, like this:

 sub mymethod : locked method;
 ...
 sub mymethod : locked method {
	 ...
 }

 sub othermethod :locked :method;
 ...
 sub othermethod :locked :method {
	 ...
 }

(Note how only the first : is mandatory, and whitespace surrounding
 the : is optional.)

AutoSplit.pm and SelfLoader.pm have been updated to keep the attributes
 with the stubs they
provide. See attributes.

File and directory handles can be autovivified
Similar to how constructs such as $x->[0] autovivify a reference,
 handle constructors (open(),
opendir(), pipe(), socketpair(), sysopen(),
 socket(), and accept()) now autovivify a file or directory
handle
 if the handle passed to them is an uninitialized scalar variable. This
 allows the constructs such
as open(my $fh, ...) and open(local $fh,...)
 to be used to create filehandles that will
conveniently be closed
 automatically when the scope ends, provided there are no other references
 to
them. This largely eliminates the need for typeglobs when opening
 filehandles that must be passed
around, as in the following example:

 sub myopen {
 open my $fh, "@_"
	 or die "Can't open '@_': $!";
	 return $fh;
 }

 {
 my $f = myopen("</etc/motd");
	 print <$f>;
	 # $f implicitly closed here
 }

open() with more than two arguments
If open() is passed three arguments instead of two, the second argument
 is used as the mode and the
third argument is taken to be the file name.
 This is primarily useful for protecting against unintended
magic behavior
 of the traditional two-argument form. See "open" in perlfunc.

Perl version 5.14.2 documentation - perl561delta

Page 11http://perldoc.perl.org

64-bit support
Any platform that has 64-bit integers either

	 (1) natively as longs or ints
	 (2) via special compiler flags
	 (3) using long long or int64_t

is able to use "quads" (64-bit integers) as follows:

constants (decimal, hexadecimal, octal, binary) in the code

arguments to oct() and hex()

arguments to print(), printf() and sprintf() (flag prefixes ll, L, q)

printed as such

pack() and unpack() "q" and "Q" formats

in basic arithmetics: + - * / % (NOTE: operating close to the limits
 of the integer values may
produce surprising results)

in bit arithmetics: & | ^ ~ << >> (NOTE: these used to be forced to be 32 bits wide but now
operate on the full native width.)

vec()

Note that unless you have the case (a) you will have to configure
 and compile Perl using the
-Duse64bitint Configure flag.

 NOTE: The Configure flags -Duselonglong and -Duse64bits have been
 deprecated. Use -Duse64bitint instead.

There are actually two modes of 64-bitness: the first one is achieved
 using Configure -Duse64bitint
and the second one using Configure
 -Duse64bitall. The difference is that the first one is minimal and

the second one maximal. The first works in more places than the second.

The use64bitint does only as much as is required to get 64-bit
 integers into Perl (this may mean,
for example, using "long longs")
 while your memory may still be limited to 2 gigabytes (because your

pointers could still be 32-bit). Note that the name 64bitint does
 not imply that your C compiler will
be using 64-bit ints (it might,
 but it doesn't have to): the use64bitint means that you will be
 able
to have 64 bits wide scalar values.

The use64bitall goes all the way by attempting to switch also
 integers (if it can), longs (and
pointers) to being 64-bit. This may
 create an even more binary incompatible Perl than -Duse64bitint:
the
 resulting executable may not run at all in a 32-bit box, or you may
 have to
reboot/reconfigure/rebuild your operating system to be 64-bit
 aware.

Natively 64-bit systems like Alpha and Cray need neither -Duse64bitint
 nor -Duse64bitall.

Last but not least: note that due to Perl's habit of always using
 floating point numbers, the quads are
still not true integers.
 When quads overflow their limits (0...18_446_744_073_709_551_615 unsigned,
-9_223_372_036_854_775_808...9_223_372_036_854_775_807 signed), they
 are silently promoted
to floating point numbers, after which they will
 start losing precision (in their lower digits).

 NOTE: 64-bit support is still experimental on most platforms.
 Existing support only covers the LP64 data model. In particular, the
 LLP64 data model is not yet supported. 64-bit libraries and system
 APIs on many platforms have not stabilized--your mileage may vary.

Perl version 5.14.2 documentation - perl561delta

Page 12http://perldoc.perl.org

Large file support
If you have filesystems that support "large files" (files larger than
 2 gigabytes), you may now also be
able to create and access them from
 Perl.

 NOTE: The default action is to enable large file support, if
 available on the platform.

If the large file support is on, and you have a Fcntl constant
 O_LARGEFILE, the O_LARGEFILE is
automatically added to the flags
 of sysopen().

Beware that unless your filesystem also supports "sparse files" seeking
 to umpteen petabytes may be
inadvisable.

Note that in addition to requiring a proper file system to do large
 files you may also need to adjust
your per-process (or your
 per-system, or per-process-group, or per-user-group) maximum filesize

limits before running Perl scripts that try to handle large files,
 especially if you intend to write such
files.

Finally, in addition to your process/process group maximum filesize
 limits, you may have quota limits
on your filesystems that stop you
 (your user id or your user group id) from using large files.

Adjusting your process/user/group/file system/operating system limits
 is outside the scope of Perl
core language. For process limits, you
 may try increasing the limits using your shell's limits/limit/ulimit

command before running Perl. The BSD::Resource extension (not
 included with the standard Perl
distribution) may also be of use, it
 offers the getrlimit/setrlimit interface that can be used to adjust

process resource usage limits, including the maximum filesize limit.

Long doubles
In some systems you may be able to use long doubles to enhance the
 range and precision of your
double precision floating point numbers
 (that is, Perl's numbers). Use Configure -Duselongdouble to
enable
 this support (if it is available).

"more bits"
You can "Configure -Dusemorebits" to turn on both the 64-bit support
 and the long double support.

Enhanced support for sort() subroutines
Perl subroutines with a prototype of ($$), and XSUBs in general, can
 now be used as sort
subroutines. In either case, the two elements to
 be compared are passed as normal parameters in
@_. See "sort" in perlfunc.

For unprototyped sort subroutines, the historical behavior of passing the elements to be compared as
the global variables $a and $b remains
 unchanged.

sort $coderef @foo allowed
sort() did not accept a subroutine reference as the comparison
 function in earlier versions. This is now
permitted.

File globbing implemented internally
Perl now uses the File::Glob implementation of the glob() operator
 automatically. This avoids using an
external csh process and the
 problems associated with it.

 NOTE: This is currently an experimental feature. Interfaces and
 implementation are subject to change.

Support for CHECK blocks
In addition to BEGIN, INIT, END, DESTROY and AUTOLOAD,
 subroutines named CHECK are now
special. These are queued up during
 compilation and behave similar to END blocks, except they are

Perl version 5.14.2 documentation - perl561delta

Page 13http://perldoc.perl.org

called at
 the end of compilation rather than at the end of execution. They cannot
 be called directly.

POSIX character class syntax [: :] supported
For example to match alphabetic characters use /[[:alpha:]]/.
 See perlre for details.

Better pseudo-random number generator
In 5.005_0x and earlier, perl's rand() function used the C library
 rand(3) function. As of 5.005_52,
Configure tests for drand48(),
 random(), and rand() (in that order) and picks the first one it finds.

These changes should result in better random numbers from rand().

Improved qw// operator
The qw// operator is now evaluated at compile time into a true list
 instead of being replaced with a
run time call to split(). This
 removes the confusing misbehaviour of qw// in scalar context, which

had inherited that behaviour from split().

Thus:

 $foo = ($bar) = qw(a b c); print "$foo|$bar\n";

now correctly prints "3|a", instead of "2|a".

Better worst-case behavior of hashes
Small changes in the hashing algorithm have been implemented in
 order to improve the distribution of
lower order bits in the
 hashed value. This is expected to yield better performance on
 keys that are
repeated sequences.

pack() format 'Z' supported
The new format type 'Z' is useful for packing and unpacking null-terminated
 strings. See "pack" in
perlfunc.

pack() format modifier '!' supported
The new format type modifier '!' is useful for packing and unpacking
 native shorts, ints, and longs. See
"pack" in perlfunc.

pack() and unpack() support counted strings
The template character '/' can be used to specify a counted string
 type to be packed or unpacked.
See "pack" in perlfunc.

Comments in pack() templates
The '#' character in a template introduces a comment up to
 end of the line. This facilitates
documentation of pack()
 templates.

Weak references
In previous versions of Perl, you couldn't cache objects so as
 to allow them to be deleted if the last
reference from outside the cache is deleted. The reference in the cache would hold a
 reference count
on the object and the objects would never be
 destroyed.

Another familiar problem is with circular references. When an
 object references itself, its reference
count would never go
 down to zero, and it would not get destroyed until the program
 is about to exit.

Weak references solve this by allowing you to "weaken" any
 reference, that is, make it not count
towards the reference count.
 When the last non-weak reference to an object is deleted, the object
 is
destroyed and all the weak references to the object are
 automatically undef-ed.

To use this feature, you need the Devel::WeakRef package from CPAN, which
 contains additional
documentation.

Perl version 5.14.2 documentation - perl561delta

Page 14http://perldoc.perl.org

 NOTE: This is an experimental feature. Details are subject to change.

Binary numbers supported
Binary numbers are now supported as literals, in s?printf formats, and oct():

 $answer = 0b101010;
 printf "The answer is: %b\n", oct("0b101010");

Lvalue subroutines
Subroutines can now return modifiable lvalues.
 See "Lvalue subroutines" in perlsub.

 NOTE: This is an experimental feature. Details are subject to change.

Some arrows may be omitted in calls through references
Perl now allows the arrow to be omitted in many constructs
 involving subroutine calls through
references. For example, $foo[10]->('foo') may now be written $foo[10]('foo').
 This is
rather similar to how the arrow may be omitted from $foo[10]->{'foo'}. Note however, that the
arrow is still
 required for foo(10)->('bar').

Boolean assignment operators are legal lvalues
Constructs such as ($a ||= 2) += 1 are now allowed.

exists() is supported on subroutine names
The exists() builtin now works on subroutine names. A subroutine
 is considered to exist if it has been
declared (even if implicitly).
 See "exists" in perlfunc for examples.

exists() and delete() are supported on array elements
The exists() and delete() builtins now work on simple arrays as well.
 The behavior is similar to that on
hash elements.

exists() can be used to check whether an array element has been
 initialized. This avoids autovivifying
array elements that don't exist.
 If the array is tied, the EXISTS() method in the corresponding tied

package will be invoked.

delete() may be used to remove an element from the array and return
 it. The array element at that
position returns to its uninitialized
 state, so that testing for the same element with exists() will return

false. If the element happens to be the one at the end, the size of
 the array also shrinks up to the
highest element that tests true for
 exists(), or 0 if none such is found. If the array is tied, the DELETE()
method in the corresponding tied package will be invoked.

See "exists" in perlfunc and "delete" in perlfunc for examples.

Pseudo-hashes work better
Dereferencing some types of reference values in a pseudo-hash,
 such as $ph->{foo}[1], was
accidentally disallowed. This has
 been corrected.

When applied to a pseudo-hash element, exists() now reports whether
 the specified value exists, not
merely if the key is valid.

delete() now works on pseudo-hashes. When given a pseudo-hash element
 or slice it deletes the
values corresponding to the keys (but not the keys
 themselves). See "Pseudo-hashes: Using an array
as a hash" in perlref.

Pseudo-hash slices with constant keys are now optimized to array lookups
 at compile-time.

List assignments to pseudo-hash slices are now supported.

Perl version 5.14.2 documentation - perl561delta

Page 15http://perldoc.perl.org

The fields pragma now provides ways to create pseudo-hashes, via
 fields::new() and
fields::phash(). See fields.

 NOTE: The pseudo-hash data type continues to be experimental.
 Limiting oneself to the interface elements provided by the
 fields pragma will provide protection from any future changes.

Automatic flushing of output buffers
fork(), exec(), system(), qx//, and pipe open()s now flush buffers
 of all files opened for output when the
operation was attempted. This
 mostly eliminates confusing buffering mishaps suffered by users
unaware
 of how Perl internally handles I/O.

This is not supported on some platforms like Solaris where a suitably
 correct implementation of
fflush(NULL) isn't available.

Better diagnostics on meaningless filehandle operations
Constructs such as open(<FH>) and close(<FH>)
 are compile time errors. Attempting to read
from filehandles that
 were opened only for writing will now produce warnings (just as
 writing to
read-only filehandles does).

Where possible, buffered data discarded from duped input filehandle
open(NEW, "<&OLD") now attempts to discard any data that
 was previously read and buffered in
OLD before duping the handle.
 On platforms where doing this is allowed, the next read operation
 on
NEW will return the same data as the corresponding operation
 on OLD. Formerly, it would have
returned the data from the start
 of the following disk block instead.

eof() has the same old magic as <>
eof() would return true if no attempt to read from <> had
 yet been made. eof() has been changed
to have a little magic of its
 own, it now opens the <> files.

binmode() can be used to set :crlf and :raw modes
binmode() now accepts a second argument that specifies a discipline
 for the handle in question. The
two pseudo-disciplines ":raw" and
 ":crlf" are currently supported on DOS-derivative platforms.
 See
"binmode" in perlfunc and open.

-T filetest recognizes UTF-8 encoded files as "text"
The algorithm used for the -T filetest has been enhanced to
 correctly identify UTF-8 content as "text".

system(), backticks and pipe open now reflect exec() failure
On Unix and similar platforms, system(), qx() and open(FOO, "cmd |")
 etc., are implemented via fork()
and exec(). When the underlying
 exec() fails, earlier versions did not report the error properly,
 since
the exec() happened to be in a different process.

The child process now communicates with the parent about the
 error in launching the external
command, which allows these
 constructs to return with their usual error value and set $!.

Improved diagnostics
Line numbers are no longer suppressed (under most likely circumstances)
 during the global
destruction phase.

Diagnostics emitted from code running in threads other than the main
 thread are now accompanied
by the thread ID.

Embedded null characters in diagnostics now actually show up. They
 used to truncate the message in
prior versions.

$foo::a and $foo::b are now exempt from "possible typo" warnings only
 if sort() is encountered in

Perl version 5.14.2 documentation - perl561delta

Page 16http://perldoc.perl.org

package foo.

Unrecognized alphabetic escapes encountered when parsing quote
 constructs now generate a
warning, since they may take on new
 semantics in later versions of Perl.

Many diagnostics now report the internal operation in which the warning
 was provoked, like so:

 Use of uninitialized value in concatenation (.) at (eval 1) line 1.
 Use of uninitialized value in print at (eval 1) line 1.

Diagnostics that occur within eval may also report the file and line
 number where the eval is located,
in addition to the eval sequence
 number and the line number within the evaluated text itself. For

example:

 Not enough arguments for scalar at (eval 4)[newlib/perl5db.pl:1411]
line 2, at EOF

Diagnostics follow STDERR
Diagnostic output now goes to whichever file the STDERR handle
 is pointing at, instead of always
going to the underlying C runtime
 library's stderr.

More consistent close-on-exec behavior
On systems that support a close-on-exec flag on filehandles, the
 flag is now set for any handles
created by pipe(), socketpair(),
 socket(), and accept(), if that is warranted by the value of $^F
 that may
be in effect. Earlier versions neglected to set the flag
 for handles created with these operators. See
"pipe" in perlfunc, "socketpair" in perlfunc, "socket" in perlfunc, "accept" in perlfunc,
 and "$^F" in
perlvar.

syswrite() ease-of-use
The length argument of syswrite() has become optional.

Better syntax checks on parenthesized unary operators
Expressions such as:

 print defined(&foo,&bar,&baz);
 print uc("foo","bar","baz");
 undef($foo,&bar);

used to be accidentally allowed in earlier versions, and produced
 unpredictable behaviour. Some
produced ancillary warnings
 when used in this way; others silently did the wrong thing.

The parenthesized forms of most unary operators that expect a single
 argument now ensure that they
are not called with more than one
 argument, making the cases shown above syntax errors. The usual

behaviour of:

 print defined &foo, &bar, &baz;
 print uc "foo", "bar", "baz";
 undef $foo, &bar;

remains unchanged. See perlop.

Bit operators support full native integer width
The bit operators (& | ^ ~ << >>) now operate on the full native
 integral width (the exact size of which
is available in $Config{ivsize}).
 For example, if your platform is either natively 64-bit or if Perl
 has
been configured to use 64-bit integers, these operations apply
 to 8 bytes (as opposed to 4 bytes on
32-bit platforms).
 For portability, be sure to mask off the excess bits in the result of
 unary ~, e.g., ~$x
 & 0xffffffff.

Perl version 5.14.2 documentation - perl561delta

Page 17http://perldoc.perl.org

Improved security features
More potentially unsafe operations taint their results for improved
 security.

The passwd and shell fields returned by the getpwent(), getpwnam(),
 and getpwuid() are now
tainted, because the user can affect their own
 encrypted password and login shell.

The variable modified by shmread(), and messages returned by msgrcv()
 (and its object-oriented
interface IPC::SysV::Msg::rcv) are also tainted,
 because other untrusted processes can modify
messages and shared memory
 segments for their own nefarious purposes.

More functional bareword prototype (*)
Bareword prototypes have been rationalized to enable them to be used
 to override builtins that accept
barewords and interpret them in
 a special way, such as require or do.

Arguments prototyped as * will now be visible within the subroutine
 as either a simple scalar or as a
reference to a typeglob.
 See "Prototypes" in perlsub.

require and do may be overridden
require and do 'file' operations may be overridden locally
 by importing subroutines of the same
name into the current package (or globally by importing them into the CORE::GLOBAL:: namespace).

Overriding require will also affect use, provided the override
 is visible at compile-time.
 See
"Overriding Built-in Functions" in perlsub.

$^X variables may now have names longer than one character
Formerly, $^X was synonymous with ${"\cX"}, but $^XY was a syntax
 error. Now variable names that
begin with a control character may be
 arbitrarily long. However, for compatibility reasons, these
variables must be written with explicit braces, as ${^XY} for example. ${^XYZ} is synonymous with
${"\cXYZ"}. Variable names with more
 than one control character, such as ${^XY^Z}, are illegal.

The old syntax has not changed. As before, `^X' may be either a
 literal control-X character or the
two-character sequence `caret' plus
 `X'. When braces are omitted, the variable name stops after the

control character. Thus "$^XYZ" continues to be synonymous with $^X . "YZ" as before.

As before, lexical variables may not have names beginning with control
 characters. As before,
variables whose names begin with a control
 character are always forced to be in package `main'. All
such variables
 are reserved for future extensions, except those that begin with ^_, which may be
used by user programs and are guaranteed not to
 acquire special meaning in any future version of
Perl.

New variable $^C reflects -c switch
$^C has a boolean value that reflects whether perl is being run
 in compile-only mode (i.e. via the -c
switch). Since
 BEGIN blocks are executed under such conditions, this variable
 enables perl code to
determine whether actions that make sense
 only during normal running are warranted. See perlvar.

New variable $^V contains Perl version as a string
$^V contains the Perl version number as a string composed of
 characters whose ordinals match the
version numbers, i.e. v5.6.0.
 This may be used in string comparisons.

See Support for strings represented as a vector of ordinals for an
 example.

Optional Y2K warnings
If Perl is built with the cpp macro PERL_Y2KWARN defined,
 it emits optional warnings when
concatenating the number 19
 with another number.

This behavior must be specifically enabled when running Configure.
 See INSTALL and README.Y2K
.

Perl version 5.14.2 documentation - perl561delta

Page 18http://perldoc.perl.org

Arrays now always interpolate into double-quoted strings
In double-quoted strings, arrays now interpolate, no matter what. The
 behavior in earlier versions of
perl 5 was that arrays would interpolate
 into strings if the array had been mentioned before the string
was
 compiled, and otherwise Perl would raise a fatal compile-time error.
 In versions 5.000 through
5.003, the error was

 Literal @example now requires backslash

In versions 5.004_01 through 5.6.0, the error was

 In string, @example now must be written as \@example

The idea here was to get people into the habit of writing "fred\@example.com" when they wanted
a literal @ sign, just as
 they have always written "Give me back my \$5" when they wanted a

literal $ sign.

Starting with 5.6.1, when Perl now sees an @ sign in a
 double-quoted string, it always attempts to
interpolate an array,
 regardless of whether or not the array has been used or declared
 already. The
fatal error has been downgraded to an optional warning:

 Possible unintended interpolation of @example in string

This warns you that "fred@example.com" is going to turn into fred.com if you don't backslash the
@.
 See http://perl.plover.com/at-error.html for more details
 about the history here.

@- and @+ provide starting/ending offsets of regex submatches
The new magic variables @- and @+ provide the starting and ending
 offsets, respectively, of $&, $1,
$2, etc. See perlvar for
 details.

Modules and Pragmata
Modules

attributes

While used internally by Perl as a pragma, this module also
 provides a way to fetch subroutine
and variable attributes.
 See attributes.

B

The Perl Compiler suite has been extensively reworked for this
 release. More of the standard
Perl test suite passes when run
 under the Compiler, but there is still a significant way to
 go to
achieve production quality compiled executables.

 NOTE: The Compiler suite remains highly experimental. The
 generated code may not be correct, even when it manages to
execute
 without errors.

Benchmark

Overall, Benchmark results exhibit lower average error and better timing
 accuracy.

You can now run tests for n seconds instead of guessing the right
 number of tests to run: e.g.,
timethese(-5, ...) will run each code for at least 5 CPU seconds. Zero as the "number of
repetitions"
 means "for at least 3 CPU seconds". The output format has also
 changed. For
example:

 use Benchmark;$x=3;timethese(-5,{a=>sub{$x*$x},b=>sub{$x**2}})

will now output something like this:

Perl version 5.14.2 documentation - perl561delta

Page 19http://perldoc.perl.org

 Benchmark: running a, b, each for at least 5 CPU seconds...
 a: 5 wallclock secs (5.77 usr + 0.00 sys = 5.77 CPU)
@ 200551.91/s (n=1156516)
 b: 4 wallclock secs (5.00 usr + 0.02 sys = 5.02 CPU)
@ 159605.18/s (n=800686)

New features: "each for at least N CPU seconds...", "wallclock secs",
 and the "@
operations/CPU second (n=operations)".

timethese() now returns a reference to a hash of Benchmark objects containing
 the test
results, keyed on the names of the tests.

timethis() now returns the iterations field in the Benchmark result object
 instead of 0.

timethese(), timethis(), and the new cmpthese() (see below) can also take
 a format specifier of
'none' to suppress output.

A new function countit() is just like timeit() except that it takes a
 TIME instead of a COUNT.

A new function cmpthese() prints a chart comparing the results of each test
 returned from a
timethese() call. For each possible pair of tests, the
 percentage speed difference (iters/sec or
seconds/iter) is shown.

For other details, see Benchmark.

ByteLoader

The ByteLoader is a dedicated extension to generate and run
 Perl bytecode. See ByteLoader.

constant

References can now be used.

The new version also allows a leading underscore in constant names, but
 disallows a double
leading underscore (as in "__LINE__"). Some other names
 are disallowed or warned against,
including BEGIN, END, etc. Some names
 which were forced into main:: used to fail silently in
some cases; now they're
 fatal (outside of main::) and an optional warning (inside of main::).

The ability to detect whether a constant had been set with a given name has
 been added.

See constant.

charnames

This pragma implements the \N string escape. See charnames.

Data::Dumper

A Maxdepth setting can be specified to avoid venturing
 too deeply into deep data structures.
See Data::Dumper.

The XSUB implementation of Dump() is now automatically called if the Useqq setting is not in
use.

Dumping qr// objects works correctly.

DB

DB is an experimental module that exposes a clean abstraction
 to Perl's debugging API.

DB_File

DB_File can now be built with Berkeley DB versions 1, 2 or 3.
 See ext/DB_File/Changes.

Devel::DProf

Devel::DProf, a Perl source code profiler has been added. See Devel::DProf and dprofpp.

Devel::Peek

The Devel::Peek module provides access to the internal representation
 of Perl variables and
data. It is a data debugging tool for the XS programmer.

Perl version 5.14.2 documentation - perl561delta

Page 20http://perldoc.perl.org

Dumpvalue

The Dumpvalue module provides screen dumps of Perl data.

DynaLoader

DynaLoader now supports a dl_unload_file() function on platforms that
 support unloading
shared objects using dlclose().

Perl can also optionally arrange to unload all extension shared objects
 loaded by Perl. To
enable this, build Perl with the Configure option -Accflags=-DDL_UNLOAD_ALL_AT_EXIT.
(This maybe useful if you are
 using Apache with mod_perl.)

English

$PERL_VERSION now stands for $^V (a string value) rather than for $]
 (a numeric value).

Env

Env now supports accessing environment variables like PATH as array
 variables.

Fcntl

More Fcntl constants added: F_SETLK64, F_SETLKW64, O_LARGEFILE for
 large file (more
than 4GB) access (NOTE: the O_LARGEFILE is
 automatically added to sysopen() flags if
large file support has been
 configured, as is the default), Free/Net/OpenBSD locking
behaviour
 flags F_FLOCK, F_POSIX, Linux F_SHLCK, and O_ACCMODE: the combined

mask of O_RDONLY, O_WRONLY, and O_RDWR. The seek()/sysseek()
 constants
SEEK_SET, SEEK_CUR, and SEEK_END are available via the :seek tag. The
chmod()/stat() S_IF* constants and S_IS* functions
 are available via the :mode tag.

File::Compare

A compare_text() function has been added, which allows custom
 comparison functions. See
File::Compare.

File::Find

File::Find now works correctly when the wanted() function is either
 autoloaded or is a symbolic
reference.

A bug that caused File::Find to lose track of the working directory
 when pruning top-level
directories has been fixed.

File::Find now also supports several other options to control its
 behavior. It can follow
symbolic links if the follow option is
 specified. Enabling the no_chdir option will make
File::Find skip
 changing the current directory when walking directories. The untaint
 flag can
be useful when running with taint checks enabled.

See File::Find.

File::Glob

This extension implements BSD-style file globbing. By default,
 it will also be used for the
internal implementation of the glob()
 operator. See File::Glob.

File::Spec

New methods have been added to the File::Spec module: devnull() returns
 the name of the
null device (/dev/null on Unix) and tmpdir() the name of
 the temp directory (normally /tmp on
Unix). There are now also methods
 to convert between absolute and relative filenames:
abs2rel() and
 rel2abs(). For compatibility with operating systems that specify volume
 names in
file paths, the splitpath(), splitdir(), and catdir() methods
 have been added.

File::Spec::Functions

The new File::Spec::Functions modules provides a function interface
 to the File::Spec module.
Allows shorthand

Perl version 5.14.2 documentation - perl561delta

Page 21http://perldoc.perl.org

 $fullname = catfile($dir1, $dir2, $file);

instead of

 $fullname = File::Spec->catfile($dir1, $dir2, $file);

Getopt::Long

Getopt::Long licensing has changed to allow the Perl Artistic License
 as well as the GPL. It
used to be GPL only, which got in the way of
 non-GPL applications that wanted to use
Getopt::Long.

Getopt::Long encourages the use of Pod::Usage to produce help
 messages. For example:

 use Getopt::Long;
 use Pod::Usage;
 my $man = 0;
 my $help = 0;
 GetOptions('help|?' => \$help, man => \$man) or pod2usage(2);
 pod2usage(1) if $help;
 pod2usage(-exitstatus => 0, -verbose => 2) if $man;

 __END__

 =head1 NAME

 sample - Using Getopt::Long and Pod::Usage

 =head1 SYNOPSIS

 sample [options] [file ...]

 Options:
 -help brief help message
 -man full documentation

 =head1 OPTIONS

 =over 8

 =item B<-help>

 Print a brief help message and exits.

 =item B<-man>

 Prints the manual page and exits.

 =back

 =head1 DESCRIPTION

 B<This program> will read the given input file(s) and do
something
 useful with the contents thereof.

 =cut

Perl version 5.14.2 documentation - perl561delta

Page 22http://perldoc.perl.org

See Pod::Usage for details.

A bug that prevented the non-option call-back <> from being
 specified as the first argument
has been fixed.

To specify the characters < and > as option starters, use ><. Note,
 however, that changing
option starters is strongly deprecated.

IO

write() and syswrite() will now accept a single-argument
 form of the call, for consistency with
Perl's syswrite().

You can now create a TCP-based IO::Socket::INET without forcing
 a connect attempt. This
allows you to configure its options
 (like making it non-blocking) and then call connect()
manually.

A bug that prevented the IO::Socket::protocol() accessor
 from ever returning the correct value
has been corrected.

IO::Socket::connect now uses non-blocking IO instead of alarm()
 to do connect timeouts.

IO::Socket::accept now uses select() instead of alarm() for doing
 timeouts.

IO::Socket::INET->new now sets $! correctly on failure. $@ is
 still set for backwards
compatibility.

JPL

Java Perl Lingo is now distributed with Perl. See jpl/README
 for more information.

lib

use lib now weeds out any trailing duplicate entries. no lib removes all named entries.

Math::BigInt

The bitwise operations <<, >>, &, |,
 and ~ are now supported on bigints.

Math::Complex

The accessor methods Re, Im, arg, abs, rho, and theta can now also
 act as mutators
(accessor $z->Re(), mutator $z->Re(3)).

The class method display_format and the corresponding object method
display_format, in addition to accepting just one argument, now can
 also accept a
parameter hash. Recognized keys of a parameter hash are "style", which corresponds to
the old one parameter case, and two
 new parameters: "format", which is a printf()-style
format string
 (defaults usually to "%.15g", you can revert to the default by
 setting the format
string to undef) used for both parts of a
 complex number, and "polar_pretty_print"
(defaults to true),
 which controls whether an attempt is made to try to recognize small

multiples and rationals of pi (2pi, pi/2) at the argument (angle) of a
 polar complex number.

The potentially disruptive change is that in list context both methods
 now return the parameter
hash, instead of only the value of the "style" parameter.

Math::Trig

A little bit of radial trigonometry (cylindrical and spherical),
 radial coordinate conversions, and
the great circle distance were added.

Pod::Parser, Pod::InputObjects

Pod::Parser is a base class for parsing and selecting sections of
 pod documentation from an
input stream. This module takes care of
 identifying pod paragraphs and commands in the
input and hands off the
 parsed paragraphs and commands to user-defined methods which are
free
 to interpret or translate them as they see fit.

Pod::InputObjects defines some input objects needed by Pod::Parser, and
 for advanced users
of Pod::Parser that need more about a command besides
 its name and text.

Perl version 5.14.2 documentation - perl561delta

Page 23http://perldoc.perl.org

As of release 5.6.0 of Perl, Pod::Parser is now the officially sanctioned
 "base parser code"
recommended for use by all pod2xxx translators.
 Pod::Text (pod2text) and Pod::Man
(pod2man) have already been converted
 to use Pod::Parser and efforts to convert Pod::HTML
(pod2html) are already
 underway. For any questions or comments about pod parsing and
translating
 issues and utilities, please use the pod-people@perl.org mailing list.

For further information, please see Pod::Parser and Pod::InputObjects.

Pod::Checker, podchecker

This utility checks pod files for correct syntax, according to perlpod. Obvious errors are
flagged as such, while warnings are
 printed for mistakes that can be handled gracefully. The
checklist is
 not complete yet. See Pod::Checker.

Pod::ParseUtils, Pod::Find

These modules provide a set of gizmos that are useful mainly for pod
 translators. Pod::Find
traverses directory structures and
 returns found pod files, along with their canonical names
(like File::Spec::Unix). Pod::ParseUtils contains Pod::List (useful for storing pod list
information), Pod::Hyperlink
 (for parsing the contents of L<> sequences) and Pod::Cache

(for caching information about pod files, e.g., link nodes).

Pod::Select, podselect

Pod::Select is a subclass of Pod::Parser which provides a function
 named "podselect()" to
filter out user-specified sections of raw pod
 documentation from an input stream. podselect is
a script that provides
 access to Pod::Select from other scripts to be used as a filter.
 See
Pod::Select.

Pod::Usage, pod2usage

Pod::Usage provides the function "pod2usage()" to print usage messages for
 a Perl script
based on its embedded pod documentation. The pod2usage()
 function is generally useful to
all script authors since it lets them
 write and maintain a single source (the pods) for
documentation, thus
 removing the need to create and maintain redundant usage message text
consisting of information already in the pods.

There is also a pod2usage script which can be used from other kinds of
 scripts to print usage
messages from pods (even for non-Perl scripts
 with pods embedded in comments).

For details and examples, please see Pod::Usage.

Pod::Text and Pod::Man

Pod::Text has been rewritten to use Pod::Parser. While pod2text() is
 still available for
backwards compatibility, the module now has a new
 preferred interface. See Pod::Text for the
details. The new Pod::Text
 module is easily subclassed for tweaks to the output, and two such
subclasses (Pod::Text::Termcap for man-page-style bold and underlining
 using termcap
information, and Pod::Text::Color for markup with ANSI color
 sequences) are now standard.

pod2man has been turned into a module, Pod::Man, which also uses
 Pod::Parser. In the
process, several outstanding bugs related to quotes
 in section headers, quoting of code
escapes, and nested lists have been
 fixed. pod2man is now a wrapper script around this
module.

SDBM_File

An EXISTS method has been added to this module (and sdbm_exists() has
 been added to the
underlying sdbm library), so one can now call exists
 on an SDBM_File tied hash and get the
correct result, rather than a
 runtime error.

A bug that may have caused data loss when more than one disk block
 happens to be read
from the database in a single FETCH() has been
 fixed.

Sys::Syslog

Perl version 5.14.2 documentation - perl561delta

Page 24http://perldoc.perl.org

Sys::Syslog now uses XSUBs to access facilities from syslog.h so it
 no longer requires
syslog.ph to exist.

Sys::Hostname

Sys::Hostname now uses XSUBs to call the C library's gethostname() or
 uname() if they exist.

Term::ANSIColor

Term::ANSIColor is a very simple module to provide easy and readable
 access to the ANSI
color and highlighting escape sequences, supported by
 most ANSI terminal emulators. It is
now included standard.

Time::Local

The timelocal() and timegm() functions used to silently return bogus
 results when the date fell
outside the machine's integer range. They
 now consistently croak() if the date falls in an
unsupported range.

Win32

The error return value in list context has been changed for all functions
 that return a list of
values. Previously these functions returned a list
 with a single element undef if an error
occurred. Now these functions
 return the empty list in these situations. This applies to the
following
 functions:

 Win32::FsType
 Win32::GetOSVersion

The remaining functions are unchanged and continue to return undef on
 error even in list
context.

The Win32::SetLastError(ERROR) function has been added as a complement
 to the
Win32::GetLastError() function.

The new Win32::GetFullPathName(FILENAME) returns the full absolute
 pathname for
FILENAME in scalar context. In list context it returns
 a two-element list containing the fully
qualified directory name and
 the filename. See Win32.

XSLoader

The XSLoader extension is a simpler alternative to DynaLoader.
 See XSLoader.

DBM Filters

A new feature called "DBM Filters" has been added to all the
 DBM modules--DB_File,
GDBM_File, NDBM_File, ODBM_File, and SDBM_File.
 DBM Filters add four new methods to
each DBM module:

 filter_store_key
 filter_store_value
 filter_fetch_key
 filter_fetch_value

These can be used to filter key-value pairs before the pairs are
 written to the database or just
after they are read from the database.
 See perldbmfilter for further information.

Pragmata
use attrs is now obsolete, and is only provided for
 backward-compatibility. It's been replaced by
the sub : attributes
 syntax. See "Subroutine Attributes" in perlsub and attributes.

Lexical warnings pragma, use warnings;, to control optional warnings.
 See perllexwarn.

use filetest to control the behaviour of filetests (-r -w
 ...). Currently only one subpragma
implemented, "use filetest
 'access';", that uses access(2) or equivalent to check permissions
 instead

Perl version 5.14.2 documentation - perl561delta

Page 25http://perldoc.perl.org

of using stat(2) as usual. This matters in filesystems
 where there are ACLs (access control lists): the
stat(2) might lie,
 but access(2) knows better.

The open pragma can be used to specify default disciplines for
 handle constructors (e.g. open()) and
for qx//. The two
 pseudo-disciplines :raw and :crlf are currently supported on
 DOS-derivative
platforms (i.e. where binmode is not a no-op).
 See also binmode() can be used to set :crlf and :raw
modes.

Utility Changes
dprofpp

dprofpp is used to display profile data generated using Devel::DProf.
 See dprofpp.

find2perl
The find2perl utility now uses the enhanced features of the File::Find
 module. The -depth and
-follow options are supported. Pod documentation
 is also included in the script.

h2xs
The h2xs tool can now work in conjunction with C::Scan (available
 from CPAN) to automatically
parse real-life header files. The -M, -a, -k, and -o options are new.

perlcc
perlcc now supports the C and Bytecode backends. By default,
 it generates output from the simple
C backend rather than the
 optimized C backend.

Support for non-Unix platforms has been improved.

perldoc
perldoc has been reworked to avoid possible security holes.
 It will not by default let itself be run as
the superuser, but you
 may still use the -U switch to try to make it drop privileges
 first.

The Perl Debugger
Many bug fixes and enhancements were added to perl5db.pl, the
 Perl debugger. The help
documentation was rearranged. New commands
 include < ?, > ?, and { ? to list out current
 actions,
man docpage to run your doc viewer on some perl
 docset, and support for quoted options. The help
information was
 rearranged, and should be viewable once again if you're using less
 as your pager. A
serious security hole was plugged--you should
 immediately remove all older versions of the Perl
debugger as
 installed in previous releases, all the way back to perl3, from
 your system to avoid being
bitten by this.

Improved Documentation
Many of the platform-specific README files are now part of the perl
 installation. See perl for the
complete list.

perlapi.pod

The official list of public Perl API functions.

perlboot.pod

A tutorial for beginners on object-oriented Perl.

perlcompile.pod

An introduction to using the Perl Compiler suite.

perldbmfilter.pod

A howto document on using the DBM filter facility.

perldebug.pod

Perl version 5.14.2 documentation - perl561delta

Page 26http://perldoc.perl.org

All material unrelated to running the Perl debugger, plus all
 low-level guts-like details that
risked crushing the casual user
 of the debugger, have been relocated from the old manpage
to the
 next entry below.

perldebguts.pod

This new manpage contains excessively low-level material not related
 to the Perl debugger,
but slightly related to debugging Perl itself.
 It also contains some arcane internal details of how
the debugging
 process works that may only be of interest to developers of Perl
 debuggers.

perlfork.pod

Notes on the fork() emulation currently available for the Windows platform.

perlfilter.pod

An introduction to writing Perl source filters.

perlhack.pod

Some guidelines for hacking the Perl source code.

perlintern.pod

A list of internal functions in the Perl source code.
 (List is currently empty.)

perllexwarn.pod

Introduction and reference information about lexically scoped
 warning categories.

perlnumber.pod

Detailed information about numbers as they are represented in Perl.

perlopentut.pod

A tutorial on using open() effectively.

perlreftut.pod

A tutorial that introduces the essentials of references.

perltootc.pod

A tutorial on managing class data for object modules.

perltodo.pod

Discussion of the most often wanted features that may someday be
 supported in Perl.

perlunicode.pod

An introduction to Unicode support features in Perl.

Performance enhancements
Simple sort() using { $a <=> $b } and the like are optimized

Many common sort() operations using a simple inlined block are now
 optimized for faster
performance.

Optimized assignments to lexical variables
Certain operations in the RHS of assignment statements have been
 optimized to directly set the
lexical variable on the LHS,
 eliminating redundant copying overheads.

Faster subroutine calls
Minor changes in how subroutine calls are handled internally
 provide marginal improvements in
performance.

Perl version 5.14.2 documentation - perl561delta

Page 27http://perldoc.perl.org

delete(), each(), values() and hash iteration are faster
The hash values returned by delete(), each(), values() and hashes in a
 list context are the actual
values in the hash, instead of copies.
 This results in significantly better performance, because it
eliminates
 needless copying in most situations.

Installation and Configuration Improvements
-Dusethreads means something different

The -Dusethreads flag now enables the experimental interpreter-based thread
 support by default. To
get the flavor of experimental threads that was in
 5.005 instead, you need to run Configure with
"-Dusethreads -Duse5005threads".

As of v5.6.0, interpreter-threads support is still lacking a way to
 create new threads from Perl (i.e.,
use Thread; will not work with
 interpreter threads). use Thread; continues to be available when
you
 specify the -Duse5005threads option to Configure, bugs and all.

 NOTE: Support for threads continues to be an experimental feature.
 Interfaces and implementation are subject to sudden and drastic
changes.

New Configure flags
The following new flags may be enabled on the Configure command line
 by running Configure with
-Dflag.

 usemultiplicity
 usethreads useithreads	 (new interpreter threads: no Perl API yet)
 usethreads use5005threads	 (threads as they were in 5.005)

 use64bitint			 (equal to now deprecated 'use64bits')
 use64bitall

 uselongdouble
 usemorebits
 uselargefiles
 usesocks			 (only SOCKS v5 supported)

Threadedness and 64-bitness now more daring
The Configure options enabling the use of threads and the use of
 64-bitness are now more daring in
the sense that they no more have an
 explicit list of operating systems of known threads/64-bit

capabilities. In other words: if your operating system has the
 necessary APIs and datatypes, you
should be able just to go ahead and
 use them, for threads by Configure -Dusethreads, and for 64 bits

either explicitly by Configure -Duse64bitint or implicitly if your
 system has 64-bit wide datatypes. See
also 64-bit support.

Long Doubles
Some platforms have "long doubles", floating point numbers of even
 larger range than ordinary
"doubles". To enable using long doubles for
 Perl's scalars, use -Duselongdouble.

-Dusemorebits
You can enable both -Duse64bitint and -Duselongdouble with -Dusemorebits.
 See also 64-bit support.

-Duselargefiles
Some platforms support system APIs that are capable of handling large files
 (typically, files larger
than two gigabytes). Perl will try to use these
 APIs if you ask for -Duselargefiles.

See Large file support for more information.

Perl version 5.14.2 documentation - perl561delta

Page 28http://perldoc.perl.org

installusrbinperl
You can use "Configure -Uinstallusrbinperl" which causes installperl
 to skip installing perl also as
/usr/bin/perl. This is useful if you
 prefer not to modify /usr/bin for some reason or another but harmful

because many scripts assume to find Perl in /usr/bin/perl.

SOCKS support
You can use "Configure -Dusesocks" which causes Perl to probe
 for the SOCKS proxy protocol
library (v5, not v4). For more information
 on SOCKS, see:

 http://www.socks.nec.com/

-A flag
You can "post-edit" the Configure variables using the Configure -A
 switch. The editing happens
immediately after the platform specific
 hints files have been processed but before the actual
configuration
 process starts. Run Configure -h to find out the full -A syntax.

Enhanced Installation Directories
The installation structure has been enriched to improve the support
 for maintaining multiple versions
of perl, to provide locations for
 vendor-supplied modules, scripts, and manpages, and to ease
maintenance
 of locally-added modules, scripts, and manpages. See the section on
 Installation
Directories in the INSTALL file for complete details.
 For most users building and installing from
source, the defaults should
 be fine.

If you previously used Configure -Dsitelib or -Dsitearch to set
 special values for library
directories, you might wish to consider using
 the new -Dsiteprefix setting instead. Also, if you
wish to re-use a
 config.sh file from an earlier version of perl, you should be sure to
 check that
Configure makes sensible choices for the new directories.
 See INSTALL for complete details.

gcc automatically tried if 'cc' does not seem to be working
In many platforms the vendor-supplied 'cc' is too stripped-down to
 build Perl (basically, the 'cc' doesn't
do ANSI C). If this seems
 to be the case and the 'cc' does not seem to be the GNU C compiler
 'gcc',
an automatic attempt is made to find and use 'gcc' instead.

Platform specific changes
Supported platforms

The Mach CThreads (NEXTSTEP, OPENSTEP) are now supported by the Thread
 extension.

GNU/Hurd is now supported.

Rhapsody/Darwin is now supported.

EPOC is now supported (on Psion 5).

The cygwin port (formerly cygwin32) has been greatly improved.

DOS
Perl now works with djgpp 2.02 (and 2.03 alpha).

Environment variable names are not converted to uppercase any more.

Incorrect exit codes from backticks have been fixed.

This port continues to use its own builtin globbing (not File::Glob).

OS390 (OpenEdition MVS)
Support for this EBCDIC platform has not been renewed in this release.
 There are difficulties in
reconciling Perl's standardization on UTF-8
 as its internal representation for characters with the
EBCDIC character
 set, because the two are incompatible.

Perl version 5.14.2 documentation - perl561delta

Page 29http://perldoc.perl.org

It is unclear whether future versions will renew support for this
 platform, but the possibility exists.

VMS
Numerous revisions and extensions to configuration, build, testing, and
 installation process to
accommodate core changes and VMS-specific options.

Expand %ENV-handling code to allow runtime mapping to logical names,
 CLI symbols, and CRTL
environ array.

Extension of subprocess invocation code to accept filespecs as command
 "verbs".

Add to Perl command line processing the ability to use default file types and
 to recognize Unix-style 2
>&1.

Expansion of File::Spec::VMS routines, and integration into ExtUtils::MM_VMS.

Extension of ExtUtils::MM_VMS to handle complex extensions more flexibly.

Barewords at start of Unix-syntax paths may be treated as text rather than
 only as logical names.

Optional secure translation of several logical names used internally by Perl.

Miscellaneous bugfixing and porting of new core code to VMS.

Thanks are gladly extended to the many people who have contributed VMS
 patches, testing, and
ideas.

Win32
Perl can now emulate fork() internally, using multiple interpreters running
 in different concurrent
threads. This support must be enabled at build
 time. See perlfork for detailed information.

When given a pathname that consists only of a drivename, such as A:,
 opendir() and stat() now use
the current working directory for the drive
 rather than the drive root.

The builtin XSUB functions in the Win32:: namespace are documented. See Win32.

$^X now contains the full path name of the running executable.

A Win32::GetLongPathName() function is provided to complement
 Win32::GetFullPathName() and
Win32::GetShortPathName(). See Win32.

POSIX::uname() is supported.

system(1,...) now returns true process IDs rather than process
 handles. kill() accepts any real process
id, rather than strictly
 return values from system(1,...).

For better compatibility with Unix, kill(0, $pid) can now be used to
 test whether a process
exists.

The Shell module is supported.

Better support for building Perl under command.com in Windows 95
 has been added.

Scripts are read in binary mode by default to allow ByteLoader (and
 the filter mechanism in general)
to work properly. For compatibility,
 the DATA filehandle will be set to text mode if a carriage return is

detected at the end of the line containing the __END__ or __DATA__
 token; if not, the DATA
filehandle will be left open in binary mode.
 Earlier versions always opened the DATA filehandle in text
mode.

The glob() operator is implemented via the File::Glob extension,
 which supports glob syntax of the
C shell. This increases the flexibility
 of the glob() operator, but there may be compatibility issues for

programs that relied on the older globbing syntax. If you want to
 preserve compatibility with the older
syntax, you might want to run
 perl with -MFile::DosGlob. For details and compatibility information,

Perl version 5.14.2 documentation - perl561delta

Page 30http://perldoc.perl.org

see File::Glob.

Significant bug fixes
<HANDLE> on empty files

With $/ set to undef, "slurping" an empty file returns a string of
 zero length (instead of undef, as it
used to) the first time the
 HANDLE is read after $/ is set to undef. Further reads yield undef.

This means that the following will append "foo" to an empty file (it used
 to do nothing):

 perl -0777 -pi -e 's/^/foo/' empty_file

The behaviour of:

 perl -pi -e 's/^/foo/' empty_file

is unchanged (it continues to leave the file empty).

eval '...' improvements
Line numbers (as reflected by caller() and most diagnostics) within eval '...' were often incorrect
where here documents were involved.
 This has been corrected.

Lexical lookups for variables appearing in eval '...' within
 functions that were themselves called
within an eval '...' were
 searching the wrong place for lexicals. The lexical search now
 correctly
ends at the subroutine's block boundary.

The use of return within eval {...} caused $@ not to be reset
 correctly when no exception
occurred within the eval. This has
 been fixed.

Parsing of here documents used to be flawed when they appeared as
 the replacement expression in
eval 's/.../.../e'. This has
 been fixed.

All compilation errors are true errors
Some "errors" encountered at compile time were by necessity generated as warnings followed by
eventual termination of the
 program. This enabled more such errors to be reported in a
 single run,
rather than causing a hard stop at the first error
 that was encountered.

The mechanism for reporting such errors has been reimplemented
 to queue compile-time errors and
report them at the end of the
 compilation as true errors rather than as warnings. This fixes
 cases
where error messages leaked through in the form of warnings
 when code was compiled at run time
using eval STRING, and
 also allows such errors to be reliably trapped using eval "...".

Implicitly closed filehandles are safer
Sometimes implicitly closed filehandles (as when they are localized,
 and Perl automatically closes
them on exiting the scope) could
 inadvertently set $? or $!. This has been corrected.

Behavior of list slices is more consistent
When taking a slice of a literal list (as opposed to a slice of
 an array or hash), Perl used to return an
empty list if the
 result happened to be composed of all undef values.

The new behavior is to produce an empty list if (and only if)
 the original list was empty. Consider the
following example:

 @a = (1,undef,undef,2)[2,1,2];

The old behavior would have resulted in @a having no elements.
 The new behavior ensures it has
three undefined elements.

Note in particular that the behavior of slices of the following
 cases remains unchanged:

Perl version 5.14.2 documentation - perl561delta

Page 31http://perldoc.perl.org

 @a = ()[1,2];
 @a = (getpwent)[7,0];
 @a = (anything_returning_empty_list())[2,1,2];
 @a = @b[2,1,2];
 @a = @c{'a','b','c'};

See perldata.

(\$) prototype and $foo{a}
A scalar reference prototype now correctly allows a hash or
 array element in that slot.

goto &sub and AUTOLOAD
The goto &sub construct works correctly when &sub happens
 to be autoloaded.

-bareword allowed under use integer
The autoquoting of barewords preceded by - did not work
 in prior versions when the integer
pragma was enabled.
 This has been fixed.

Failures in DESTROY()
When code in a destructor threw an exception, it went unnoticed
 in earlier versions of Perl, unless
someone happened to be
 looking in $@ just after the point the destructor happened to
 run. Such
failures are now visible as warnings when warnings are
 enabled.

Locale bugs fixed
printf() and sprintf() previously reset the numeric locale
 back to the default "C" locale. This has been
fixed.

Numbers formatted according to the local numeric locale
 (such as using a decimal comma instead of
a decimal dot) caused
 "isn't numeric" warnings, even while the operations accessing
 those numbers
produced correct results. These warnings have been
 discontinued.

Memory leaks
The eval 'return sub {...}' construct could sometimes leak
 memory. This has been fixed.

Operations that aren't filehandle constructors used to leak memory
 when used on invalid filehandles.
This has been fixed.

Constructs that modified @_ could fail to deallocate values
 in @_ and thus leak memory. This has been
corrected.

Spurious subroutine stubs after failed subroutine calls
Perl could sometimes create empty subroutine stubs when a
 subroutine was not found in the
package. Such cases stopped
 later method lookups from progressing into base packages.
 This has
been corrected.

Taint failures under -U
When running in unsafe mode, taint violations could sometimes
 cause silent failures. This has been
fixed.

END blocks and the -c switch
Prior versions used to run BEGIN and END blocks when Perl was
 run in compile-only mode. Since
this is typically not the expected
 behavior, END blocks are not executed anymore when the -c switch

is used, or if compilation fails.

See Support for CHECK blocks for how to run things when the compile phase ends.

Perl version 5.14.2 documentation - perl561delta

Page 32http://perldoc.perl.org

Potential to leak DATA filehandles
Using the __DATA__ token creates an implicit filehandle to
 the file that contains the token. It is the
program's
 responsibility to close it when it is done reading from it.

This caveat is now better explained in the documentation.
 See perldata.

New or Changed Diagnostics
"%s" variable %s masks earlier declaration in same %s

(W misc) A "my" or "our" variable has been redeclared in the current scope or statement,

effectively eliminating all access to the previous instance. This is almost
 always a
typographical error. Note that the earlier variable will still exist
 until the end of the scope or
until all closure referents to it are
 destroyed.

"my sub" not yet implemented

(F) Lexically scoped subroutines are not yet implemented. Don't try that
 yet.

"our" variable %s redeclared

(W misc) You seem to have already declared the same global once before in the
 current
lexical scope.

'!' allowed only after types %s

(F) The '!' is allowed in pack() and unpack() only after certain types.
 See "pack" in perlfunc.

/ cannot take a count

(F) You had an unpack template indicating a counted-length string,
 but you have also
specified an explicit size for the string.
 See "pack" in perlfunc.

/ must be followed by a, A or Z

(F) You had an unpack template indicating a counted-length string,
 which must be followed by
one of the letters a, A or Z
 to indicate what sort of string is to be unpacked.
 See "pack" in
perlfunc.

/ must be followed by a*, A* or Z*

(F) You had a pack template indicating a counted-length string,
 Currently the only things that
can have their length counted are a*, A* or Z*.
 See "pack" in perlfunc.

/ must follow a numeric type

(F) You had an unpack template that contained a '#',
 but this did not follow some numeric
unpack specification.
 See "pack" in perlfunc.

/%s/: Unrecognized escape \\%c passed through

(W regexp) You used a backslash-character combination which is not recognized
 by Perl. This
combination appears in an interpolated variable or a '-delimited regular expression. The
character was understood literally.

/%s/: Unrecognized escape \\%c in character class passed through

(W regexp) You used a backslash-character combination which is not recognized
 by Perl
inside character classes. The character was understood literally.

/%s/ should probably be written as "%s"

(W syntax) You have used a pattern where Perl expected to find a string,
 as in the first
argument to join. Perl will treat the true
 or false result of matching the pattern against $_ as
the string,
 which is probably not what you had in mind.

%s() called too early to check prototype

(W prototype) You've called a function that has a prototype before the parser saw a
 definition

Perl version 5.14.2 documentation - perl561delta

Page 33http://perldoc.perl.org

or declaration for it, and Perl could not check that the call
 conforms to the prototype. You need
to either add an early prototype
 declaration for the subroutine in question, or move the
subroutine
 definition ahead of the call to get proper prototype checking. Alternatively,
 if you
are certain that you're calling the function correctly, you may put
 an ampersand before the
name to avoid the warning. See perlsub.

%s argument is not a HASH or ARRAY element

(F) The argument to exists() must be a hash or array element, such as:

 $foo{$bar}
 $ref->{"susie"}[12]

%s argument is not a HASH or ARRAY element or slice

(F) The argument to delete() must be either a hash or array element, such as:

 $foo{$bar}
 $ref->{"susie"}[12]

or a hash or array slice, such as:

 @foo[$bar, $baz, $xyzzy]
 @{$ref->[12]}{"susie", "queue"}

%s argument is not a subroutine name

(F) The argument to exists() for exists &sub must be a subroutine
 name, and not a
subroutine call. exists &sub() will generate this error.

%s package attribute may clash with future reserved word: %s

(W reserved) A lowercase attribute name was used that had a package-specific handler.
 That
name might have a meaning to Perl itself some day, even though it
 doesn't yet. Perhaps you
should use a mixed-case attribute name, instead.
 See attributes.

(in cleanup) %s

(W misc) This prefix usually indicates that a DESTROY() method raised
 the indicated
exception. Since destructors are usually called by
 the system at arbitrary points during
execution, and often a vast
 number of times, the warning is issued only once for any number

of failures that would otherwise result in the same message being
 repeated.

Failure of user callbacks dispatched using the G_KEEPERR flag
 could also result in this
warning. See "G_KEEPERR" in perlcall.

<> should be quotes

(F) You wrote require <file> when you should have written require 'file'.

Attempt to join self

(F) You tried to join a thread from within itself, which is an
 impossible task. You may be joining
the wrong thread, or you may
 need to move the join() to some other thread.

Bad evalled substitution pattern

(F) You've used the /e switch to evaluate the replacement for a
 substitution, but perl found a
syntax error in the code to evaluate,
 most likely an unexpected right brace '}'.

Bad realloc() ignored

(S) An internal routine called realloc() on something that had never been
 malloc()ed in the first
place. Mandatory, but can be disabled by
 setting environment variable PERL_BADFREE to 1.

Bareword found in conditional

Perl version 5.14.2 documentation - perl561delta

Page 34http://perldoc.perl.org

(W bareword) The compiler found a bareword where it expected a conditional,
 which often
indicates that an || or && was parsed as part of the
 last argument of the previous construct, for
example:

 open FOO || die;

It may also indicate a misspelled constant that has been interpreted
 as a bareword:

 use constant TYPO => 1;
 if (TYOP) { print "foo" }

The strict pragma is useful in avoiding such errors.

Binary number > 0b11111111111111111111111111111111 non-portable

(W portable) The binary number you specified is larger than 2**32-1
 (4294967295) and
therefore non-portable between systems. See perlport for more on portability concerns.

Bit vector size > 32 non-portable

(W portable) Using bit vector sizes larger than 32 is non-portable.

Buffer overflow in prime_env_iter: %s

(W internal) A warning peculiar to VMS. While Perl was preparing to iterate over
 %ENV, it
encountered a logical name or symbol definition which was too long,
 so it was truncated to the
string shown.

Can't check filesystem of script "%s"

(P) For some reason you can't check the filesystem of the script for nosuid.

Can't declare class for non-scalar %s in "%s"

(S) Currently, only scalar variables can declared with a specific class
 qualifier in a "my" or
"our" declaration. The semantics may be extended
 for other types of variables in future.

Can't declare %s in "%s"

(F) Only scalar, array, and hash variables may be declared as "my" or
 "our" variables. They
must have ordinary identifiers as names.

Can't ignore signal CHLD, forcing to default

(W signal) Perl has detected that it is being run with the SIGCHLD signal
 (sometimes known
as SIGCLD) disabled. Since disabling this signal
 will interfere with proper determination of exit
status of child
 processes, Perl has reset the signal to its default value.
 This situation typically
indicates that the parent program under
 which Perl may be running (e.g., cron) is being very
careless.

Can't modify non-lvalue subroutine call

(F) Subroutines meant to be used in lvalue context should be declared as
 such, see "Lvalue
subroutines" in perlsub.

Can't read CRTL environ

(S) A warning peculiar to VMS. Perl tried to read an element of %ENV
 from the CRTL's
internal environment array and discovered the array was
 missing. You need to figure out
where your CRTL misplaced its environ
 or define PERL_ENV_TABLES (see perlvms) so that
environ is not searched.

Can't remove %s: %s, skipping file

(S) You requested an inplace edit without creating a backup file. Perl
 was unable to remove
the original file to replace it with the modified
 file. The file was left unmodified.

Can't return %s from lvalue subroutine

Perl version 5.14.2 documentation - perl561delta

Page 35http://perldoc.perl.org

(F) Perl detected an attempt to return illegal lvalues (such
 as temporary or readonly values)
from a subroutine used as an lvalue.
 This is not allowed.

Can't weaken a nonreference

(F) You attempted to weaken something that was not a reference. Only
 references can be
weakened.

Character class [:%s:] unknown

(F) The class in the character class [: :] syntax is unknown.
 See perlre.

Character class syntax [%s] belongs inside character classes

(W unsafe) The character class constructs [: :], [= =], and [. .] go inside character classes, the
[] are part of the construct,
 for example: /[012[:alpha:]345]/. Note that [= =] and [. .]
 are not
currently implemented; they are simply placeholders for
 future extensions.

Constant is not %s reference

(F) A constant value (perhaps declared using the use constant pragma)
 is being
dereferenced, but it amounts to the wrong type of reference. The
 message indicates the type
of reference that was expected. This usually
 indicates a syntax error in dereferencing the
constant value.
 See "Constant Functions" in perlsub and constant.

constant(%s): %s

(F) The parser found inconsistencies either while attempting to define an
 overloaded constant,
or when trying to find the character name specified
 in the \N{...} escape. Perhaps you
forgot to load the corresponding overload or charnames pragma? See charnames and
overload.

CORE::%s is not a keyword

(F) The CORE:: namespace is reserved for Perl keywords.

defined(@array) is deprecated

(D) defined() is not usually useful on arrays because it checks for an
 undefined scalar value. If
you want to see if the array is empty,
 just use if (@array) { # not empty } for
example.

defined(%hash) is deprecated

(D) defined() is not usually useful on hashes because it checks for an
 undefined scalar value.
If you want to see if the hash is empty,
 just use if (%hash) { # not empty } for
example.

Did not produce a valid header

See Server error.

(Did you mean "local" instead of "our"?)

(W misc) Remember that "our" does not localize the declared global variable.
 You have
declared it again in the same lexical scope, which seems superfluous.

Document contains no data

See Server error.

entering effective %s failed

(F) While under the use filetest pragma, switching the real and
 effective uids or gids
failed.

false [] range "%s" in regexp

(W regexp) A character class range must start and end at a literal character, not
 another

Perl version 5.14.2 documentation - perl561delta

Page 36http://perldoc.perl.org

character class like \d or [:alpha:]. The "-" in your false
 range is interpreted as a literal "-".
Consider quoting the "-", "\-".
 See perlre.

Filehandle %s opened only for output

(W io) You tried to read from a filehandle opened only for writing. If you
 intended it to be a
read/write filehandle, you needed to open it with
 "+<" or "+>" or "+>>" instead of with "<" or
nothing. If
 you intended only to read from the file, use "<". See "open" in perlfunc.

flock() on closed filehandle %s

(W closed) The filehandle you're attempting to flock() got itself closed some
 time before now.
Check your logic flow. flock() operates on filehandles.
 Are you attempting to call flock() on a
dirhandle by the same name?

Global symbol "%s" requires explicit package name

(F) You've said "use strict vars", which indicates that all variables
 must either be lexically
scoped (using "my"), declared beforehand using
 "our", or explicitly qualified to say which
package the global variable
 is in (using "::").

Hexadecimal number > 0xffffffff non-portable

(W portable) The hexadecimal number you specified is larger than 2**32-1
 (4294967295) and
therefore non-portable between systems. See perlport for more on portability concerns.

Ill-formed CRTL environ value "%s"

(W internal) A warning peculiar to VMS. Perl tried to read the CRTL's internal
 environ array,
and encountered an element without the = delimiter
 used to separate keys from values. The
element is ignored.

Ill-formed message in prime_env_iter: |%s|

(W internal) A warning peculiar to VMS. Perl tried to read a logical name
 or CLI symbol
definition when preparing to iterate over %ENV, and
 didn't see the expected delimiter between
key and value, so the
 line was ignored.

Illegal binary digit %s

(F) You used a digit other than 0 or 1 in a binary number.

Illegal binary digit %s ignored

(W digit) You may have tried to use a digit other than 0 or 1 in a binary number.
 Interpretation
of the binary number stopped before the offending digit.

Illegal number of bits in vec

(F) The number of bits in vec() (the third argument) must be a power of
 two from 1 to 32 (or
64, if your platform supports that).

Integer overflow in %s number

(W overflow) The hexadecimal, octal or binary number you have specified either
 as a literal or
as an argument to hex() or oct() is too big for your
 architecture, and has been converted to a
floating point number. On a
 32-bit architecture the largest hexadecimal, octal or binary number
representable without overflow is 0xFFFFFFFF, 037777777777, or

0b11111111111111111111111111111111 respectively. Note that Perl
 transparently promotes
all numbers to a floating point representation
 internally--subject to loss of precision errors in
subsequent
 operations.

Invalid %s attribute: %s

The indicated attribute for a subroutine or variable was not recognized
 by Perl or by a
user-supplied handler. See attributes.

Perl version 5.14.2 documentation - perl561delta

Page 37http://perldoc.perl.org

Invalid %s attributes: %s

The indicated attributes for a subroutine or variable were not recognized
 by Perl or by a
user-supplied handler. See attributes.

invalid [] range "%s" in regexp

The offending range is now explicitly displayed.

Invalid separator character %s in attribute list

(F) Something other than a colon or whitespace was seen between the
 elements of an
attribute list. If the previous attribute
 had a parenthesised parameter list, perhaps that list was
terminated
 too soon. See attributes.

Invalid separator character %s in subroutine attribute list

(F) Something other than a colon or whitespace was seen between the
 elements of a
subroutine attribute list. If the previous attribute
 had a parenthesised parameter list, perhaps
that list was terminated
 too soon.

leaving effective %s failed

(F) While under the use filetest pragma, switching the real and
 effective uids or gids
failed.

Lvalue subs returning %s not implemented yet

(F) Due to limitations in the current implementation, array and hash
 values cannot be returned
in subroutines used in lvalue context.
 See "Lvalue subroutines" in perlsub.

Method %s not permitted

See Server error.

Missing %sbrace%s on \N{}

(F) Wrong syntax of character name literal \N{charname} within
 double-quotish context.

Missing command in piped open

(W pipe) You used the open(FH, "| command") or open(FH, "command |")

construction, but the command was missing or blank.

Missing name in "my sub"

(F) The reserved syntax for lexically scoped subroutines requires that they
 have a name with
which they can be found.

No %s specified for -%c

(F) The indicated command line switch needs a mandatory argument, but
 you haven't
specified one.

No package name allowed for variable %s in "our"

(F) Fully qualified variable names are not allowed in "our" declarations,
 because that doesn't
make much sense under existing semantics. Such
 syntax is reserved for future extensions.

No space allowed after -%c

(F) The argument to the indicated command line switch must follow immediately
 after the
switch, without intervening spaces.

no UTC offset information; assuming local time is UTC

(S) A warning peculiar to VMS. Perl was unable to find the local
 timezone offset, so it's
assuming that local system time is equivalent
 to UTC. If it's not, define the logical name
SYS$TIMEZONE_DIFFERENTIAL
 to translate to the number of seconds which need to be
added to UTC to
 get local time.

Perl version 5.14.2 documentation - perl561delta

Page 38http://perldoc.perl.org

Octal number > 037777777777 non-portable

(W portable) The octal number you specified is larger than 2**32-1 (4294967295)
 and
therefore non-portable between systems. See perlport for more
 on portability concerns.

See also perlport for writing portable code.

panic: del_backref

(P) Failed an internal consistency check while trying to reset a weak
 reference.

panic: kid popen errno read

(F) forked child returned an incomprehensible message about its errno.

panic: magic_killbackrefs

(P) Failed an internal consistency check while trying to reset all weak
 references to an object.

Parentheses missing around "%s" list

(W parenthesis) You said something like

 my $foo, $bar = @_;

when you meant

 my ($foo, $bar) = @_;

Remember that "my", "our", and "local" bind tighter than comma.

Possible unintended interpolation of %s in string

(W ambiguous) It used to be that Perl would try to guess whether you
 wanted an array
interpolated or a literal @. It no longer does this;
 arrays are now always interpolated into
strings. This means that if you try something like:

 print "fred@example.com";

and the array @example doesn't exist, Perl is going to print fred.com, which is probably not
what you wanted. To get a literal @ sign in a string, put a backslash before it, just as you would
to get a literal $ sign.

Possible Y2K bug: %s

(W y2k) You are concatenating the number 19 with another number, which
 could be a
potential Year 2000 problem.

pragma "attrs" is deprecated, use "sub NAME : ATTRS" instead

(W deprecated) You have written something like this:

 sub doit
 {
 use attrs qw(locked);
 }

You should use the new declaration syntax instead.

 sub doit : locked
 {
 ...

The use attrs pragma is now obsolete, and is only provided for
 backward-compatibility.
See "Subroutine Attributes" in perlsub.

Premature end of script headers

See Server error.

Perl version 5.14.2 documentation - perl561delta

Page 39http://perldoc.perl.org

Repeat count in pack overflows

(F) You can't specify a repeat count so large that it overflows
 your signed integers. See "pack"
in perlfunc.

Repeat count in unpack overflows

(F) You can't specify a repeat count so large that it overflows
 your signed integers. See
"unpack" in perlfunc.

realloc() of freed memory ignored

(S) An internal routine called realloc() on something that had already
 been freed.

Reference is already weak

(W misc) You have attempted to weaken a reference that is already weak.
 Doing so has no
effect.

setpgrp can't take arguments

(F) Your system has the setpgrp() from BSD 4.2, which takes no arguments,
 unlike POSIX
setpgid(), which takes a process ID and process group ID.

Strange *+?{} on zero-length expression

(W regexp) You applied a regular expression quantifier in a place where it
 makes no sense,
such as on a zero-width assertion.
 Try putting the quantifier inside the assertion instead. For
example,
 the way to match "abc" provided that it is followed by three
 repetitions of "xyz" is
/abc(?=(?:xyz){3})/, not /abc(?=xyz){3}/.

switching effective %s is not implemented

(F) While under the use filetest pragma, we cannot switch the
 real and effective uids or
gids.

This Perl can't reset CRTL environ elements (%s)

This Perl can't set CRTL environ elements (%s=%s)

(W internal) Warnings peculiar to VMS. You tried to change or delete an element
 of the
CRTL's internal environ array, but your copy of Perl wasn't
 built with a CRTL that contained
the setenv() function. You'll need to
 rebuild Perl with a CRTL that does, or redefine
PERL_ENV_TABLES (see perlvms) so that the environ array isn't the target of the change to

%ENV which produced the warning.

Too late to run %s block

(W void) A CHECK or INIT block is being defined during run time proper,
 when the opportunity
to run them has already passed. Perhaps you are
 loading a file with require or do when you
should be using use instead. Or perhaps you should put the require or do
 inside a BEGIN
block.

Unknown open() mode '%s'

(F) The second argument of 3-argument open() is not among the list
 of valid modes: <, >, >>,
+<, +>, +>>, -|, |-.

Unknown process %x sent message to prime_env_iter: %s

(P) An error peculiar to VMS. Perl was reading values for %ENV before
 iterating over it, and
someone else stuck a message in the stream of
 data Perl expected. Someone's very
confused, or perhaps trying to
 subvert Perl's population of %ENV for nefarious purposes.

Unrecognized escape \\%c passed through

(W misc) You used a backslash-character combination which is not recognized
 by Perl. The
character was understood literally.

Perl version 5.14.2 documentation - perl561delta

Page 40http://perldoc.perl.org

Unterminated attribute parameter in attribute list

(F) The lexer saw an opening (left) parenthesis character while parsing an
 attribute list, but the
matching closing (right) parenthesis
 character was not found. You may need to add (or
remove) a backslash
 character to get your parentheses to balance. See attributes.

Unterminated attribute list

(F) The lexer found something other than a simple identifier at the start
 of an attribute, and it
wasn't a semicolon or the start of a
 block. Perhaps you terminated the parameter list of the
previous attribute
 too soon. See attributes.

Unterminated attribute parameter in subroutine attribute list

(F) The lexer saw an opening (left) parenthesis character while parsing a
 subroutine attribute
list, but the matching closing (right) parenthesis
 character was not found. You may need to
add (or remove) a backslash
 character to get your parentheses to balance.

Unterminated subroutine attribute list

(F) The lexer found something other than a simple identifier at the start
 of a subroutine
attribute, and it wasn't a semicolon or the start of a
 block. Perhaps you terminated the
parameter list of the previous attribute
 too soon.

Value of CLI symbol "%s" too long

(W misc) A warning peculiar to VMS. Perl tried to read the value of an %ENV
 element from a
CLI symbol table, and found a resultant string longer
 than 1024 characters. The return value
has been truncated to 1024
 characters.

Version number must be a constant number

(P) The attempt to translate a use Module n.n LIST statement into
 its equivalent BEGIN
block found an internal inconsistency with
 the version number.

New tests
lib/attrs

Compatibility tests for sub : attrs vs the older use attrs.

lib/env

Tests for new environment scalar capability (e.g., use Env qw($BAR);).

lib/env-array

Tests for new environment array capability (e.g., use Env qw(@PATH);).

lib/io_const

IO constants (SEEK_*, _IO*).

lib/io_dir

Directory-related IO methods (new, read, close, rewind, tied delete).

lib/io_multihomed

INET sockets with multi-homed hosts.

lib/io_poll

IO poll().

lib/io_unix

UNIX sockets.

op/attrs

Perl version 5.14.2 documentation - perl561delta

Page 41http://perldoc.perl.org

Regression tests for my ($x,@y,%z) : attrs and <sub : attrs>.

op/filetest

File test operators.

op/lex_assign

Verify operations that access pad objects (lexicals and temporaries).

op/exists_sub

Verify exists &sub operations.

Incompatible Changes
Perl Source Incompatibilities

Beware that any new warnings that have been added or old ones
 that have been enhanced are not
considered incompatible changes.

Since all new warnings must be explicitly requested via the -w
 switch or the warnings pragma, it is
ultimately the programmer's
 responsibility to ensure that warnings are enabled judiciously.

CHECK is a new keyword

All subroutine definitions named CHECK are now special. See /"Support for CHECK
blocks" for more information.

Treatment of list slices of undef has changed

There is a potential incompatibility in the behavior of list slices
 that are comprised entirely of
undefined values.
 See Behavior of list slices is more consistent.

Format of $English::PERL_VERSION is different

The English module now sets $PERL_VERSION to $^V (a string value) rather
 than $] (a
numeric value). This is a potential incompatibility.
 Send us a report via perlbug if you are
affected by this.

See Improved Perl version numbering system for the reasons for
 this change.

Literals of the form 1.2.3 parse differently

Previously, numeric literals with more than one dot in them were
 interpreted as a floating point
number concatenated with one or more
 numbers. Such "numbers" are now parsed as strings
composed of the
 specified ordinals.

For example, print 97.98.99 used to output 97.9899 in earlier
 versions, but now prints
abc.

See Support for strings represented as a vector of ordinals.

Possibly changed pseudo-random number generator

Perl programs that depend on reproducing a specific set of pseudo-random
 numbers may now
produce different output due to improvements made to the
 rand() builtin. You can use sh
Configure -Drandfunc=rand to obtain
 the old behavior.

See Better pseudo-random number generator.

Hashing function for hash keys has changed

Even though Perl hashes are not order preserving, the apparently
 random order encountered
when iterating on the contents of a hash
 is actually determined by the hashing algorithm used.
Improvements
 in the algorithm may yield a random order that is different from
 that of previous
versions, especially when iterating on hashes.

See Better worst-case behavior of hashes for additional
 information.

undef fails on read only values

Perl version 5.14.2 documentation - perl561delta

Page 42http://perldoc.perl.org

Using the undef operator on a readonly value (such as $1) has
 the same effect as assigning
undef to the readonly value--it
 throws an exception.

Close-on-exec bit may be set on pipe and socket handles

Pipe and socket handles are also now subject to the close-on-exec
 behavior determined by
the special variable $^F.

See More consistent close-on-exec behavior.

Writing "$$1" to mean "${$}1" is unsupported

Perl 5.004 deprecated the interpretation of $$1 and
 similar within interpolated strings to mean
$$. "1",
 but still allowed it.

In Perl 5.6.0 and later, "$$1" always means "${$1}".

delete(), each(), values() and \(%h)

operate on aliases to values, not copies

delete(), each(), values() and hashes (e.g. \(%h))
 in a list context return the actual
 values in
the hash, instead of copies (as they used to in earlier
 versions). Typical idioms for using these
constructs copy the
 returned values, but this can make a significant difference when
 creating
references to the returned values. Keys in the hash are still
 returned as copies when iterating
on a hash.

See also delete(), each(), values() and hash iteration are faster.

vec(EXPR,OFFSET,BITS) enforces powers-of-two BITS

vec() generates a run-time error if the BITS argument is not
 a valid power-of-two integer.

Text of some diagnostic output has changed

Most references to internal Perl operations in diagnostics
 have been changed to be more
descriptive. This may be an
 issue for programs that may incorrectly rely on the exact
 text of
diagnostics for proper functioning.

%@ has been removed

The undocumented special variable %@ that used to accumulate
 "background" errors (such as
those that happen in DESTROY())
 has been removed, because it could potentially result in
memory
 leaks.

Parenthesized not() behaves like a list operator

The not operator now falls under the "if it looks like a function,
 it behaves like a function" rule.

As a result, the parenthesized form can be used with grep and map.
 The following construct
used to be a syntax error before, but it works
 as expected now:

 grep not($_), @things;

On the other hand, using not with a literal list slice may not
 work. The following previously
allowed construct:

 print not (1,2,3)[0];

needs to be written with additional parentheses now:

 print not((1,2,3)[0]);

The behavior remains unaffected when not is not followed by parentheses.

Semantics of bareword prototype (*) have changed

The semantics of the bareword prototype * have changed. Perl 5.005
 always coerced simple
scalar arguments to a typeglob, which wasn't useful
 in situations where the subroutine must

Perl version 5.14.2 documentation - perl561delta

Page 43http://perldoc.perl.org

distinguish between a simple
 scalar and a typeglob. The new behavior is to not coerce
bareword
 arguments to a typeglob. The value will always be visible as either
 a simple scalar
or as a reference to a typeglob.

See More functional bareword prototype (*).

Semantics of bit operators may have changed on 64-bit platforms

If your platform is either natively 64-bit or if Perl has been
 configured to used 64-bit integers,
i.e., $Config{ivsize} is 8, there may be a potential incompatibility in the behavior of bitwise

numeric operators (& | ^ ~ << >>). These operators used to strictly
 operate on the lower 32
bits of integers in previous versions, but now
 operate over the entire native integral width. In
particular, note
 that unary ~ will produce different results on platforms that have
 different
$Config{ivsize}. For portability, be sure to mask off
 the excess bits in the result of unary ~,
e.g., ~$x & 0xffffffff.

See Bit operators support full native integer width.

More builtins taint their results

As described in Improved security features, there may be more
 sources of taint in a Perl
program.

To avoid these new tainting behaviors, you can build Perl with the
 Configure option
-Accflags=-DINCOMPLETE_TAINTS. Beware that the
 ensuing perl binary may be insecure.

C Source Incompatibilities
PERL_POLLUTE

Release 5.005 grandfathered old global symbol names by providing preprocessor
 macros for
extension source compatibility. As of release 5.6.0, these
 preprocessor definitions are not
available by default. You need to explicitly
 compile perl with -DPERL_POLLUTE to get these
definitions. For
 extensions still using the old symbols, this option can be
 specified via
MakeMaker:

 perl Makefile.PL POLLUTE=1

PERL_IMPLICIT_CONTEXT

This new build option provides a set of macros for all API functions
 such that an implicit
interpreter/thread context argument is passed to
 every API function. As a result of this,
something like sv_setsv(foo,bar)
 amounts to a macro invocation that actually translates
to something like Perl_sv_setsv(my_perl,foo,bar). While this is generally expected
 to
not have any significant source compatibility issues, the difference
 between a macro and a
real function call will need to be considered.

This means that there is a source compatibility issue as a result of
 this if your extensions
attempt to use pointers to any of the Perl API
 functions.

Note that the above issue is not relevant to the default build of
 Perl, whose interfaces continue
to match those of prior versions
 (but subject to the other options described here).

See "The Perl API" in perlguts for detailed information on the
 ramifications of building Perl with
this option.

 NOTE: PERL_IMPLICIT_CONTEXT is automatically enabled whenever
Perl is built
 with one of -Dusethreads, -Dusemultiplicity, or both. It is not
 intended to be enabled by users at this time.

PERL_POLLUTE_MALLOC

Enabling Perl's malloc in release 5.005 and earlier caused the namespace of
 the system's
malloc family of functions to be usurped by the Perl versions,
 since by default they used the
same names. Besides causing problems on
 platforms that do not allow these functions to be

Perl version 5.14.2 documentation - perl561delta

Page 44http://perldoc.perl.org

cleanly replaced, this
 also meant that the system versions could not be called in programs that
used Perl's malloc. Previous versions of Perl have allowed this behaviour
 to be suppressed
with the HIDEMYMALLOC and EMBEDMYMALLOC preprocessor
 definitions.

As of release 5.6.0, Perl's malloc family of functions have default names
 distinct from the
system versions. You need to explicitly compile perl with -DPERL_POLLUTE_MALLOC to get
the older behaviour. HIDEMYMALLOC
 and EMBEDMYMALLOC have no effect, since the
behaviour they enabled is now
 the default.

Note that these functions do not constitute Perl's memory allocation API.
 See "Memory
Allocation" in perlguts for further information about that.

Compatible C Source API Changes
PATCHLEVEL is now PERL_VERSION

The cpp macros PERL_REVISION, PERL_VERSION, and PERL_SUBVERSION
 are now
available by default from perl.h, and reflect the base revision,
 patchlevel, and subversion
respectively. PERL_REVISION had no
 prior equivalent, while PERL_VERSION and
PERL_SUBVERSION were
 previously available as PATCHLEVEL and SUBVERSION.

The new names cause less pollution of the cpp namespace and reflect what
 the numbers
have come to stand for in common practice. For compatibility,
 the old names are still
supported when patchlevel.h is explicitly
 included (as required before), so there is no source
incompatibility
 from the change.

Binary Incompatibilities
In general, the default build of this release is expected to be binary
 compatible for extensions built
with the 5.005 release or its maintenance
 versions. However, specific platforms may have broken
binary compatibility
 due to changes in the defaults used in hints files. Therefore, please be
 sure to
always check the platform-specific README files for any notes to
 the contrary.

The usethreads or usemultiplicity builds are not binary compatible
 with the corresponding builds in
5.005.

On platforms that require an explicit list of exports (AIX, OS/2 and Windows,
 among others), purely
internal symbols such as parser functions and the
 run time opcodes are not exported by default. Perl
5.005 used to export
 all functions irrespective of whether they were considered part of the
 public API
or not.

For the full list of public API functions, see perlapi.

Known Problems
Localizing a tied hash element may leak memory

As of the 5.6.1 release, there is a known leak when code such as this
 is executed:

 use Tie::Hash;
 tie my %tie_hash => 'Tie::StdHash';

 ...

 local($tie_hash{Foo}) = 1; # leaks

Known test failures
64-bit builds

Subtest #15 of lib/b.t may fail under 64-bit builds on platforms such
 as HP-UX PA64 and Linux
IA64. The issue is still being investigated.

The lib/io_multihomed test may hang in HP-UX if Perl has been
 configured to be 64-bit.
Because other 64-bit platforms do not
 hang in this test, HP-UX is suspect. All other tests pass

Perl version 5.14.2 documentation - perl561delta

Page 45http://perldoc.perl.org

in 64-bit HP-UX. The test attempts to create and connect to
 "multihomed" sockets (sockets
which have multiple IP addresses).

Note that 64-bit support is still experimental.

Failure of Thread tests

The subtests 19 and 20 of lib/thr5005.t test are known to fail due to
 fundamental problems in
the 5.005 threading implementation. These are
 not new failures--Perl 5.005_0x has the same
bugs, but didn't have these
 tests. (Note that support for 5.005-style threading remains
experimental.)

NEXTSTEP 3.3 POSIX test failure

In NEXTSTEP 3.3p2 the implementation of the strftime(3) in the
 operating system libraries is
buggy: the %j format numbers the days of
 a month starting from zero, which, while being
logical to programmers,
 will cause the subtests 19 to 27 of the lib/posix test may fail.

Tru64 (aka Digital UNIX, aka DEC OSF/1) lib/sdbm test failure with gcc

If compiled with gcc 2.95 the lib/sdbm test will fail (dump core).
 The cure is to use the vendor
cc, it comes with the operating system
 and produces good code.

EBCDIC platforms not fully supported
In earlier releases of Perl, EBCDIC environments like OS390 (also
 known as Open Edition MVS) and
VM-ESA were supported. Due to changes
 required by the UTF-8 (Unicode) support, the EBCDIC
platforms are not
 supported in Perl 5.6.0.

The 5.6.1 release improves support for EBCDIC platforms, but they
 are not fully supported yet.

UNICOS/mk CC failures during Configure run
In UNICOS/mk the following errors may appear during the Configure run:

	 Guessing which symbols your C compiler and preprocessor define...
	 CC-20 cc: ERROR File = try.c, Line = 3
	 ...
	 bad switch yylook 79bad switch yylook 79bad switch yylook 79bad switch
yylook 79#ifdef A29K
	 ...
	 4 errors detected in the compilation of "try.c".

The culprit is the broken awk of UNICOS/mk. The effect is fortunately
 rather mild: Perl itself is not
adversely affected by the error, only
 the h2ph utility coming with Perl, and that is rather rarely needed

these days.

Arrow operator and arrays
When the left argument to the arrow operator -> is an array, or
 the scalar operator operating on an
array, the result of the
 operation must be considered erroneous. For example:

 @x->[2]
 scalar(@x)->[2]

These expressions will get run-time errors in some future release of
 Perl.

Experimental features
As discussed above, many features are still experimental. Interfaces and
 implementation of these
features are subject to change, and in extreme cases,
 even subject to removal in some future release
of Perl. These features
 include the following:

Threads

Perl version 5.14.2 documentation - perl561delta

Page 46http://perldoc.perl.org

Unicode

64-bit support

Lvalue subroutines

Weak references

The pseudo-hash data type

The Compiler suite

Internal implementation of file globbing

The DB module

The regular expression code constructs:

(?{ code }) and (??{ code })

Obsolete Diagnostics
Character class syntax [: :] is reserved for future extensions

(W) Within regular expression character classes ([]) the syntax beginning
 with "[:" and ending
with ":]" is reserved for future extensions.
 If you need to represent those character sequences
inside a regular
 expression character class, just quote the square brackets with the
 backslash:
"\[:" and ":\]".

Ill-formed logical name |%s| in prime_env_iter

(W) A warning peculiar to VMS. A logical name was encountered when preparing
 to iterate
over %ENV which violates the syntactic rules governing logical
 names. Because it cannot be
translated normally, it is skipped, and will not
 appear in %ENV. This may be a benign
occurrence, as some software packages
 might directly modify logical name tables and
introduce nonstandard names,
 or it may indicate that a logical name table has been corrupted.

In string, @%s now must be written as \@%s

The description of this error used to say:

 (Someday it will simply assume that an unbackslashed @
 interpolates an array.)

That day has come, and this fatal error has been removed. It has been
 replaced by a non-fatal
warning instead.
 See Arrays now always interpolate into double-quoted strings for
 details.

Probable precedence problem on %s

(W) The compiler found a bareword where it expected a conditional,
 which often indicates that
an || or && was parsed as part of the
 last argument of the previous construct, for example:

 open FOO || die;

regexp too big

(F) The current implementation of regular expressions uses shorts as
 address offsets within a
string. Unfortunately this means that if
 the regular expression compiles to longer than 32767,
it'll blow up.
 Usually when you want a regular expression this big, there is a better
 way to do it
with multiple statements. See perlre.

Use of "$$<digit>" to mean "${$}<digit>" is deprecated

(D) Perl versions before 5.004 misinterpreted any type marker followed
 by "$" and a digit. For
example, "$$0" was incorrectly taken to mean
 "${$}0" instead of "${$0}". This bug is (mostly)
fixed in Perl 5.004.

However, the developers of Perl 5.004 could not fix this bug completely,
 because at least two
widely-used modules depend on the old meaning of
 "$$0" in a string. So Perl 5.004 still
interprets "$$<digit>" in the
 old (broken) way inside strings; but it generates this message as a

Perl version 5.14.2 documentation - perl561delta

Page 47http://perldoc.perl.org

warning. And in Perl 5.005, this special treatment will cease.

Reporting Bugs
If you find what you think is a bug, you might check the
 articles recently posted to the
comp.lang.perl.misc newsgroup.
 There may also be information at http://www.perl.com/ , the Perl

Home Page.

If you believe you have an unreported bug, please run the perlbug
 program included with your
release. Be sure to trim your bug down
 to a tiny but sufficient test case. Your bug report, along with
the
 output of perl -V, will be sent off to perlbug@perl.org to be
 analysed by the Perl porting team.

SEE ALSO
The Changes file for exhaustive details on what changed.

The INSTALL file for how to build Perl.

The README file for general stuff.

The Artistic and Copying files for copyright information.

HISTORY
Written by Gurusamy Sarathy <gsar@ActiveState.com>, with many
 contributions from The Perl
Porters.

Send omissions or corrections to <perlbug@perl.org>.

