
Perl version 5.14.2 documentation - perldiag

Page 1http://perldoc.perl.org

NAME
perldiag - various Perl diagnostics

DESCRIPTION
These messages are classified as follows (listed in increasing order of
 desperation):

 (W) A warning (optional).
 (D) A deprecation (enabled by default).
 (S) A severe warning (enabled by default).
 (F) A fatal error (trappable).
 (P) An internal error you should never see (trappable).
 (X) A very fatal error (nontrappable).
 (A) An alien error message (not generated by Perl).

The majority of messages from the first three classifications above
 (W, D & S) can be controlled using
the warnings pragma.

If a message can be controlled by the warnings pragma, its warning
 category is included with the
classification letter in the description
 below.

Optional warnings are enabled by using the warnings pragma or the -w
 and -W switches. Warnings
may be captured by setting $SIG{__WARN__}
 to a reference to a routine that will be called on each
warning instead
 of printing it. See perlvar.

Severe warnings are always enabled, unless they are explicitly disabled
 with the warnings pragma
or the -X switch.

Trappable errors may be trapped using the eval operator. See "eval" in perlfunc. In almost all cases,
warnings may be selectively
 disabled or promoted to fatal errors using the warnings pragma.
 See
warnings.

The messages are in alphabetical order, without regard to upper or
 lower-case. Some of these
messages are generic. Spots that vary are
 denoted with a %s or other printf-style escape. These
escapes are
 ignored by the alphabetical order, as are all characters other than
 letters. To look up your
message, just ignore anything that is not a
 letter.

accept() on closed socket %s

(W closed) You tried to do an accept on a closed socket. Did you forget
 to check the return
value of your socket() call? See "accept" in perlfunc.

Allocation too large: %x

(X) You can't allocate more than 64K on an MS-DOS machine.

'%c' allowed only after types %s

(F) The modifiers '!', '<' and '>' are allowed in pack() or unpack() only
 after certain types. See
"pack" in perlfunc.

Ambiguous call resolved as CORE::%s(), qualify as such or use &

(W ambiguous) A subroutine you have declared has the same name as a Perl
 keyword, and
you have used the name without qualification for calling
 one or the other. Perl decided to call
the builtin because the
 subroutine is not imported.

To force interpretation as a subroutine call, either put an ampersand
 before the subroutine
name, or qualify the name with its package.
 Alternatively, you can import the subroutine (or
pretend that it's
 imported with the use subs pragma).

To silently interpret it as the Perl operator, use the CORE:: prefix
 on the operator (e.g.
CORE::log($x)) or declare the subroutine
 to be an object method (see "Subroutine
Attributes" in perlsub or attributes).

Perl version 5.14.2 documentation - perldiag

Page 2http://perldoc.perl.org

Ambiguous range in transliteration operator

(F) You wrote something like tr/a-z-0// which doesn't mean anything at
 all. To include a -
character in a transliteration, put it either
 first or last. (In the past, tr/a-z-0// was
synonymous with tr/a-y//, which was probably not what you would have expected.)

Ambiguous use of %s resolved as %s

(W ambiguous)(S) You said something that may not be interpreted the way
 you thought.
Normally it's pretty easy to disambiguate it by supplying
 a missing quote, operator,
parenthesis pair or declaration.

Ambiguous use of %c resolved as operator %c

(W ambiguous) %, &, and * are both infix operators (modulus,
 bitwise and, and multiplication)
and initial special characters
 (denoting hashes, subroutines and typeglobs), and you said
something
 like *foo * foo that might be interpreted as either of them. We
 assumed you
meant the infix operator, but please try to make it more
 clear -- in the example given, you
might write *foo * foo() if you
 really meant to multiply a glob by the result of calling a
function.

Ambiguous use of %c{%s} resolved to %c%s

(W ambiguous) You wrote something like @{foo}, which might be
 asking for the variable
@foo, or it might be calling a function
 named foo, and dereferencing it as an array reference. If
you wanted
 the varable, you can just write @foo. If you wanted to call the
 function, write
@{foo()} ... or you could just not have a variable
 and a function with the same name, and
save yourself a lot of trouble.

Ambiguous use of %c{%s[...]} resolved to %c%s[...]

Ambiguous use of %c{%s{...}} resolved to %c%s{...}

(W ambiguous) You wrote something like ${foo[2]} (where foo
 represents the name of a
Perl keyword), which might be looking for
 element number 2 of the array named @foo, in
which case please write $foo[2], or you might have meant to pass an anonymous arrayref
to
 the function named foo, and then do a scalar deref on the value it
 returns. If you meant that,
write ${foo([2])}.

In regular expressions, the ${foo[2]} syntax is sometimes necessary
 to disambiguate
between array subscripts and character classes. /$length[2345]/, for instance, will be
interpreted as $length
 followed by the character class [2345]. If an array subscript is what

you want, you can avoid the warning by changing /${length[2345]}/
 to the unsightly
/${\$length[2345]}/, by renaming your array to
 something that does not coincide with a
built-in keyword, or by
 simply turning off warnings with no warnings 'ambiguous';.

Ambiguous use of -%s resolved as -&%s()

(W ambiguous) You wrote something like -foo, which might be the
 string "-foo", or a call to
the function foo, negated. If you meant
 the string, just write "-foo". If you meant the function
call,
 write -foo().

Ambiguous use of 's//le...' resolved as 's// le...'; Rewrite as 's//el' if you meant 'use locale rules and
evaluate rhs as an expression'. In Perl 5.16, it will be resolved the other way

(W deprecated, ambiguous) You wrote a pattern match with substitution
 immediately followed
by "le". In Perl 5.14 and earlier, this is
 resolved as meaning to take the result of the
substitution, and see if
 it is stringwise less-than-or-equal-to what follows in the expression.

Having the "le" immediately following a pattern is deprecated behavior,
 so in Perl 5.16, this
expression will be resolved as meaning to do the
 pattern match using the rules of the current
locale, and evaluate the
 rhs as an expression when doing the substitution. In 5.14, if you want

the latter interpretation, you can simply write "el" instead.

'|' and '<' may not both be specified on command line

Perl version 5.14.2 documentation - perldiag

Page 3http://perldoc.perl.org

(F) An error peculiar to VMS. Perl does its own command line
 redirection, and found that
STDIN was a pipe, and that you also tried to
 redirect STDIN using '<'. Only one STDIN stream
to a customer, please.

'|' and '>' may not both be specified on command line

(F) An error peculiar to VMS. Perl does its own command line
 redirection, and thinks you tried
to redirect stdout both to a file and
 into a pipe to another command. You need to choose one
or the other,
 though nothing's stopping you from piping into a program or Perl script
 which
'splits' output into two streams, such as

 open(OUT,">$ARGV[0]") or die "Can't write to $ARGV[0]: $!";
 while (<STDIN>) {
 print;
 print OUT;
 }
 close OUT;

Applying %s to %s will act on scalar(%s)

(W misc) The pattern match (//), substitution (s///), and
 transliteration (tr///) operators
work on scalar values. If you apply
 one of them to an array or a hash, it will convert the array
or hash to
 a scalar value (the length of an array, or the population info of a
 hash) and then
work on that scalar value. This is probably not what
 you meant to do. See "grep" in perlfunc
and "map" in perlfunc for
 alternatives.

Arg too short for msgsnd

(F) msgsnd() requires a string at least as long as sizeof(long).

%s argument is not a HASH or ARRAY element or a subroutine

(F) The argument to exists() must be a hash or array element or a
 subroutine with an
ampersand, such as:

 $foo{$bar}
 $ref->{"susie"}[12]
 &do_something

%s argument is not a HASH or ARRAY element or slice

(F) The argument to delete() must be either a hash or array element,
 such as:

 $foo{$bar}
 $ref->{"susie"}[12]

or a hash or array slice, such as:

 @foo[$bar, $baz, $xyzzy]
 @{$ref->[12]}{"susie", "queue"}

%s argument is not a subroutine name

(F) The argument to exists() for exists &sub must be a subroutine
 name, and not a
subroutine call. exists &sub() will generate this
 error.

Argument "%s" isn't numeric%s

(W numeric) The indicated string was fed as an argument to an operator
 that expected a
numeric value instead. If you're fortunate the message
 will identify which operator was so
unfortunate.

Argument list not closed for PerlIO layer "%s"

(W layer) When pushing a layer with arguments onto the Perl I/O system you
 forgot the) that

Perl version 5.14.2 documentation - perldiag

Page 4http://perldoc.perl.org

closes the argument list. (Layers take care of transforming
 data between external and internal
representations.) Perl stopped parsing
 the layer list at this point and did not attempt to push
this layer.
 If your program didn't explicitly request the failing operation, it may be
 the result of
the value of the environment variable PERLIO.

Array @%s missing the @ in argument %d of %s()

(D deprecated) Really old Perl let you omit the @ on array names in some
 spots. This is now
heavily deprecated.

assertion botched: %s

(P) The malloc package that comes with Perl had an internal failure.

Assertion failed: file "%s"

(P) A general assertion failed. The file in question must be examined.

Assignment to both a list and a scalar

(F) If you assign to a conditional operator, the 2nd and 3rd arguments
 must either both be
scalars or both be lists. Otherwise Perl won't
 know which context to supply to the right side.

A thread exited while %d threads were running

(W threads)(S) When using threaded Perl, a thread (not necessarily the main
 thread) exited
while there were still other threads running.
 Usually it's a good idea first to collect the return
values of the
 created threads by joining them, and only then to exit from the main
 thread. See
threads.

Attempt to access disallowed key '%s' in a restricted hash

(F) The failing code has attempted to get or set a key which is not in
 the current set of allowed
keys of a restricted hash.

Attempt to bless into a reference

(F) The CLASSNAME argument to the bless() operator is expected to be
 the name of the
package to bless the resulting object into. You've
 supplied instead a reference to something:
perhaps you wrote

 bless $self, $proto;

when you intended

 bless $self, ref($proto) || $proto;

If you actually want to bless into the stringified version
 of the reference supplied, you need to
stringify it yourself, for
 example by:

 bless $self, "$proto";

Attempt to delete disallowed key '%s' from a restricted hash

(F) The failing code attempted to delete from a restricted hash a key
 which is not in its key set.

Attempt to delete readonly key '%s' from a restricted hash

(F) The failing code attempted to delete a key whose value has been
 declared readonly from a
restricted hash.

Attempt to free non-arena SV: 0x%x

(P internal) All SV objects are supposed to be allocated from arenas
 that will be garbage
collected on exit. An SV was discovered to be
 outside any of those arenas.

Attempt to free nonexistent shared string

Perl version 5.14.2 documentation - perldiag

Page 5http://perldoc.perl.org

(P internal) Perl maintains a reference-counted internal table of
 strings to optimize the storage
and access of hash keys and other
 strings. This indicates someone tried to decrement the
reference count
 of a string that can no longer be found in the table.

Attempt to free temp prematurely

(W debugging) Mortalized values are supposed to be freed by the
 free_tmps() routine. This
indicates that something else is freeing the
 SV before the free_tmps() routine gets a chance,
which means that the
 free_tmps() routine will be freeing an unreferenced scalar when it does

try to free it.

Attempt to free unreferenced glob pointers

(P internal) The reference counts got screwed up on symbol aliases.

Attempt to free unreferenced scalar

(W internal) Perl went to decrement the reference count of a scalar to
 see if it would go to 0,
and discovered that it had already gone to 0
 earlier, and should have been freed, and in fact,
probably was freed.
 This could indicate that SvREFCNT_dec() was called too many times, or

that SvREFCNT_inc() was called too few times, or that the SV was
 mortalized when it
shouldn't have been, or that memory has been
 corrupted.

Attempt to join self

(F) You tried to join a thread from within itself, which is an
 impossible task. You may be joining
the wrong thread, or you may need
 to move the join() to some other thread.

Attempt to pack pointer to temporary value

(W pack) You tried to pass a temporary value (like the result of a
 function, or a computed
expression) to the "p" pack() template. This
 means the result contains a pointer to a location
that could become
 invalid anytime, even before the end of the current statement. Use
 literals
or global values as arguments to the "p" pack() template to
 avoid this warning.

Attempt to reload %s aborted.

(F) You tried to load a file with use or require that failed to
 compile once already. Perl will
not try to compile this file again
 unless you delete its entry from %INC. See "require" in
perlfunc and "%INC" in perlvar.

Attempt to set length of freed array

(W) You tried to set the length of an array which has been freed. You
 can do this by storing a
reference to the scalar representing the last index
 of an array and later assigning through that
reference. For example

 $r = do {my @a; \$#a};
 $$r = 503

Attempt to use reference as lvalue in substr

(W substr) You supplied a reference as the first argument to substr()
 used as an lvalue, which
is pretty strange. Perhaps you forgot to
 dereference it first. See "substr" in perlfunc.

Attribute "locked" is deprecated

(D deprecated) You have used the attributes pragma to modify the "locked"
 attribute on a
code reference. The :locked attribute is obsolete, has had no
 effect since 5005 threads were
removed, and will be removed in a future
 release of Perl 5.

Attribute "unique" is deprecated

(D deprecated) You have used the attributes pragma to modify the "unique"
 attribute on an
array, hash or scalar reference. The :unique attribute has
 had no effect since Perl 5.8.8, and
will be removed in a future release
 of Perl 5.

Perl version 5.14.2 documentation - perldiag

Page 6http://perldoc.perl.org

Bad arg length for %s, is %u, should be %d

(F) You passed a buffer of the wrong size to one of msgctl(), semctl()
 or shmctl(). In C
parlance, the correct sizes are, respectively, sizeof(struct msqid_ds *), sizeof(struct semid_ds
*), and sizeof(struct shmid_ds *).

Bad evalled substitution pattern

(F) You've used the /e switch to evaluate the replacement for a
 substitution, but perl found a
syntax error in the code to evaluate,
 most likely an unexpected right brace '}'.

Bad filehandle: %s

(F) A symbol was passed to something wanting a filehandle, but the
 symbol has no filehandle
associated with it. Perhaps you didn't do an
 open(), or did it in another package.

Bad free() ignored

(S malloc) An internal routine called free() on something that had never
 been malloc()ed in the
first place. Mandatory, but can be disabled by
 setting environment variable PERL_BADFREE to
0.

This message can be seen quite often with DB_File on systems with "hard"
 dynamic linking,
like AIX and OS/2. It is a bug of Berkeley DB
 which is left unnoticed if DB uses forgiving
system malloc().

Bad hash

(P) One of the internal hash routines was passed a null HV pointer.

Badly placed ()'s

(A) You've accidentally run your script through csh instead
 of Perl. Check the #! line, or
manually feed your script into
 Perl yourself.

Bad name after %s::

(F) You started to name a symbol by using a package prefix, and then
 didn't finish the symbol.
In particular, you can't interpolate outside
 of quotes, so

 $var = 'myvar';
 $sym = mypack::$var;

is not the same as

 $var = 'myvar';
 $sym = "mypack::$var";

Bad plugin affecting keyword '%s'

(F) An extension using the keyword plugin mechanism violated the
 plugin API.

Bad realloc() ignored

(S malloc) An internal routine called realloc() on something that had
 never been malloc()ed in
the first place. Mandatory, but can be disabled
 by setting the environment variable
PERL_BADFREE to 1.

Bad symbol for array

(P) An internal request asked to add an array entry to something that
 wasn't a symbol table
entry.

Bad symbol for dirhandle

(P) An internal request asked to add a dirhandle entry to something
 that wasn't a symbol table
entry.

Perl version 5.14.2 documentation - perldiag

Page 7http://perldoc.perl.org

Bad symbol for filehandle

(P) An internal request asked to add a filehandle entry to something
 that wasn't a symbol table
entry.

Bad symbol for hash

(P) An internal request asked to add a hash entry to something that
 wasn't a symbol table
entry.

Bareword found in conditional

(W bareword) The compiler found a bareword where it expected a
 conditional, which often
indicates that an || or && was parsed as part
 of the last argument of the previous construct, for
example:

 open FOO || die;

It may also indicate a misspelled constant that has been interpreted as
 a bareword:

 use constant TYPO => 1;
 if (TYOP) { print "foo" }

The strict pragma is useful in avoiding such errors.

Bareword "%s" not allowed while "strict subs" in use

(F) With "strict subs" in use, a bareword is only allowed as a
 subroutine identifier, in curly
brackets or to the left of the "=>"
 symbol. Perhaps you need to predeclare a subroutine?

Bareword "%s" refers to nonexistent package

(W bareword) You used a qualified bareword of the form Foo::, but the
 compiler saw no
other uses of that namespace before that point. Perhaps
 you need to predeclare a package?

BEGIN failed--compilation aborted

(F) An untrapped exception was raised while executing a BEGIN
 subroutine. Compilation
stops immediately and the interpreter is
 exited.

BEGIN not safe after errors--compilation aborted

(F) Perl found a BEGIN {} subroutine (or a use directive, which
 implies a BEGIN {}) after
one or more compilation errors had already
 occurred. Since the intended environment for the
BEGIN {} could not
 be guaranteed (due to the errors), and since subsequent code likely

depends on its correct operation, Perl just gave up.

\1 better written as $1

(W syntax) Outside of patterns, backreferences live on as variables.
 The use of backslashes is
grandfathered on the right-hand side of a
 substitution, but stylistically it's better to use the
variable form
 because other Perl programmers will expect it, and it works better if
 there are
more than 9 backreferences.

Binary number > 0b11111111111111111111111111111111 non-portable

(W portable) The binary number you specified is larger than 2**32-1
 (4294967295) and
therefore non-portable between systems. See perlport for more on portability concerns.

bind() on closed socket %s

(W closed) You tried to do a bind on a closed socket. Did you forget to
 check the return value
of your socket() call? See "bind" in perlfunc.

binmode() on closed filehandle %s

(W unopened) You tried binmode() on a filehandle that was never opened.
 Check your control
flow and number of arguments.

Perl version 5.14.2 documentation - perldiag

Page 8http://perldoc.perl.org

"\b{" is deprecated; use "\b\{" instead

"\B{" is deprecated; use "\B\{" instead

(W deprecated, regexp) Use of an unescaped "{" immediately following a \b or \B is now
deprecated so as to reserve its use for Perl
 itself in a future release.

Bit vector size > 32 non-portable

(W portable) Using bit vector sizes larger than 32 is non-portable.

Bizarre copy of %s in %s

(P) Perl detected an attempt to copy an internal value that is not
 copiable.

Buffer overflow in prime_env_iter: %s

(W internal) A warning peculiar to VMS. While Perl was preparing to
 iterate over %ENV, it
encountered a logical name or symbol definition
 which was too long, so it was truncated to the
string shown.

Callback called exit

(F) A subroutine invoked from an external package via call_sv()
 exited by calling exit.

%s() called too early to check prototype

(W prototype) You've called a function that has a prototype before the
 parser saw a definition
or declaration for it, and Perl could not check
 that the call conforms to the prototype. You need
to either add an
 early prototype declaration for the subroutine in question, or move the

subroutine definition ahead of the call to get proper prototype
 checking. Alternatively, if you
are certain that you're calling the
 function correctly, you may put an ampersand before the
name to avoid
 the warning. See perlsub.

Cannot compress integer in pack

(F) An argument to pack("w",...) was too large to compress. The BER
 compressed integer
format can only be used with positive integers, and you
 attempted to compress Infinity or a
very large number (> 1e308).
 See "pack" in perlfunc.

Cannot compress negative numbers in pack

(F) An argument to pack("w",...) was negative. The BER compressed integer
 format can only
be used with positive integers. See "pack" in perlfunc.

Cannot convert a reference to %s to typeglob

(F) You manipulated Perl's symbol table directly, stored a reference in it,
 then tried to access
that symbol via conventional Perl syntax. The access
 triggers Perl to autovivify that typeglob,
but it there is no legal conversion
 from that type of reference to a typeglob.

Cannot copy to %s in %s

(P) Perl detected an attempt to copy a value to an internal type that cannot
 be directly
assigned to.

Cannot find encoding "%s"

(S io) You tried to apply an encoding that did not exist to a filehandle,
 either with open() or
binmode().

Can only compress unsigned integers in pack

(F) An argument to pack("w",...) was not an integer. The BER compressed
 integer format can
only be used with positive integers, and you attempted
 to compress something else. See
"pack" in perlfunc.

Can't bless non-reference value

Perl version 5.14.2 documentation - perldiag

Page 9http://perldoc.perl.org

(F) Only hard references may be blessed. This is how Perl "enforces"
 encapsulation of
objects. See perlobj.

Can't "break" in a loop topicalizer

(F) You called break, but you're in a foreach block rather than
 a given block. You probably
meant to use next or last.

Can't "break" outside a given block

(F) You called break, but you're not inside a given block.

Can't call method "%s" on an undefined value

(F) You used the syntax of a method call, but the slot filled by the
 object reference or package
name contains an undefined value. Something
 like this will reproduce the error:

 $BADREF = undef;
 process $BADREF 1,2,3;
 $BADREF->process(1,2,3);

Can't call method "%s" on unblessed reference

(F) A method call must know in what package it's supposed to run. It
 ordinarily finds this out
from the object reference you supply, but you
 didn't supply an object reference in this case. A
reference isn't an
 object reference until it has been blessed. See perlobj.

Can't call method "%s" without a package or object reference

(F) You used the syntax of a method call, but the slot filled by the
 object reference or package
name contains an expression that returns a
 defined value which is neither an object reference
nor a package name.
 Something like this will reproduce the error:

 $BADREF = 42;
 process $BADREF 1,2,3;
 $BADREF->process(1,2,3);

Can't chdir to %s

(F) You called perl -x/foo/bar, but /foo/bar is not a directory
 that you can chdir to,
possibly because it doesn't exist.

Can't check filesystem of script "%s" for nosuid

(P) For some reason you can't check the filesystem of the script for
 nosuid.

Can't coerce %s to %s in %s

(F) Certain types of SVs, in particular real symbol table entries
 (typeglobs), can't be forced to
stop being what they are. So you can't
 say things like:

 *foo += 1;

You CAN say

 $foo = *foo;
 $foo += 1;

but then $foo no longer contains a glob.

Can't "continue" outside a when block

(F) You called continue, but you're not inside a when
 or default block.

Can't create pipe mailbox

(P) An error peculiar to VMS. The process is suffering from exhausted
 quotas or other

Perl version 5.14.2 documentation - perldiag

Page 10http://perldoc.perl.org

plumbing problems.

Can't declare %s in "%s"

(F) Only scalar, array, and hash variables may be declared as "my", "our" or
 "state" variables.
They must have ordinary identifiers as names.

Can't do inplace edit: %s is not a regular file

(S inplace) You tried to use the -i switch on a special file, such as
 a file in /dev, or a FIFO. The
file was ignored.

Can't do inplace edit on %s: %s

(S inplace) The creation of the new file failed for the indicated
 reason.

Can't do inplace edit without backup

(F) You're on a system such as MS-DOS that gets confused if you try
 reading from a deleted
(but still opened) file. You have to say -i.bak, or some such.

Can't do inplace edit: %s would not be unique

(S inplace) Your filesystem does not support filenames longer than 14
 characters and Perl
was unable to create a unique filename during
 inplace editing with the -i switch. The file was
ignored.

Can't do {n,m} with n > m in regex; marked by <-- HERE in m/%s/

(F) Minima must be less than or equal to maxima. If you really want your
 regexp to match
something 0 times, just put {0}. The <-- HERE shows in the
 regular expression about where
the problem was discovered. See perlre.

Can't do waitpid with flags

(F) This machine doesn't have either waitpid() or wait4(), so only
 waitpid() without flags is
emulated.

Can't emulate -%s on #! line

(F) The #! line specifies a switch that doesn't make sense at this
 point. For example, it'd be
kind of silly to put a -x on the #!
 line.

Can't %s %s-endian %ss on this platform

(F) Your platform's byte-order is neither big-endian nor little-endian,
 or it has a very strange
pointer size. Packing and unpacking big- or
 little-endian floating point values and pointers may
not be possible.
 See "pack" in perlfunc.

Can't exec "%s": %s

(W exec) A system(), exec(), or piped open call could not execute the
 named program for the
indicated reason. Typical reasons include: the
 permissions were wrong on the file, the file
wasn't found in $ENV{PATH}, the executable in question was compiled for another

architecture, or the #! line in a script points to an interpreter that
 can't be run for similar
reasons. (Or maybe your system doesn't support
 #! at all.)

Can't exec %s

(F) Perl was trying to execute the indicated program for you because
 that's what the #! line
said. If that's not what you wanted, you may
 need to mention "perl" on the #! line somewhere.

Can't execute %s

(F) You used the -S switch, but the copies of the script to execute
 found in the PATH did not
have correct permissions.

Can't find an opnumber for "%s"

Perl version 5.14.2 documentation - perldiag

Page 11http://perldoc.perl.org

(F) A string of a form CORE::word was given to prototype(), but there
 is no builtin with the
name word.

Can't find %s character property "%s"

(F) You used \p{} or \P{} but the character property by that name
 could not be found.
Maybe you misspelled the name of the property?
 See "Properties accessible through \p{} and
\P{}" in perluniprops
 for a complete list of available properties.

Can't find label %s

(F) You said to goto a label that isn't mentioned anywhere that it's
 possible for us to go to. See
"goto" in perlfunc.

Can't find %s on PATH

(F) You used the -S switch, but the script to execute could not be
 found in the PATH.

Can't find %s on PATH, '.' not in PATH

(F) You used the -S switch, but the script to execute could not be
 found in the PATH, or at
least not with the correct permissions. The
 script exists in the current directory, but PATH
prohibits running it.

Can't find string terminator %s anywhere before EOF

(F) Perl strings can stretch over multiple lines. This message means
 that the closing delimiter
was omitted. Because bracketed quotes count
 nesting levels, the following is missing its final
parenthesis:

 print q(The character '(' starts a side comment.);

If you're getting this error from a here-document, you may have
 included unseen whitespace
before or after your closing tag or there
 may not be a linebreak after it. A good programmer's
editor will have
 a way to help you find these characters (or lack of characters). See perlop for
the full details on here-documents.

Can't find Unicode property definition "%s"

(F) You may have tried to use \p which means a Unicode
 property (for example \p{Lu}
matches all uppercase
 letters). If you did mean to use a Unicode property, see "Properties
accessible through \p{} and \P{}" in perluniprops
 for a complete list of available properties. If
you didn't
 mean to use a Unicode property, escape the \p, either by \\p
 (just the \p) or by
\Q\p (the rest of the string, or
 until \E).

Can't fork: %s

(F) A fatal error occurred while trying to fork while opening a
 pipeline.

Can't fork, trying again in 5 seconds

(W pipe) A fork in a piped open failed with EAGAIN and will be retried
 after five seconds.

Can't get filespec - stale stat buffer?

(S) A warning peculiar to VMS. This arises because of the difference
 between access checks
under VMS and under the Unix model Perl assumes.
 Under VMS, access checks are done by
filename, rather than by bits in
 the stat buffer, so that ACLs and other protections can be taken
into
 account. Unfortunately, Perl assumes that the stat buffer contains all
 the necessary
information, and passes it, instead of the filespec, to
 the access-checking routine. It will try to
retrieve the filespec using
 the device name and FID present in the stat buffer, but this works
only
 if you haven't made a subsequent call to the CRTL stat() routine,
 because the device
name is overwritten with each call. If this warning
 appears, the name lookup failed, and the
access-checking routine gave up
 and returned FALSE, just to be conservative. (Note: The
access-checking
 routine knows about the Perl stat operator and file tests, so you
 shouldn't
ever see this warning in response to a Perl command; it arises
 only if some internal code

Perl version 5.14.2 documentation - perldiag

Page 12http://perldoc.perl.org

takes stat buffers lightly.)

Can't get pipe mailbox device name

(P) An error peculiar to VMS. After creating a mailbox to act as a
 pipe, Perl can't retrieve its
name for later use.

Can't get SYSGEN parameter value for MAXBUF

(P) An error peculiar to VMS. Perl asked $GETSYI how big you want your
 mailbox buffers to
be, and didn't get an answer.

Can't "goto" into the middle of a foreach loop

(F) A "goto" statement was executed to jump into the middle of a foreach
 loop. You can't get
there from here. See "goto" in perlfunc.

Can't "goto" out of a pseudo block

(F) A "goto" statement was executed to jump out of what might look like
 a block, except that it
isn't a proper block. This usually occurs if
 you tried to jump out of a sort() block or subroutine,
which is a no-no.
 See "goto" in perlfunc.

Can't goto subroutine from a sort sub (or similar callback)

(F) The "goto subroutine" call can't be used to jump out of the
 comparison sub for a sort(), or
from a similar callback (such
 as the reduce() function in List::Util).

Can't goto subroutine from an eval-%s

(F) The "goto subroutine" call can't be used to jump out of an eval
 "string" or block.

Can't goto subroutine outside a subroutine

(F) The deeply magical "goto subroutine" call can only replace one
 subroutine call for another.
It can't manufacture one out of whole
 cloth. In general you should be calling it out of only an
AUTOLOAD
 routine anyway. See "goto" in perlfunc.

Can't ignore signal CHLD, forcing to default

(W signal) Perl has detected that it is being run with the SIGCHLD
 signal (sometimes known
as SIGCLD) disabled. Since disabling this
 signal will interfere with proper determination of exit
status of child
 processes, Perl has reset the signal to its default value. This
 situation typically
indicates that the parent program under which Perl
 may be running (e.g. cron) is being very
careless.

Can't kill a non-numeric process ID

(F) Process identifiers must be (signed) integers. It is a fatal error to
 attempt to kill() an
undefined, empty-string or otherwise non-numeric
 process identifier.

Can't "last" outside a loop block

(F) A "last" statement was executed to break out of the current block,
 except that there's this
itty bitty problem called there isn't a current
 block. Note that an "if" or "else" block doesn't
count as a "loopish"
 block, as doesn't a block given to sort(), map() or grep(). You can
 usually
double the curlies to get the same effect though, because the
 inner curlies will be considered
a block that loops once. See "last" in perlfunc.

Can't linearize anonymous symbol table

(F) Perl tried to calculate the method resolution order (MRO) of a
 package, but failed because
the package stash has no name.

Can't load '%s' for module %s

(F) The module you tried to load failed to load a dynamic extension. This
 may either mean that
you upgraded your version of perl to one that is
 incompatible with your old dynamic extensions

Perl version 5.14.2 documentation - perldiag

Page 13http://perldoc.perl.org

(which is known to happen
 between major versions of perl), or (more likely) that your dynamic

extension was built against an older version of the library that is
 installed on your system. You
may need to rebuild your old dynamic
 extensions.

Can't localize lexical variable %s

(F) You used local on a variable name that was previously declared as a
 lexical variable using
"my" or "state". This is not allowed. If you want to
 localize a package variable of the same
name, qualify it with the
 package name.

Can't localize through a reference

(F) You said something like local $$ref, which Perl can't currently
 handle, because when it
goes to restore the old value of whatever $ref
 pointed to after the scope of the local() is
finished, it can't be sure
 that $ref will still be a reference.

Can't locate %s

(F) You said to do (or require, or use) a file that couldn't be
 found. Perl looks for the file in
all the locations mentioned in @INC,
 unless the file name included the full path to the file.
Perhaps you
 need to set the PERL5LIB or PERL5OPT environment variable to say where
 the
extra library is, or maybe the script needs to add the library name
 to @INC. Or maybe you just
misspelled the name of the file. See "require" in perlfunc and lib.

Can't locate auto/%s.al in @INC

(F) A function (or method) was called in a package which allows
 autoload, but there is no
function to autoload. Most probable causes
 are a misprint in a function/method name or a
failure to AutoSplit
 the file, say, by doing make install.

Can't locate loadable object for module %s in @INC

(F) The module you loaded is trying to load an external library, like
 for example, foo.so or
bar.dll, but the DynaLoader module was
 unable to locate this library. See DynaLoader.

Can't locate object method "%s" via package "%s"

(F) You called a method correctly, and it correctly indicated a package
 functioning as a class,
but that package doesn't define that particular
 method, nor does any of its base classes. See
perlobj.

Can't locate package %s for @%s::ISA

(W syntax) The @ISA array contained the name of another package that
 doesn't seem to
exist.

Can't locate PerlIO%s

(F) You tried to use in open() a PerlIO layer that does not exist,
 e.g. open(FH, ">:nosuchlayer",
"somefile").

Can't make list assignment to \%ENV on this system

(F) List assignment to %ENV is not supported on some systems, notably
 VMS.

Can't modify %s in %s

(F) You aren't allowed to assign to the item indicated, or otherwise try
 to change it, such as
with an auto-increment.

Can't modify nonexistent substring

(P) The internal routine that does assignment to a substr() was handed
 a NULL.

Can't modify non-lvalue subroutine call

(F) Subroutines meant to be used in lvalue context should be declared as
 such. See "Lvalue
subroutines" in perlsub.

Perl version 5.14.2 documentation - perldiag

Page 14http://perldoc.perl.org

Can't msgrcv to read-only var

(F) The target of a msgrcv must be modifiable to be used as a receive
 buffer.

Can't "next" outside a loop block

(F) A "next" statement was executed to reiterate the current block, but
 there isn't a current
block. Note that an "if" or "else" block doesn't
 count as a "loopish" block, as doesn't a block
given to sort(), map() or
 grep(). You can usually double the curlies to get the same effect

though, because the inner curlies will be considered a block that loops
 once. See "next" in
perlfunc.

Can't open %s: %s

(S inplace) The implicit opening of a file through use of the <>
 filehandle, either implicitly
under the -n or -p command-line
 switches, or explicitly, failed for the indicated reason.
Usually this
 is because you don't have read permission for a file which you named on
 the
command line.

Can't open a reference

(W io) You tried to open a scalar reference for reading or writing,
 using the 3-arg open()
syntax:

 open FH, '>', $ref;

but your version of perl is compiled without perlio, and this form of
 open is not supported.

Can't open bidirectional pipe

(W pipe) You tried to say open(CMD, "|cmd|"), which is not supported.
 You can try any of
several modules in the Perl library to do this, such
 as IPC::Open2. Alternately, direct the pipe's
output to a file using
 ">", and then read it in under a different file handle.

Can't open error file %s as stderr

(F) An error peculiar to VMS. Perl does its own command line
 redirection, and couldn't open
the file specified after '2>' or '2>>' on
 the command line for writing.

Can't open input file %s as stdin

(F) An error peculiar to VMS. Perl does its own command line
 redirection, and couldn't open
the file specified after '<' on the
 command line for reading.

Can't open output file %s as stdout

(F) An error peculiar to VMS. Perl does its own command line
 redirection, and couldn't open
the file specified after '>' or '>>' on
 the command line for writing.

Can't open output pipe (name: %s)

(P) An error peculiar to VMS. Perl does its own command line
 redirection, and couldn't open
the pipe into which to send data destined
 for stdout.

Can't open perl script%s

(F) The script you specified can't be opened for the indicated reason.

If you're debugging a script that uses #!, and normally relies on the
 shell's $PATH search, the
-S option causes perl to do that search, so
 you don't have to type the path or `which
$scriptname`.

Can't read CRTL environ

(S) A warning peculiar to VMS. Perl tried to read an element of %ENV
 from the CRTL's
internal environment array and discovered the array was
 missing. You need to figure out
where your CRTL misplaced its environ
 or define PERL_ENV_TABLES (see perlvms) so that
environ is not
 searched.

Perl version 5.14.2 documentation - perldiag

Page 15http://perldoc.perl.org

Can't "redo" outside a loop block

(F) A "redo" statement was executed to restart the current block, but
 there isn't a current
block. Note that an "if" or "else" block doesn't
 count as a "loopish" block, as doesn't a block
given to sort(), map()
 or grep(). You can usually double the curlies to get the same effect

though, because the inner curlies will be considered a block that
 loops once. See "redo" in
perlfunc.

Can't remove %s: %s, skipping file

(S inplace) You requested an inplace edit without creating a backup
 file. Perl was unable to
remove the original file to replace it with
 the modified file. The file was left unmodified.

Can't rename %s to %s: %s, skipping file

(S inplace) The rename done by the -i switch failed for some reason,
 probably because you
don't have write permission to the directory.

Can't reopen input pipe (name: %s) in binary mode

(P) An error peculiar to VMS. Perl thought stdin was a pipe, and tried
 to reopen it to accept
binary data. Alas, it failed.

Can't resolve method "%s" overloading "%s" in package "%s"

(F|P) Error resolving overloading specified by a method name (as opposed
 to a subroutine
reference): no such method callable via the package. If
 the method name is ???, this is an
internal error.

Can't return %s from lvalue subroutine

(F) Perl detected an attempt to return illegal lvalues (such as
 temporary or readonly values)
from a subroutine used as an lvalue. This
 is not allowed.

Can't return outside a subroutine

(F) The return statement was executed in mainline code, that is, where
 there was no
subroutine call to return out of. See perlsub.

Can't return %s to lvalue scalar context

(F) You tried to return a complete array or hash from an lvalue subroutine,
 but you called the
subroutine in a way that made Perl think you meant
 to return only one value. You probably
meant to write parentheses around
 the call to the subroutine, which tell Perl that the call
should be in
 list context.

Can't stat script "%s"

(P) For some reason you can't fstat() the script even though you have it
 open already. Bizarre.

Can't take log of %g

(F) For ordinary real numbers, you can't take the logarithm of a
 negative number or zero.
There's a Math::Complex package that comes
 standard with Perl, though, if you really want to
do that for the
 negative numbers.

Can't take sqrt of %g

(F) For ordinary real numbers, you can't take the square root of a
 negative number. There's a
Math::Complex package that comes standard
 with Perl, though, if you really want to do that.

Can't undef active subroutine

(F) You can't undefine a routine that's currently running. You can,
 however, redefine it while
it's running, and you can even undef the
 redefined subroutine while the old routine is running.
Go figure.

Can't upgrade %s (%d) to %d

Perl version 5.14.2 documentation - perldiag

Page 16http://perldoc.perl.org

(P) The internal sv_upgrade routine adds "members" to an SV, making it
 into a more
specialized kind of SV. The top several SV types are so
 specialized, however, that they
cannot be interconverted. This message
 indicates that such a conversion was attempted.

Can't use anonymous symbol table for method lookup

(F) The internal routine that does method lookup was handed a symbol
 table that doesn't have
a name. Symbol tables can become anonymous
 for example by undefining stashes: undef
%Some::Package::.

Can't use an undefined value as %s reference

(F) A value used as either a hard reference or a symbolic reference must
 be a defined value.
This helps to delurk some insidious errors.

Can't use bareword ("%s") as %s ref while "strict refs" in use

(F) Only hard references are allowed by "strict refs". Symbolic
 references are disallowed. See
perlref.

Can't use %! because Errno.pm is not available

(F) The first time the %! hash is used, perl automatically loads the
 Errno.pm module. The
Errno module is expected to tie the %! hash to
 provide symbolic names for $! errno values.

Can't use both '<' and '>' after type '%c' in %s

(F) A type cannot be forced to have both big-endian and little-endian
 byte-order at the same
time, so this combination of modifiers is not
 allowed. See "pack" in perlfunc.

Can't use %s for loop variable

(F) Only a simple scalar variable may be used as a loop variable on a
 foreach.

Can't use global %s in "%s"

(F) You tried to declare a magical variable as a lexical variable. This
 is not allowed, because
the magic can be tied to only one location
 (namely the global variable) and it would be
incredibly confusing to
 have variables in your program that looked like magical variables but

weren't.

Can't use '%c' in a group with different byte-order in %s

(F) You attempted to force a different byte-order on a type
 that is already inside a group with a
byte-order modifier.
 For example you cannot force little-endianness on a type that
 is inside a
big-endian group.

Can't use "my %s" in sort comparison

(F) The global variables $a and $b are reserved for sort comparisons.
 You mentioned $a or $b
in the same line as the <=> or cmp operator,
 and the variable had earlier been declared as a
lexical variable.
 Either qualify the sort variable with the package name, or rename the
 lexical
variable.

Can't use %s ref as %s ref

(F) You've mixed up your reference types. You have to dereference a
 reference of the type
needed. You can use the ref() function to
 test the type of the reference, if need be.

Can't use string ("%s") as %s ref while "strict refs" in use

(F) Only hard references are allowed by "strict refs". Symbolic
 references are disallowed. See
perlref.

Can't use subscript on %s

(F) The compiler tried to interpret a bracketed expression as a
 subscript. But to the left of the
brackets was an expression that
 didn't look like a hash or array reference, or anything else

Perl version 5.14.2 documentation - perldiag

Page 17http://perldoc.perl.org

subscriptable.Can't use \%c to mean $%c in expression

(W syntax) In an ordinary expression, backslash is a unary operator that
 creates a reference
to its argument. The use of backslash to indicate a
 backreference to a matched substring is
valid only as part of a regular
 expression pattern. Trying to do this in ordinary Perl code
produces a
 value that prints out looking like SCALAR(0xdecaf). Use the $1 form
 instead.

Can't use "when" outside a topicalizer

(F) You have used a when() block that is neither inside a foreach
 loop nor a given block.
(Note that this error is issued on exit
 from the when block, so you won't get the error if the
match fails,
 or if you use an explicit continue.)

Can't weaken a nonreference

(F) You attempted to weaken something that was not a reference. Only
 references can be
weakened.

Can't x= to read-only value

(F) You tried to repeat a constant value (often the undefined value)
 with an assignment
operator, which implies modifying the value itself.
 Perhaps you need to copy the value to a
temporary, and repeat that.

Character following "\c" must be ASCII

(F|W deprecated, syntax) In \cX, X must be an ASCII character.
 It is planned to make this
fatal in all instances in Perl 5.16. In the
 cases where it isn't fatal, the character this evaluates
to is
 derived by exclusive or'ing the code point of this character with 0x40.

Note that non-alphabetic ASCII characters are discouraged here as well.

Character in 'C' format wrapped in pack

(W pack) You said

 pack("C", $x)

where $x is either less than 0 or more than 255; the "C" format is
 only for encoding native
operating system characters (ASCII, EBCDIC,
 and so on) and not for Unicode characters, so
Perl behaved as if you meant

 pack("C", $x & 255)

If you actually want to pack Unicode codepoints, use the "U" format
 instead.

Character in 'W' format wrapped in pack

(W pack) You said

 pack("U0W", $x)

where $x is either less than 0 or more than 255. However, U0-mode expects
 all values to fall
in the interval [0, 255], so Perl behaved as if you
 meant:

 pack("U0W", $x & 255)

Character in 'c' format wrapped in pack

(W pack) You said

 pack("c", $x)

where $x is either less than -128 or more than 127; the "c" format
 is only for encoding native
operating system characters (ASCII, EBCDIC,
 and so on) and not for Unicode characters, so
Perl behaved as if you meant

 pack("c", $x & 255);

Perl version 5.14.2 documentation - perldiag

Page 18http://perldoc.perl.org

If you actually want to pack Unicode codepoints, use the "U" format
 instead.

Character in '%c' format wrapped in unpack

(W unpack) You tried something like

 unpack("H", "\x{2a1}")

where the format expects to process a byte (a character with a value
 below 256), but a higher
value was provided instead. Perl uses the value
 modulus 256 instead, as if you had provided:

 unpack("H", "\x{a1}")

Character(s) in '%c' format wrapped in pack

(W pack) You tried something like

 pack("u", "\x{1f3}b")

where the format expects to process a sequence of bytes (character with a
 value below 256),
but some of the characters had a higher value. Perl
 uses the character values modulus 256
instead, as if you had provided:

 pack("u", "\x{f3}b")

Character(s) in '%c' format wrapped in unpack

(W unpack) You tried something like

 unpack("s", "\x{1f3}b")

where the format expects to process a sequence of bytes (character with a
 value below 256),
but some of the characters had a higher value. Perl
 uses the character values modulus 256
instead, as if you had provided:

 unpack("s", "\x{f3}b")

"\c{" is deprecated and is more clearly written as ";"

(D deprecated, syntax) The \cX construct is intended to be a way
 to specify non-printable
characters. You used it with a "{" which
 evaluates to ";", which is printable. It is planned to
remove the
 ability to specify a semi-colon this way in Perl 5.16. Just use a
 semi-colon or a
backslash-semi-colon without the "\c".

"\c%c" is more clearly written simply as "%s"

(W syntax) The \cX construct is intended to be a way to specify
 non-printable characters. You
used it for a printable one, which is better
 written as simply itself, perhaps preceded by a
backslash for non-word
 characters.

close() on unopened filehandle %s

(W unopened) You tried to close a filehandle that was never opened.

closedir() attempted on invalid dirhandle %s

(W io) The dirhandle you tried to close is either closed or not really
 a dirhandle. Check your
control flow.

Closure prototype called

(F) If a closure has attributes, the subroutine passed to an attribute
 handler is the prototype
that is cloned when a new closure is created.
 This subroutine cannot be called.

Code missing after '/'

(F) You had a (sub-)template that ends with a '/'. There must be another
 template code

Perl version 5.14.2 documentation - perldiag

Page 19http://perldoc.perl.org

following the slash. See "pack" in perlfunc.

Code point 0x%X is not Unicode, may not be portable

Code point 0x%X is not Unicode, no properties match it; all inverse properties do

(W utf8, non_unicode) You had a code point above the Unicode maximum of U+10FFFF.

Perl allows strings to contain a superset of Unicode code
 points, up to the limit of what is
storable in an unsigned integer on
 your system, but these may not be accepted by other
languages/systems.
 At one time, it was legal in some standards to have code points up to

0x7FFF_FFFF, but not higher. Code points above 0xFFFF_FFFF require
 larger than a 32 bit
word.

None of the Unicode or Perl-defined properties will match a non-Unicode
 code point. For
example,

 chr(0x7FF_FFFF) =~ /\p{Any}/

will not match, because the code point is not in Unicode. But

 chr(0x7FF_FFFF) =~ /\P{Any}/

will match.

%s: Command not found

(A) You've accidentally run your script through csh instead of Perl.
 Check the #! line, or
manually feed your script into Perl yourself.

Compilation failed in require

(F) Perl could not compile a file specified in a require statement.
 Perl uses this generic
message when none of the errors that it
 encountered were severe enough to halt compilation
immediately.

Complex regular subexpression recursion limit (%d) exceeded

(W regexp) The regular expression engine uses recursion in complex
 situations where
back-tracking is required. Recursion depth is limited
 to 32766, or perhaps less in architectures
where the stack cannot grow
 arbitrarily. ("Simple" and "medium" situations are handled
without
 recursion and are not subject to a limit.) Try shortening the string
 under examination;
looping in Perl code (e.g. with while) rather than
 in the regular expression engine; or
rewriting the regular expression so
 that it is simpler or backtracks less. (See perlfaq2 for
information
 on Mastering Regular Expressions.)

cond_broadcast() called on unlocked variable

(W threads) Within a thread-enabled program, you tried to call
 cond_broadcast() on a variable
which wasn't locked. The cond_broadcast()
 function is used to wake up another thread that is
waiting in a
 cond_wait(). To ensure that the signal isn't sent before the other thread
 has a
chance to enter the wait, it is usual for the signaling thread
 first to wait for a lock on variable.
This lock attempt will only succeed
 after the other thread has entered cond_wait() and thus
relinquished the
 lock.

cond_signal() called on unlocked variable

(W threads) Within a thread-enabled program, you tried to call
 cond_signal() on a variable
which wasn't locked. The cond_signal()
 function is used to wake up another thread that is
waiting in a
 cond_wait(). To ensure that the signal isn't sent before the other thread
 has a
chance to enter the wait, it is usual for the signaling thread
 first to wait for a lock on variable.
This lock attempt will only succeed
 after the other thread has entered cond_wait() and thus
relinquished the
 lock.

connect() on closed socket %s

Perl version 5.14.2 documentation - perldiag

Page 20http://perldoc.perl.org

(W closed) You tried to do a connect on a closed socket. Did you forget
 to check the return
value of your socket() call? See "connect" in perlfunc.

Constant(%s)%s: %s

(F) The parser found inconsistencies either while attempting to define
 an overloaded constant,
or when trying to find the character name
 specified in the \N{...} escape. Perhaps you
forgot to load the
 corresponding overload or charnames pragma? See charnames and
overload.

Constant(%s)%s: %s in regex; marked by <-- HERE in m/%s/

(F) The parser found inconsistencies while attempting to find
 the character name specified in
the \N{...} escape. Perhaps you
 forgot to load the corresponding charnames pragma?

See charnames.

Constant is not %s reference

(F) A constant value (perhaps declared using the use constant pragma)
 is being
dereferenced, but it amounts to the wrong type of reference.
 The message indicates the type
of reference that was expected. This
 usually indicates a syntax error in dereferencing the
constant value.
 See "Constant Functions" in perlsub and constant.

Constant subroutine %s redefined

(S) You redefined a subroutine which had previously been
 eligible for inlining. See "Constant
Functions" in perlsub for
 commentary and workarounds.

Constant subroutine %s undefined

(W misc) You undefined a subroutine which had previously been eligible
 for inlining. See
"Constant Functions" in perlsub for commentary and
 workarounds.

Copy method did not return a reference

(F) The method which overloads "=" is buggy. See "Copy Constructor" in overload.

CORE::%s is not a keyword

(F) The CORE:: namespace is reserved for Perl keywords.

corrupted regexp pointers

(P) The regular expression engine got confused by what the regular
 expression compiler gave
it.

corrupted regexp program

(P) The regular expression engine got passed a regexp program without a
 valid magic
number.

Corrupt malloc ptr 0x%x at 0x%x

(P) The malloc package that comes with Perl had an internal failure.

Count after length/code in unpack

(F) You had an unpack template indicating a counted-length string, but
 you have also
specified an explicit size for the string. See "pack" in perlfunc.

Deep recursion on subroutine "%s"

(W recursion) This subroutine has called itself (directly or indirectly)
 100 times more than it
has returned. This probably indicates an
 infinite recursion, unless you're writing strange
benchmark programs, in
 which case it indicates something else.

This threshold can be changed from 100, by recompiling the perl binary,
 setting the C
pre-processor macro PERL_SUB_DEPTH_WARN to the desired value.

Perl version 5.14.2 documentation - perldiag

Page 21http://perldoc.perl.org

defined(@array) is deprecated

(D deprecated) defined() is not usually useful on arrays because it
 checks for an undefined
scalar value. If you want to see if the
 array is empty, just use if (@array) { # not
empty } for example.

defined(%hash) is deprecated

(D deprecated) defined() is not usually useful on hashes because it
 checks for an undefined
scalar value. If you want to see if the hash
 is empty, just use if (%hash) { # not empty
 } for example.

(?(DEFINE)....) does not allow branches in regex; marked by <-- HERE in m/%s/

(F) You used something like (?(DEFINE)...|..) which is illegal. The
 most likely cause of
this error is that you left out a parenthesis inside
 of the part.

The <-- HERE shows in the regular expression about where the problem was
 discovered.

%s defines neither package nor VERSION--version check failed

(F) You said something like "use Module 42" but in the Module file
 there are neither package
declarations nor a $VERSION.

Delimiter for here document is too long

(F) In a here document construct like <<FOO, the label FOO is too
 long for Perl to handle. You
have to be seriously twisted to write code
 that triggers this error.

Deprecated character in \N{...}; marked by <-- HERE in \N{%s<-- HERE %s

(D deprecated) Just about anything is legal for the ... in \N{...}.
 But starting in 5.12,
non-reasonable ones that don't look like names
 are deprecated. A reasonable name begins
with an alphabetic character
 and continues with any combination of alphanumerics, dashes,
spaces,
 parentheses or colons.

Deprecated use of my() in false conditional

(D deprecated) You used a declaration similar to my $x if 0.
 There has been a
long-standing bug in Perl that causes a lexical variable
 not to be cleared at scope exit when its
declaration includes a false
 conditional. Some people have exploited this bug to achieve a
kind of
 static variable. Since we intend to fix this bug, we don't want people
 relying on this
behavior. You can achieve a similar static effect by
 declaring the variable in a separate block
outside the function, eg

 sub f { my $x if 0; return $x++ }

becomes

 { my $x; sub f { return $x++ } }

Beginning with perl 5.9.4, you can also use state variables to
 have lexicals that are initialized
only once (see feature):

 sub f { state $x; return $x++ }

DESTROY created new reference to dead object '%s'

(F) A DESTROY() method created a new reference to the object which is
 just being
DESTROYed. Perl is confused, and prefers to abort rather than
 to create a dangling
reference.

Did not produce a valid header

See Server error.

%s did not return a true value

Perl version 5.14.2 documentation - perldiag

Page 22http://perldoc.perl.org

(F) A required (or used) file must return a true value to indicate that
 it compiled correctly and
ran its initialization code correctly. It's
 traditional to end such a file with a "1;", though any true
value would
 do. See "require" in perlfunc.

(Did you mean &%s instead?)

(W misc) You probably referred to an imported subroutine &FOO as $FOO or
 some such.

(Did you mean "local" instead of "our"?)

(W misc) Remember that "our" does not localize the declared global
 variable. You have
declared it again in the same lexical scope, which
 seems superfluous.

(Did you mean $ or @ instead of %?)

(W) You probably said %hash{$key} when you meant $hash{$key} or
 @hash{@keys}. On the
other hand, maybe you just meant %hash and got
 carried away.

Died

(F) You passed die() an empty string (the equivalent of die "") or
 you called it with no args
and $@ was empty.

Document contains no data

See Server error.

%s does not define %s::VERSION--version check failed

(F) You said something like "use Module 42" but the Module did not
 define a $VERSION.

'/' does not take a repeat count

(F) You cannot put a repeat count of any kind right after the '/' code.
 See "pack" in perlfunc.

Don't know how to handle magic of type '%s'

(P) The internal handling of magical variables has been cursed.

do_study: out of memory

(P) This should have been caught by safemalloc() instead.

(Do you need to predeclare %s?)

(S syntax) This is an educated guess made in conjunction with the message
 "%s found where
operator expected". It often means a subroutine or module
 name is being referenced that
hasn't been declared yet. This may be
 because of ordering problems in your file, or because
of a missing
 "sub", "package", "require", or "use" statement. If you're referencing
 something
that isn't defined yet, you don't actually have to define the
 subroutine or package before the
current location. You can use an empty
 "sub foo;" or "package FOO;" to enter a "forward"
declaration.

dump() better written as CORE::dump()

(W misc) You used the obsolescent dump() built-in function, without fully
 qualifying it as
CORE::dump(). Maybe it's a typo. See "dump" in perlfunc.

dump is not supported

(F) Your machine doesn't support dump/undump.

Duplicate free() ignored

(S malloc) An internal routine called free() on something that had
 already been freed.

Duplicate modifier '%c' after '%c' in %s

(W) You have applied the same modifier more than once after a type
 in a pack template. See
"pack" in perlfunc.

Perl version 5.14.2 documentation - perldiag

Page 23http://perldoc.perl.org

elseif should be elsif

(S syntax) There is no keyword "elseif" in Perl because Larry thinks it's
 ugly. Your code will be
interpreted as an attempt to call a method named
 "elseif" for the class returned by the
following block. This is
 unlikely to be what you want.

Empty %s

(F) \p and \P are used to introduce a named Unicode property, as
 described in perlunicode
and perlre. You used \p or \P in
 a regular expression without specifying the property name.

entering effective %s failed

(F) While under the use filetest pragma, switching the real and
 effective uids or gids
failed.

%ENV is aliased to %s

(F) You're running under taint mode, and the %ENV variable has been
 aliased to another hash,
so it doesn't reflect anymore the state of the
 program's environment. This is potentially
insecure.

Error converting file specification %s

(F) An error peculiar to VMS. Because Perl may have to deal with file
 specifications in either
VMS or Unix syntax, it converts them to a
 single form when it must operate on them directly.
Either you've passed
 an invalid file specification to Perl, or you've found a case the
 conversion
routines don't handle. Drat.

%s: Eval-group in insecure regular expression

(F) Perl detected tainted data when trying to compile a regular
 expression that contains the
(?{ ... }) zero-width assertion, which
 is unsafe. See "(?{ code })" in perlre, and perlsec.

%s: Eval-group not allowed at runtime, use re 'eval'

(F) Perl tried to compile a regular expression containing the (?{ ... }) zero-width assertion
at run time, as it would when the
 pattern contains interpolated values. Since that is a security
risk,
 it is not allowed. If you insist, you may still do this by using the re 'eval' pragma or by
explicitly building the pattern from an
 interpolated string at run time and using that in an eval().
See "(?{ code })" in perlre.

%s: Eval-group not allowed, use re 'eval'

(F) A regular expression contained the (?{ ... }) zero-width
 assertion, but that construct is
only allowed when the use re 'eval'
 pragma is in effect. See "(?{ code })" in perlre.

EVAL without pos change exceeded limit in regex; marked by <-- HERE in m/%s/

(F) You used a pattern that nested too many EVAL calls without consuming
 any text.
Restructure the pattern so that text is consumed.

The <-- HERE shows in the regular expression about where the problem was
 discovered.

Excessively long <> operator

(F) The contents of a <> operator may not exceed the maximum size of a
 Perl identifier. If
you're just trying to glob a long list of
 filenames, try using the glob() operator, or put the
filenames into a
 variable and glob that.

exec? I'm not *that* kind of operating system

(F) The exec function is not implemented on some systems, e.g., Symbian
 OS. See perlport.

Execution of %s aborted due to compilation errors.

(F) The final summary message when a Perl compilation fails.

Exiting eval via %s

Perl version 5.14.2 documentation - perldiag

Page 24http://perldoc.perl.org

(W exiting) You are exiting an eval by unconventional means, such as a
 goto, or a loop control
statement.

Exiting format via %s

(W exiting) You are exiting a format by unconventional means, such as a
 goto, or a loop
control statement.

Exiting pseudo-block via %s

(W exiting) You are exiting a rather special block construct (like a
 sort block or subroutine) by
unconventional means, such as a goto, or a
 loop control statement. See "sort" in perlfunc.

Exiting subroutine via %s

(W exiting) You are exiting a subroutine by unconventional means, such
 as a goto, or a loop
control statement.

Exiting substitution via %s

(W exiting) You are exiting a substitution by unconventional means, such
 as a return, a goto,
or a loop control statement.

Explicit blessing to '' (assuming package main)

(W misc) You are blessing a reference to a zero length string. This has
 the effect of blessing
the reference into the package main. This is
 usually not what you want. Consider providing a
default target package,
 e.g. bless($ref, $p || 'MyPackage');

%s: Expression syntax

(A) You've accidentally run your script through csh instead of Perl.
 Check the #! line, or
manually feed your script into Perl yourself.

%s failed--call queue aborted

(F) An untrapped exception was raised while executing a UNITCHECK,
 CHECK, INIT, or END
subroutine. Processing of the remainder of the
 queue of such routines has been prematurely
ended.

False [] range "%s" in regex; marked by <-- HERE in m/%s/

(W regexp) A character class range must start and end at a literal
 character, not another
character class like \d or [:alpha:]. The "-"
 in your false range is interpreted as a literal "-".
Consider quoting the
 "-", "\-". The <-- HERE shows in the regular expression about where the

problem was discovered. See perlre.

Fatal VMS error (status=%d) at %s, line %d

(P) An error peculiar to VMS. Something untoward happened in a VMS
 system service or RTL
routine; Perl's exit status should provide more
 details. The filename in "at %s" and the line
number in "line %d" tell
 you which section of the Perl source code is distressed.

fcntl is not implemented

(F) Your machine apparently doesn't implement fcntl(). What is this, a
 PDP-11 or something?

FETCHSIZE returned a negative value

(F) A tied array claimed to have a negative number of elements, which
 is not possible.

Field too wide in 'u' format in pack

(W pack) Each line in an uuencoded string start with a length indicator
 which can't encode
values above 63. So there is no point in asking for
 a line length bigger than that. Perl will
behave as if you specified u63 as the format.

Filehandle %s opened only for input

Perl version 5.14.2 documentation - perldiag

Page 25http://perldoc.perl.org

(W io) You tried to write on a read-only filehandle. If you intended
 it to be a read-write
filehandle, you needed to open it with "+<" or
 "+>" or "+>>" instead of with "<" or nothing. If
you intended only to
 write the file, use ">" or ">>". See "open" in perlfunc.

Filehandle %s opened only for output

(W io) You tried to read from a filehandle opened only for writing, If
 you intended it to be a
read/write filehandle, you needed to open it
 with "+<" or "+>" or "+>>" instead of with ">". If
you intended only to
 read from the file, use "<". See "open" in perlfunc. Another possibility
 is
that you attempted to open filedescriptor 0 (also known as STDIN) for
 output (maybe you
closed STDIN earlier?).

Filehandle %s reopened as %s only for input

(W io) You opened for reading a filehandle that got the same filehandle id
 as STDOUT or
STDERR. This occurred because you closed STDOUT or STDERR
 previously.

Filehandle STDIN reopened as %s only for output

(W io) You opened for writing a filehandle that got the same filehandle id
 as STDIN. This
occurred because you closed STDIN previously.

Final $ should be \$ or $name

(F) You must now decide whether the final $ in a string was meant to be
 a literal dollar sign, or
was meant to introduce a variable name that
 happens to be missing. So you have to put either
the backslash or the
 name.

flock() on closed filehandle %s

(W closed) The filehandle you're attempting to flock() got itself closed
 some time before now.
Check your control flow. flock() operates on
 filehandles. Are you attempting to call flock() on a
dirhandle by the
 same name?

Format not terminated

(F) A format must be terminated by a line with a solitary dot. Perl got
 to the end of your file
without finding such a line.

Format %s redefined

(W redefine) You redefined a format. To suppress this warning, say

 {
	 no warnings 'redefine';
	 eval "format NAME =...";
 }

Found = in conditional, should be ==

(W syntax) You said

 if ($foo = 123)

when you meant

 if ($foo == 123)

(or something like that).

%s found where operator expected

(S syntax) The Perl lexer knows whether to expect a term or an operator.
 If it sees what it
knows to be a term when it was expecting to see an
 operator, it gives you this warning.
Usually it indicates that an
 operator or delimiter was omitted, such as a semicolon.

gdbm store returned %d, errno %d, key "%s"

Perl version 5.14.2 documentation - perldiag

Page 26http://perldoc.perl.org

(S) A warning from the GDBM_File extension that a store failed.

gethostent not implemented

(F) Your C library apparently doesn't implement gethostent(), probably
 because if it did, it'd
feel morally obligated to return every hostname
 on the Internet.

get%sname() on closed socket %s

(W closed) You tried to get a socket or peer socket name on a closed
 socket. Did you forget to
check the return value of your socket() call?

getpwnam returned invalid UIC %#o for user "%s"

(S) A warning peculiar to VMS. The call to sys$getuai underlying the getpwnam operator
returned an invalid UIC.

getsockopt() on closed socket %s

(W closed) You tried to get a socket option on a closed socket. Did you
 forget to check the
return value of your socket() call? See "getsockopt" in perlfunc.

Global symbol "%s" requires explicit package name

(F) You've said "use strict" or "use strict vars", which indicates that all variables must either be
lexically scoped (using "my" or "state"), declared beforehand using "our", or explicitly qualified
to say which package the global variable is in (using "::").

glob failed (%s)

(W glob) Something went wrong with the external program(s) used for glob and <*.c>.
Usually, this means that you supplied a glob pattern that caused the external program to fail
and exit with a
 nonzero status. If the message indicates that the abnormal exit
 resulted in a
coredump, this may also mean that your csh (C shell) is
 broken. If so, you should change all of
the csh-related variables in
 config.sh: If you have tcsh, make the variables refer to it as if it

were csh (e.g. full_csh='/usr/bin/tcsh'); otherwise, make them all
 empty (except that
d_csh should be 'undef') so that Perl will
 think csh is missing. In either case, after editing
config.sh, run ./Configure -S and rebuild Perl.

Glob not terminated

(F) The lexer saw a left angle bracket in a place where it was expecting
 a term, so it's looking
for the corresponding right angle bracket, and
 not finding it. Chances are you left some
needed parentheses out
 earlier in the line, and you really meant a "less than".

gmtime(%f) too large

(W overflow) You called gmtime with a number that was larger than
 it can reliably handle and
gmtime probably returned the wrong
 date. This warning is also triggered with nan (the special
not-a-number value).

gmtime(%f) too small

(W overflow) You called gmtime with a number that was smaller than
 it can reliably handle
and gmtime probably returned the wrong
 date. This warning is also triggered with nan (the
special
 not-a-number value).

Got an error from DosAllocMem

(P) An error peculiar to OS/2. Most probably you're using an obsolete
 version of Perl, and this
should not happen anyway.

goto must have label

(F) Unlike with "next" or "last", you're not allowed to goto an
 unspecified destination. See
"goto" in perlfunc.

Perl version 5.14.2 documentation - perldiag

Page 27http://perldoc.perl.org

()-group starts with a count

(F) A ()-group started with a count. A count is supposed to follow
 something: a template
character or a ()-group. See "pack" in perlfunc.

%s had compilation errors.

(F) The final summary message when a perl -c fails.

Had to create %s unexpectedly

(S internal) A routine asked for a symbol from a symbol table that ought
 to have existed
already, but for some reason it didn't, and had to be
 created on an emergency basis to
prevent a core dump.

Hash %%s missing the % in argument %d of %s()

(D deprecated) Really old Perl let you omit the % on hash names in some
 spots. This is now
heavily deprecated.

%s has too many errors

(F) The parser has given up trying to parse the program after 10 errors.
 Further error
messages would likely be uninformative.

Having no space between pattern and following word is deprecated

(D syntax)

You had a word that isn't a regex modifier immediately following a
 pattern without an
intervening space. If you are trying to use the /le
 flags on a substitution, use /el instead.
Otherwise, add white space
 between the pattern and following word to eliminate the warning.
As an
 example of the latter, the two constructs:

 $a =~ m/$foo/sand $bar
 $a =~ m/$foo/s and $bar

both currently mean the same thing, but it is planned to disallow the first
 form in Perl 5.16.
And,

 $a =~ m/$foo/and $bar

will be disallowed too.

Hexadecimal number > 0xffffffff non-portable

(W portable) The hexadecimal number you specified is larger than 2**32-1
 (4294967295) and
therefore non-portable between systems. See perlport for more on portability concerns.

Identifier too long

(F) Perl limits identifiers (names for variables, functions, etc.) to
 about 250 characters for
simple names, and somewhat more for compound
 names (like $A::B). You've exceeded
Perl's limits. Future versions
 of Perl are likely to eliminate these arbitrary limitations.

Ignoring zero length \N{} in character class

(W) Named Unicode character escapes (\N{...}) may return a
 zero length sequence. When
such an escape is used in a character class
 its behaviour is not well defined. Check that the
correct escape has
 been used, and the correct charname handler is in scope.

Illegal binary digit %s

(F) You used a digit other than 0 or 1 in a binary number.

Illegal binary digit %s ignored

(W digit) You may have tried to use a digit other than 0 or 1 in a
 binary number. Interpretation
of the binary number stopped before the
 offending digit.

Perl version 5.14.2 documentation - perldiag

Page 28http://perldoc.perl.org

Illegal character \%o (carriage return)

(F) Perl normally treats carriage returns in the program text as it
 would any other whitespace,
which means you should never see this error
 when Perl was built using standard options. For
some reason, your
 version of Perl appears to have been built without this support. Talk
 to your
Perl administrator.

Illegal character in prototype for %s : %s

(W illegalproto) An illegal character was found in a prototype declaration.
 Legal characters in
prototypes are $, @, %, *, ;, [,], &, \, and +.

Illegal declaration of anonymous subroutine

(F) When using the sub keyword to construct an anonymous subroutine,
 you must always
specify a block of code. See perlsub.

Illegal declaration of subroutine %s

(F) A subroutine was not declared correctly. See perlsub.

Illegal division by zero

(F) You tried to divide a number by 0. Either something was wrong in
 your logic, or you need
to put a conditional in to guard against
 meaningless input.

Illegal hexadecimal digit %s ignored

(W digit) You may have tried to use a character other than 0 - 9 or
 A - F, a - f in a hexadecimal
number. Interpretation of the hexadecimal
 number stopped before the illegal character.

Illegal modulus zero

(F) You tried to divide a number by 0 to get the remainder. Most
 numbers don't take to this
kindly.

Illegal number of bits in vec

(F) The number of bits in vec() (the third argument) must be a power of
 two from 1 to 32 (or
64, if your platform supports that).

Illegal octal digit %s

(F) You used an 8 or 9 in an octal number.

Illegal octal digit %s ignored

(W digit) You may have tried to use an 8 or 9 in an octal number.
 Interpretation of the octal
number stopped before the 8 or 9.

Illegal switch in PERL5OPT: -%c

(X) The PERL5OPT environment variable may only be used to set the
 following switches:
-[CDIMUdmtw].

Ill-formed CRTL environ value "%s"

(W internal) A warning peculiar to VMS. Perl tried to read the CRTL's
 internal environ array,
and encountered an element without the =
 delimiter used to separate keys from values. The
element is ignored.

Ill-formed message in prime_env_iter: |%s|

(W internal) A warning peculiar to VMS. Perl tried to read a logical
 name or CLI symbol
definition when preparing to iterate over %ENV, and
 didn't see the expected delimiter between
key and value, so the line was
 ignored.

(in cleanup) %s

(W misc) This prefix usually indicates that a DESTROY() method raised
 the indicated

Perl version 5.14.2 documentation - perldiag

Page 29http://perldoc.perl.org

exception. Since destructors are usually called by the
 system at arbitrary points during
execution, and often a vast number of
 times, the warning is issued only once for any number
of failures that
 would otherwise result in the same message being repeated.

Failure of user callbacks dispatched using the G_KEEPERR flag could
 also result in this
warning. See "G_KEEPERR" in perlcall.

Inconsistent hierarchy during C3 merge of class '%s': merging failed on parent '%s'

(F) The method resolution order (MRO) of the given class is not
 C3-consistent, and you have
enabled the C3 MRO for this class. See the C3
 documentation in mro for more information.

In EBCDIC the v-string components cannot exceed 2147483647

(F) An error peculiar to EBCDIC. Internally, v-strings are stored as
 Unicode code points, and
encoded in EBCDIC as UTF-EBCDIC. The UTF-EBCDIC
 encoding is limited to code points no
larger than 2147483647 (0x7FFFFFFF).

Infinite recursion in regex; marked by <-- HERE in m/%s/

(F) You used a pattern that references itself without consuming any input
 text. You should
check the pattern to ensure that recursive patterns
 either consume text or fail.

The <-- HERE shows in the regular expression about where the problem was
 discovered.

Initialization of state variables in list context currently forbidden

(F) Currently the implementation of "state" only permits the initialization
 of scalar variables in
scalar context. Re-write state ($a) = 42 as state $a = 42 to change from list to scalar
context. Constructions such
 as state (@a) = foo() will be supported in a future perl
release.

Insecure dependency in %s

(F) You tried to do something that the tainting mechanism didn't like.
 The tainting mechanism
is turned on when you're running setuid or
 setgid, or when you specify -T to turn it on explicitly.
The
 tainting mechanism labels all data that's derived directly or indirectly
 from the user, who is
considered to be unworthy of your trust. If any
 such data is used in a "dangerous" operation,
you get this error. See perlsec for more information.

Insecure directory in %s

(F) You can't use system(), exec(), or a piped open in a setuid or
 setgid script if $ENV{PATH}
contains a directory that is writable by
 the world. Also, the PATH must not contain any relative
directory.
 See perlsec.

Insecure $ENV{%s} while running %s

(F) You can't use system(), exec(), or a piped open in a setuid or
 setgid script if any of
$ENV{PATH}, $ENV{IFS}, $ENV{CDPATH}, $ENV{ENV}, $ENV{BASH_ENV} or
$ENV{TERM} are derived from data
 supplied (or potentially supplied) by the user. The script
must set
 the path to a known value, using trustworthy data. See perlsec.

Insecure user-defined property %s

(F) Perl detected tainted data when trying to compile a regular
 expression that contains a call
to a user-defined character property
 function, i.e. \p{IsFoo} or \p{InFoo}.
 See
"User-Defined Character Properties" in perlunicode and perlsec.

Integer overflow in format string for %s

(F) The indexes and widths specified in the format string of printf()
 or sprintf() are too
large. The numbers must not overflow the size of
 integers for your architecture.

Integer overflow in %s number

(W overflow) The hexadecimal, octal or binary number you have specified
 either as a literal or

Perl version 5.14.2 documentation - perldiag

Page 30http://perldoc.perl.org

as an argument to hex() or oct() is too big for
 your architecture, and has been converted to a
floating point number.
 On a 32-bit architecture the largest hexadecimal, octal or binary number
representable without overflow is 0xFFFFFFFF, 037777777777, or

0b11111111111111111111111111111111 respectively. Note that Perl
 transparently promotes
all numbers to a floating point representation
 internally--subject to loss of precision errors in
subsequent
 operations.

Integer overflow in version

(F) Some portion of a version initialization is too large for the
 size of integers for your
architecture. This is not a warning
 because there is no rational reason for a version to try and
use a
 element larger than typically 2**32. This is usually caused by
 trying to use some odd
mathematical operation as a version, like
 100/9.

Internal disaster in regex; marked by <-- HERE in m/%s/

(P) Something went badly wrong in the regular expression parser.
 The <-- HERE shows in the
regular expression about where the problem was
 discovered.

Internal inconsistency in tracking vforks

(S) A warning peculiar to VMS. Perl keeps track of the number of times
 you've called fork
and exec, to determine whether the current call
 to exec should affect the current script or a
subprocess (see "exec LIST" in perlvms). Somehow, this count has become scrambled, so

Perl is making a guess and treating this exec as a request to
 terminate the Perl script and
execute the specified command.

Internal urp in regex; marked by <-- HERE in m/%s/

(P) Something went badly awry in the regular expression parser. The
 <-- HERE shows in the
regular expression about where the problem was
 discovered.

%s (...) interpreted as function

(W syntax) You've run afoul of the rule that says that any list operator
 followed by parentheses
turns into a function, with all the list
 operators arguments found inside the parentheses. See
"Terms and List Operators (Leftward)" in perlop.

Invalid %s attribute: %s

(F) The indicated attribute for a subroutine or variable was not recognized
 by Perl or by a
user-supplied handler. See attributes.

Invalid %s attributes: %s

(F) The indicated attributes for a subroutine or variable were not
 recognized by Perl or by a
user-supplied handler. See attributes.

Invalid conversion in %s: "%s"

(W printf) Perl does not understand the given format conversion. See "sprintf" in perlfunc.

Invalid escape in the specified encoding in regex; marked by <-- HERE in m/%s/

(W regexp) The numeric escape (for example \xHH) of value < 256
 didn't correspond to a
single character through the conversion
 from the encoding specified by the encoding pragma.

The escape was replaced with REPLACEMENT CHARACTER (U+FFFD) instead.
 The <--
HERE shows in the regular expression about where the
 escape was discovered.

Invalid hexadecimal number in \N{U+...}

(F) The character constant represented by ... is not a valid hexadecimal
 number. Either it is
empty, or you tried to use a character other than
 0 - 9 or A - F, a - f in a hexadecimal number.

Invalid mro name: '%s'

(F) You tried to mro::set_mro("classname", "foo") or use mro 'foo',
 where foo is

Perl version 5.14.2 documentation - perldiag

Page 31http://perldoc.perl.org

not a valid method resolution order (MRO). Currently,
 the only valid ones supported are dfs
and c3, unless you have loaded
 a module that is a MRO plugin. See mro and perlmroapi.

Invalid [] range "%s" in regex; marked by <-- HERE in m/%s/

(F) The range specified in a character class had a minimum character
 greater than the
maximum character. One possibility is that you forgot the {} from your ending \x{} - \x
without the curly braces can go only
 up to ff. The <-- HERE shows in the regular expression
about where the
 problem was discovered. See perlre.

Invalid range "%s" in transliteration operator

(F) The range specified in the tr/// or y/// operator had a minimum
 character greater than the
maximum character. See perlop.

Invalid separator character %s in attribute list

(F) Something other than a colon or whitespace was seen between the
 elements of an
attribute list. If the previous attribute had a
 parenthesised parameter list, perhaps that list was
terminated too soon.
 See attributes.

Invalid separator character %s in PerlIO layer specification %s

(W layer) When pushing layers onto the Perl I/O system, something other
 than a colon or
whitespace was seen between the elements of a layer list.
 If the previous attribute had a
parenthesised parameter list, perhaps that
 list was terminated too soon.

Invalid strict version format (%s)

(F) A version number did not meet the "strict" criteria for versions.
 A "strict" version number is
a positive decimal number (integer or
 decimal-fraction) without exponentiation or else a
dotted-decimal
 v-string with a leading 'v' character and at least three components.
 The
parenthesized text indicates which criteria were not met.
 See the version module for more
details on allowed version formats.

Invalid type '%s' in %s

(F) The given character is not a valid pack or unpack type.
 See "pack" in perlfunc.
 (W) The
given character is not a valid pack or unpack type but used to be
 silently ignored.

Invalid version format (%s)

(F) A version number did not meet the "lax" criteria for versions.
 A "lax" version number is a
positive decimal number (integer or
 decimal-fraction) without exponentiation or else a
dotted-decimal
 v-string. If the v-string has fewer than three components, it must
 have a
leading 'v' character. Otherwise, the leading 'v' is optional.
 Both decimal and dotted-decimal
versions may have a trailing "alpha"
 component separated by an underscore character after a
fractional or
 dotted-decimal component. The parenthesized text indicates which
 criteria were
not met. See the version module for more details on
 allowed version formats.

Invalid version object

(F) The internal structure of the version object was invalid. Perhaps
 the internals were
modified directly in some way or an arbitrary reference
 was blessed into the "version" class.

ioctl is not implemented

(F) Your machine apparently doesn't implement ioctl(), which is pretty
 strange for a machine
that supports C.

ioctl() on unopened %s

(W unopened) You tried ioctl() on a filehandle that was never opened.
 Check your control flow
and number of arguments.

IO layers (like '%s') unavailable

Perl version 5.14.2 documentation - perldiag

Page 32http://perldoc.perl.org

(F) Your Perl has not been configured to have PerlIO, and therefore
 you cannot use IO layers.
To have PerlIO, Perl must be configured
 with 'useperlio'.

IO::Socket::atmark not implemented on this architecture

(F) Your machine doesn't implement the sockatmark() functionality,
 neither as a system call
nor an ioctl call (SIOCATMARK).

$* is no longer supported

(D deprecated, syntax) The special variable $*, deprecated in older
 perls, has been removed
as of 5.9.0 and is no longer supported. In
 previous versions of perl the use of $* enabled or
disabled multi-line
 matching within a string.

Instead of using $* you should use the /m (and maybe /s) regexp
 modifiers. You can enable
/m for a lexical scope (even a whole file)
 with use re '/m'. (In older versions: when $* was
set to a true value
 then all regular expressions behaved as if they were written using /m.)

$# is no longer supported

(D deprecated, syntax) The special variable $#, deprecated in older
 perls, has been removed
as of 5.9.3 and is no longer supported. You
 should use the printf/sprintf functions instead.

`%s' is not a code reference

(W overload) The second (fourth, sixth, ...) argument of overload::constant
 needs to be a code
reference. Either an anonymous subroutine, or a reference
 to a subroutine.

`%s' is not an overloadable type

(W overload) You tried to overload a constant type the overload package is
 unaware of.

junk on end of regexp

(P) The regular expression parser is confused.

Label not found for "last %s"

(F) You named a loop to break out of, but you're not currently in a loop
 of that name, not even
if you count where you were called from. See "last" in perlfunc.

Label not found for "next %s"

(F) You named a loop to continue, but you're not currently in a loop of
 that name, not even if
you count where you were called from. See "last" in perlfunc.

Label not found for "redo %s"

(F) You named a loop to restart, but you're not currently in a loop of
 that name, not even if you
count where you were called from. See "last" in perlfunc.

leaving effective %s failed

(F) While under the use filetest pragma, switching the real and
 effective uids or gids
failed.

length/code after end of string in unpack

(F) While unpacking, the string buffer was already used up when an unpack
 length/code
combination tried to obtain more data. This results in
 an undefined value for the length. See
"pack" in perlfunc.

Lexing code attempted to stuff non-Latin-1 character into Latin-1 input

(F) An extension is attempting to insert text into the current parse
 (using lex_stuff_pvn or
similar), but tried to insert a character
 that couldn't be part of the current input. This is an
inherent pitfall
 of the stuffing mechanism, and one of the reasons to avoid it. Where it
 is
necessary to stuff, stuffing only plain ASCII is recommended.

Perl version 5.14.2 documentation - perldiag

Page 33http://perldoc.perl.org

Lexing code internal error (%s)

(F) Lexing code supplied by an extension violated the lexer's API in a
 detectable way.

listen() on closed socket %s

(W closed) You tried to do a listen on a closed socket. Did you forget
 to check the return value
of your socket() call? See "listen" in perlfunc.

localtime(%f) too large

(W overflow) You called localtime with a number that was larger
 than it can reliably handle
and localtime probably returned the
 wrong date. This warning is also triggered with nan
(the special
 not-a-number value).

localtime(%f) too small

(W overflow) You called localtime with a number that was smaller
 than it can reliably
handle and localtime probably returned the
 wrong date. This warning is also triggered with
nan (the special
 not-a-number value).

Lookbehind longer than %d not implemented in regex m/%s/

(F) There is currently a limit on the length of string which lookbehind can
 handle. This
restriction may be eased in a future release.

Lost precision when %s %f by 1

(W) The value you attempted to increment or decrement by one is too large
 for the underlying
floating point representation to store accurately,
 hence the target of ++ or -- is unchanged.
Perl issues this warning
 because it has already switched from integers to floating point when
values
 are too large for integers, and now even floating point is insufficient.
 You may wish to
switch to using Math::BigInt explicitly.

lstat() on filehandle %s

(W io) You tried to do an lstat on a filehandle. What did you mean
 by that? lstat() makes sense
only on filenames. (Perl did a fstat()
 instead on the filehandle.)

lvalue attribute ignored after the subroutine has been defined

(W misc) Making a subroutine an lvalue subroutine after it has been defined
 by declaring the
subroutine with an lvalue attribute is not
 possible. To make the subroutine an lvalue
subroutine add the
 lvalue attribute to the definition, or put the declaration before
 the definition.

Lvalue subs returning %s not implemented yet

(F) Due to limitations in the current implementation, array and hash
 values cannot be returned
in subroutines used in lvalue context. See "Lvalue subroutines" in perlsub.

Malformed integer in [] in pack

(F) Between the brackets enclosing a numeric repeat count only digits
 are permitted. See
"pack" in perlfunc.

Malformed integer in [] in unpack

(F) Between the brackets enclosing a numeric repeat count only digits
 are permitted. See
"pack" in perlfunc.

Malformed PERLLIB_PREFIX

(F) An error peculiar to OS/2. PERLLIB_PREFIX should be of the form

 prefix1;prefix2

or
 prefix1 prefix2

with nonempty prefix1 and prefix2. If prefix1 is indeed a prefix of
 a builtin library search

Perl version 5.14.2 documentation - perldiag

Page 34http://perldoc.perl.org

path, prefix2 is substituted. The error may
 appear if components are not found, or are too
long. See
 "PERLLIB_PREFIX" in perlos2.

Malformed prototype for %s: %s

(F) You tried to use a function with a malformed prototype. The
 syntax of function prototypes
is given a brief compile-time check for
 obvious errors like invalid characters. A more rigorous
check is run
 when the function is called.

Malformed UTF-8 character (%s)

(S utf8) (F) Perl detected a string that didn't comply with UTF-8
 encoding rules, even though it
had the UTF8 flag on.

One possible cause is that you set the UTF8 flag yourself for data that
 you thought to be in
UTF-8 but it wasn't (it was for example legacy
 8-bit data). To guard against this, you can use
Encode::decode_utf8.

If you use the :encoding(UTF-8) PerlIO layer for input, invalid byte
 sequences are handled
gracefully, but if you use :utf8, the flag is
 set without validating the data, possibly resulting in
this error
 message.

See also "Handling Malformed Data" in Encode.

Malformed UTF-8 returned by \N

(F) The charnames handler returned malformed UTF-8.

Malformed UTF-8 string in '%c' format in unpack

(F) You tried to unpack something that didn't comply with UTF-8 encoding
 rules and perl was
unable to guess how to make more progress.

Malformed UTF-8 string in pack

(F) You tried to pack something that didn't comply with UTF-8 encoding
 rules and perl was
unable to guess how to make more progress.

Malformed UTF-8 string in unpack

(F) You tried to unpack something that didn't comply with UTF-8 encoding
 rules and perl was
unable to guess how to make more progress.

Malformed UTF-16 surrogate

(F) Perl thought it was reading UTF-16 encoded character data but while
 doing it Perl met a
malformed Unicode surrogate.

%s matches null string many times in regex; marked by <-- HERE in m/%s/

(W regexp) The pattern you've specified would be an infinite loop if the
 regular expression
engine didn't specifically check for that. The <-- HERE
 shows in the regular expression about
where the problem was discovered.
 See perlre.

Maximal count of pending signals (%u) exceeded

(F) Perl aborted due to too high a number of signals pending. This
 usually indicates that your
operating system tried to deliver signals
 too fast (with a very high priority), starving the perl
process from
 resources it would need to reach a point where it can process signals
 safely.
(See "Deferred Signals (Safe Signals)" in perlipc.)

"%s" may clash with future reserved word

(W) This warning may be due to running a perl5 script through a perl4
 interpreter, especially if
the word that is being warned about is
 "use" or "my".

% may not be used in pack

(F) You can't pack a string by supplying a checksum, because the
 checksumming process

Perl version 5.14.2 documentation - perldiag

Page 35http://perldoc.perl.org

loses information, and you can't go the other way.
 See "unpack" in perlfunc.

Method for operation %s not found in package %s during blessing

(F) An attempt was made to specify an entry in an overloading table that
 doesn't resolve to a
valid subroutine. See overload.

Method %s not permitted

See Server error.

Might be a runaway multi-line %s string starting on line %d

(S) An advisory indicating that the previous error may have been caused
 by a missing
delimiter on a string or pattern, because it eventually
 ended earlier on the current line.

Misplaced _ in number

(W syntax) An underscore (underbar) in a numeric constant did not
 separate two digits.

Missing argument in %s

(W uninitialized) A printf-type format required more arguments than were
 supplied.

Missing argument to -%c

(F) The argument to the indicated command line switch must follow
 immediately after the
switch, without intervening spaces.

Missing braces on \N{}

(F) Wrong syntax of character name literal \N{charname} within
 double-quotish context. This
can also happen when there is a space
 (or comment) between the \N and the { in a regex
with the /x modifier.
 This modifier does not change the requirement that the brace
immediately
 follow the \N.

Missing braces on \o{}

(F) A \o must be followed immediately by a { in double-quotish context.

Missing comma after first argument to %s function

(F) While certain functions allow you to specify a filehandle or an
 "indirect object" before the
argument list, this ain't one of them.

Missing command in piped open

(W pipe) You used the open(FH, "| command") or open(FH, "command |")
construction, but the command was missing or
 blank.

Missing control char name in \c

(F) A double-quoted string ended with "\c", without the required control
 character name.

Missing name in "my sub"

(F) The reserved syntax for lexically scoped subroutines requires that
 they have a name with
which they can be found.

Missing $ on loop variable

(F) Apparently you've been programming in csh too much. Variables
 are always mentioned
with the $ in Perl, unlike in the shells, where it
 can vary from one line to the next.

(Missing operator before %s?)

(S syntax) This is an educated guess made in conjunction with the message
 "%s found where
operator expected". Often the missing operator is a comma.

Missing right brace on %s

Perl version 5.14.2 documentation - perldiag

Page 36http://perldoc.perl.org

(F) Missing right brace in \x{...}, \p{...}, \P{...}, or \N{...}.

Missing right brace on \N{} or unescaped left brace after \N

(F) \N has two meanings.

The traditional one has it followed by a name enclosed in braces,
 meaning the character (or
sequence of characters) given by that
 name. Thus \N{ASTERISK} is another way of writing *
, valid in both
 double-quoted strings and regular expression patterns. In patterns,
 it doesn't
have the meaning an unescaped * does.

Starting in Perl 5.12.0, \N also can have an additional meaning (only)
 in patterns, namely to
match a non-newline character. (This is short
 for [^\n], and like . but is not affected by the
/s regex modifier.)

This can lead to some ambiguities. When \N is not followed immediately
 by a left brace, Perl
assumes the [^\n] meaning. Also, if the braces
 form a valid quantifier such as \N{3} or
\N{5,}, Perl assumes that this
 means to match the given quantity of non-newlines (in these
examples,
 3; and 5 or more, respectively). In all other case, where there is a \N{ and a
matching }, Perl assumes that a character name is desired.

However, if there is no matching }, Perl doesn't know if it was
 mistakenly omitted, or if
[^\n]{ was desired, and raises this error.
 If you meant the former, add the right brace; if you
meant the latter,
 escape the brace with a backslash, like so: \N\{

Missing right curly or square bracket

(F) The lexer counted more opening curly or square brackets than closing
 ones. As a general
rule, you'll find it's missing near the place you
 were last editing.

(Missing semicolon on previous line?)

(S syntax) This is an educated guess made in conjunction with the message
 "%s found where
operator expected". Don't automatically put a semicolon on
 the previous line just because you
saw this message.

Modification of a read-only value attempted

(F) You tried, directly or indirectly, to change the value of a
 constant. You didn't, of course, try
"2 = 1", because the compiler
 catches that. But an easy way to do the same thing is:

 sub mod { $_[0] = 1 }
 mod(2);

Another way is to assign to a substr() that's off the end of the string.

Yet another way is to assign to a foreach loop VAR when VAR
 is aliased to a constant in the
look LIST:

 $x = 1;
 foreach my $n ($x, 2) {
 $n *= 2; # modifies the $x, but fails on attempt to
modify the 2
 }

Modification of non-creatable array value attempted, %s

(F) You tried to make an array value spring into existence, and the
 subscript was probably
negative, even counting from end of the array
 backwards.

Modification of non-creatable hash value attempted, %s

(P) You tried to make a hash value spring into existence, and it
 couldn't be created for some
peculiar reason.

Module name must be constant

Perl version 5.14.2 documentation - perldiag

Page 37http://perldoc.perl.org

(F) Only a bare module name is allowed as the first argument to a "use".

Module name required with -%c option

(F) The -M or -m options say that Perl should load some module, but
 you omitted the name of
the module. Consult perlrun for full details
 about -M and -m.

More than one argument to '%s' open

(F) The open function has been asked to open multiple files. This
 can happen if you are trying
to open a pipe to a command that takes a
 list of arguments, but have forgotten to specify a
piped open mode.
 See "open" in perlfunc for details.

msg%s not implemented

(F) You don't have System V message IPC on your system.

Multidimensional syntax %s not supported

(W syntax) Multidimensional arrays aren't written like $foo[1,2,3].
 They're written like
$foo[1][2][3], as in C.

'/' must follow a numeric type in unpack

(F) You had an unpack template that contained a '/', but this did not
 follow some unpack
specification producing a numeric value.
 See "pack" in perlfunc.

"my sub" not yet implemented

(F) Lexically scoped subroutines are not yet implemented. Don't try
 that yet.

"my" variable %s can't be in a package

(F) Lexically scoped variables aren't in a package, so it doesn't make
 sense to try to declare
one with a package qualifier on the front. Use
 local() if you want to localize a package
variable.

Name "%s::%s" used only once: possible typo

(W once) Typographical errors often show up as unique variable names.
 If you had a good
reason for having a unique name, then just mention it
 again somehow to suppress the
message. The our declaration is
 provided for this purpose.

NOTE: This warning detects symbols that have been used only once so $c, @c,
 %c, *c, &c,
sub c{}, c(), and c (the filehandle or format) are considered
 the same; if a program uses $c
only once but also uses any of the others it
 will not trigger this warning.

\N in a character class must be a named character: \N{...}

(F) The new (5.12) meaning of \N as [^\n] is not valid in a bracketed
 character class, for the
same reason that . in a character class loses
 its specialness: it matches almost everything,
which is probably not
 what you want.

\N{NAME} must be resolved by the lexer

(F) When compiling a regex pattern, an unresolved named character or
 sequence was
encountered. This can happen in any of several ways that
 bypass the lexer, such as using
single-quotish context, or an extra
 backslash in double-quotish:

 $re = '\N{SPACE}';	 # Wrong!
 $re = "\\N{SPACE}";	 # Wrong!
 /$re/;

Instead, use double-quotes with a single backslash:

 $re = "\N{SPACE}";	 # ok
 /$re/;

Perl version 5.14.2 documentation - perldiag

Page 38http://perldoc.perl.org

The lexer can be bypassed as well by creating the pattern from smaller
 components:

 $re = '\N';
 /${re}{SPACE}/;	 # Wrong!

It's not a good idea to split a construct in the middle like this, and it
 doesn't work here. Instead
use the solution above.

Finally, the message also can happen under the /x regex modifier when the \N is separated
by spaces from the {, in which case, remove the spaces.

 /\N {SPACE}/x;	 # Wrong!
 /\N{SPACE}/x;	 # ok

Negative '/' count in unpack

(F) The length count obtained from a length/code unpack operation was
 negative. See "pack"
in perlfunc.

Negative length

(F) You tried to do a read/write/send/recv operation with a buffer
 length that is less than 0.
This is difficult to imagine.

Negative offset to vec in lvalue context

(F) When vec is called in an lvalue context, the second argument must be
 greater than or
equal to zero.

Nested quantifiers in regex; marked by <-- HERE in m/%s/

(F) You can't quantify a quantifier without intervening parentheses. So
 things like ** or +* or ?*
are illegal. The <-- HERE shows in the regular
 expression about where the problem was
discovered.

Note that the minimal matching quantifiers, *?, +?, and ?? appear to be nested quantifiers,
but aren't. See perlre.

%s never introduced

(S internal) The symbol in question was declared but somehow went out of
 scope before it
could possibly have been used.

next::method/next::can/maybe::next::method cannot find enclosing method

(F) next::method needs to be called within the context of a
 real method in a real package,
and it could not find such a context.
 See mro.

No %s allowed while running setuid

(F) Certain operations are deemed to be too insecure for a setuid or
 setgid script to even be
allowed to attempt. Generally speaking there
 will be another way to do what you want that is, if
not secure, at least
 securable. See perlsec.

No comma allowed after %s

(F) A list operator that has a filehandle or "indirect object" is not
 allowed to have a comma
between that and the following arguments.
 Otherwise it'd be just another one of the
arguments.

One possible cause for this is that you expected to have imported a
 constant to your name
space with use or import while no such
 importing took place, it may for example be that your
operating system
 does not support that particular constant. Hopefully you did use an
 explicit
import list for the constants you expect to see; please see "use" in perlfunc and "import" in
perlfunc. While an explicit import list
 would probably have caught this error earlier it naturally
does not
 remedy the fact that your operating system still does not support that
 constant.
Maybe you have a typo in the constants of the symbol import
 list of use or import or in the

Perl version 5.14.2 documentation - perldiag

Page 39http://perldoc.perl.org

constant name at the line where
 this error was triggered?

No command into which to pipe on command line

(F) An error peculiar to VMS. Perl handles its own command line
 redirection, and found a '|' at
the end of the command line, so it
 doesn't know where you want to pipe the output from this
command.

No DB::DB routine defined

(F) The currently executing code was compiled with the -d switch, but
 for some reason the
current debugger (e.g. perl5db.pl or a Devel::
 module) didn't define a routine to be called at
the beginning of each
 statement.

No dbm on this machine

(P) This is counted as an internal error, because every machine should
 supply dbm
nowadays, because Perl comes with SDBM. See SDBM_File.

No DB::sub routine defined

(F) The currently executing code was compiled with the -d switch, but
 for some reason the
current debugger (e.g. perl5db.pl or a Devel::
 module) didn't define a DB::sub routine to be
called at the beginning
 of each ordinary subroutine call.

No error file after 2> or 2>> on command line

(F) An error peculiar to VMS. Perl handles its own command line
 redirection, and found a '2>'
or a '2>>' on the command line, but can't
 find the name of the file to which to write data
destined for stderr.

No group ending character '%c' found in template

(F) A pack or unpack template has an opening '(' or '[' without its
 matching counterpart. See
"pack" in perlfunc.

No input file after < on command line

(F) An error peculiar to VMS. Perl handles its own command line
 redirection, and found a '<'
on the command line, but can't find the
 name of the file from which to read data for stdin.

No next::method '%s' found for %s

(F) next::method found no further instances of this method name
 in the remaining
packages of the MRO of this class. If you don't want
 it throwing an exception, use
maybe::next::method
 or next::can. See mro.

"no" not allowed in expression

(F) The "no" keyword is recognized and executed at compile time, and
 returns no useful value.
See perlmod.

No output file after > on command line

(F) An error peculiar to VMS. Perl handles its own command line
 redirection, and found a lone
'>' at the end of the command line, so it
 doesn't know where you wanted to redirect stdout.

No output file after > or >> on command line

(F) An error peculiar to VMS. Perl handles its own command line
 redirection, and found a '>' or
a '>>' on the command line, but can't
 find the name of the file to which to write data destined
for stdout.

No package name allowed for variable %s in "our"

(F) Fully qualified variable names are not allowed in "our"
 declarations, because that doesn't
make much sense under existing
 semantics. Such syntax is reserved for future extensions.

Perl version 5.14.2 documentation - perldiag

Page 40http://perldoc.perl.org

No Perl script found in input

(F) You called perl -x, but no line was found in the file beginning
 with #! and containing the
word "perl".

No setregid available

(F) Configure didn't find anything resembling the setregid() call for
 your system.

No setreuid available

(F) Configure didn't find anything resembling the setreuid() call for
 your system.

No %s specified for -%c

(F) The indicated command line switch needs a mandatory argument, but
 you haven't
specified one.

No such class field "%s" in variable %s of type %s

(F) You tried to access a key from a hash through the indicated typed variable
 but that key is
not allowed by the package of the same type. The indicated
 package has restricted the set of
allowed keys using the fields pragma.

No such class %s

(F) You provided a class qualifier in a "my", "our" or "state"
 declaration, but this class doesn't
exist at this point in your program.

No such hook: %s

(F) You specified a signal hook that was not recognized by Perl.
 Currently, Perl accepts
__DIE__ and __WARN__ as valid signal hooks.

No such pipe open

(P) An error peculiar to VMS. The internal routine my_pclose() tried to
 close a pipe which
hadn't been opened. This should have been caught
 earlier as an attempt to close an
unopened filehandle.

No such signal: SIG%s

(W signal) You specified a signal name as a subscript to %SIG that was
 not recognized. Say
kill -l in your shell to see the valid signal
 names on your system.

Not a CODE reference

(F) Perl was trying to evaluate a reference to a code value (that is, a
 subroutine), but found a
reference to something else instead. You can
 use the ref() function to find out what kind of ref
it really was. See
 also perlref.

Not a format reference

(F) I'm not sure how you managed to generate a reference to an anonymous
 format, but this
indicates you did, and that it didn't exist.

Not a GLOB reference

(F) Perl was trying to evaluate a reference to a "typeglob" (that is, a
 symbol table entry that
looks like *foo), but found a reference to
 something else instead. You can use the ref()
function to find out what
 kind of ref it really was. See perlref.

Not a HASH reference

(F) Perl was trying to evaluate a reference to a hash value, but found a
 reference to something
else instead. You can use the ref() function to
 find out what kind of ref it really was. See perlref
.

Not an ARRAY reference

Perl version 5.14.2 documentation - perldiag

Page 41http://perldoc.perl.org

(F) Perl was trying to evaluate a reference to an array value, but found
 a reference to
something else instead. You can use the ref() function
 to find out what kind of ref it really was.
See perlref.

Not an unblessed ARRAY reference

(F) You passed a reference to a blessed array to push, shift or
 another array function.
These only accept unblessed array references
 or arrays beginning explicitly with @.

Not a SCALAR reference

(F) Perl was trying to evaluate a reference to a scalar value, but found
 a reference to
something else instead. You can use the ref() function
 to find out what kind of ref it really was.
See perlref.

Not a subroutine reference

(F) Perl was trying to evaluate a reference to a code value (that is, a
 subroutine), but found a
reference to something else instead. You can
 use the ref() function to find out what kind of ref
it really was. See
 also perlref.

Not a subroutine reference in overload table

(F) An attempt was made to specify an entry in an overloading table that
 doesn't somehow
point to a valid subroutine. See overload.

Not enough arguments for %s

(F) The function requires more arguments than you specified.

Not enough format arguments

(W syntax) A format specified more picture fields than the next line
 supplied. See perlform.

%s: not found

(A) You've accidentally run your script through the Bourne shell instead
 of Perl. Check the #!
line, or manually feed your script into Perl
 yourself.

no UTC offset information; assuming local time is UTC

(S) A warning peculiar to VMS. Perl was unable to find the local
 timezone offset, so it's
assuming that local system time is equivalent
 to UTC. If it's not, define the logical name
SYS$TIMEZONE_DIFFERENTIAL to translate to the number of seconds which
 need to be
added to UTC to get local time.

Non-octal character '%c'. Resolved as "%s"

(W digit) In parsing an octal numeric constant, a character was
 unexpectedly encountered that
isn't octal. The resulting value is as
 indicated.

Non-string passed as bitmask

(W misc) A number has been passed as a bitmask argument to select().
 Use the vec()
function to construct the file descriptor bitmasks for
 select. See "select" in perlfunc.

Null filename used

(F) You can't require the null filename, especially because on many
 machines that means the
current directory! See "require" in perlfunc.

NULL OP IN RUN

(P debugging) Some internal routine called run() with a null opcode
 pointer.

Null picture in formline

(F) The first argument to formline must be a valid format picture
 specification. It was found to
be empty, which probably means you
 supplied it an uninitialized value. See perlform.

Perl version 5.14.2 documentation - perldiag

Page 42http://perldoc.perl.org

Null realloc

(P) An attempt was made to realloc NULL.

NULL regexp argument

(P) The internal pattern matching routines blew it big time.

NULL regexp parameter

(P) The internal pattern matching routines are out of their gourd.

Number too long

(F) Perl limits the representation of decimal numbers in programs to
 about 250 characters.
You've exceeded that length. Future
 versions of Perl are likely to eliminate this arbitrary
limitation. In
 the meantime, try using scientific notation (e.g. "1e6" instead of
 "1_000_000").

Number with no digits

(F) Perl was looking for a number but found nothing that looked like
 a number. This happens,
for example with \o{}, with no number between
 the braces.

Octal number in vector unsupported

(F) Numbers with a leading 0 are not currently allowed in vectors.
 The octal number
interpretation of such numbers may be supported in a
 future version.

Octal number > 037777777777 non-portable

(W portable) The octal number you specified is larger than 2**32-1
 (4294967295) and
therefore non-portable between systems. See perlport for more on portability concerns.

Odd number of arguments for overload::constant

(W overload) The call to overload::constant contained an odd number of
 arguments. The
arguments should come in pairs.

Odd number of elements in anonymous hash

(W misc) You specified an odd number of elements to initialize a hash,
 which is odd, because
hashes come in key/value pairs.

Odd number of elements in hash assignment

(W misc) You specified an odd number of elements to initialize a hash,
 which is odd, because
hashes come in key/value pairs.

Offset outside string

(F|W layer) You tried to do a read/write/send/recv/seek operation
 with an offset pointing
outside the buffer. This is difficult to
 imagine. The sole exceptions to this are that zero padding
will
 take place when going past the end of the string when either sysread()ing a file, or
when seeking past the end of a scalar opened
 for I/O (in anticipation of future reads and to
imitate the behaviour
 with real files).

%s() on unopened %s

(W unopened) An I/O operation was attempted on a filehandle that was
 never initialized. You
need to do an open(), a sysopen(), or a socket()
 call, or call a constructor from the FileHandle
package.

-%s on unopened filehandle %s

(W unopened) You tried to invoke a file test operator on a filehandle
 that isn't open. Check
your control flow. See also "-X" in perlfunc.

oops: oopsAV

(S internal) An internal warning that the grammar is screwed up.

Perl version 5.14.2 documentation - perldiag

Page 43http://perldoc.perl.org

oops: oopsHV

(S internal) An internal warning that the grammar is screwed up.

Opening dirhandle %s also as a file

(W io, deprecated) You used open() to associate a filehandle to
 a symbol (glob or scalar) that
already holds a dirhandle.
 Although legal, this idiom might render your code confusing
 and is
deprecated.

Opening filehandle %s also as a directory

(W io, deprecated) You used opendir() to associate a dirhandle to
 a symbol (glob or scalar)
that already holds a filehandle.
 Although legal, this idiom might render your code confusing

and is deprecated.

Operation "%s": no method found, %s

(F) An attempt was made to perform an overloaded operation for which no
 handler was
defined. While some handlers can be autogenerated in terms
 of other handlers, there is no
default handler for any operation, unless
 the fallback overloading key is specified to be
true. See overload.

Operation "%s" returns its argument for non-Unicode code point 0x%X

(W utf8, non_unicode) You performed an operation requiring Unicode
 semantics on a code

point that is not in Unicode, so what it should do is not defined. Perl
 has chosen to have it do
nothing, and warn you.

If the operation shown is "ToFold", it means that case-insensitive
 matching in a regular
expression was done on the code point.

If you know what you are doing you can turn off this warning by no warnings
'non_unicode';.

Operation "%s" returns its argument for UTF-16 surrogate U+%X

(W utf8, surrogate) You performed an operation requiring Unicode
 semantics on a Unicode

surrogate. Unicode frowns upon the use of surrogates for anything but
 storing strings in
UTF-16, but semantics are (reluctantly) defined for
 the surrogates, and they are to do nothing
for this operation. Because
 the use of surrogates can be dangerous, Perl warns.

If the operation shown is "ToFold", it means that case-insensitive
 matching in a regular
expression was done on the code point.

If you know what you are doing you can turn off this warning by no warnings
'surrogate';.

Operator or semicolon missing before %s

(S ambiguous) You used a variable or subroutine call where the parser
 was expecting an
operator. The parser has assumed you really meant to
 use an operator, but this is highly likely
to be incorrect. For
 example, if you say "*foo *foo" it will be interpreted as if you said
 "*foo *
'foo'".

"our" variable %s redeclared

(W misc) You seem to have already declared the same global once before
 in the current
lexical scope.

Out of memory!

(X) The malloc() function returned 0, indicating there was insufficient
 remaining memory (or
virtual memory) to satisfy the request. Perl has
 no option but to exit immediately.

At least in Unix you may be able to get past this by increasing your
 process datasize limits: in
csh/tcsh use limit and limit datasize n (where n is the number of kilobytes) to check

the current limits and change them, and in ksh/bash/zsh use ulimit -a
 and ulimit -d n,

Perl version 5.14.2 documentation - perldiag

Page 44http://perldoc.perl.org

respectively.Out of memory during %s extend

(X) An attempt was made to extend an array, a list, or a string beyond
 the largest possible
memory allocation.

Out of memory during "large" request for %s

(F) The malloc() function returned 0, indicating there was insufficient
 remaining memory (or
virtual memory) to satisfy the request. However,
 the request was judged large enough
(compile-time default is 64K), so a
 possibility to shut down by trapping this error is granted.

Out of memory during request for %s

(X|F) The malloc() function returned 0, indicating there was
 insufficient remaining memory (or
virtual memory) to satisfy the
 request.

The request was judged to be small, so the possibility to trap it
 depends on the way perl was
compiled. By default it is not trappable.
 However, if compiled for this, Perl may use the
contents of $^M as an
 emergency pool after die()ing with this message. In this case the error

is trappable once, and the error message will include the line and file
 where the failed request
happened.

Out of memory during ridiculously large request

(F) You can't allocate more than 2^31+"small amount" bytes. This error
 is most likely to be
caused by a typo in the Perl program. e.g., $arr[time] instead of $arr[$time].

Out of memory for yacc stack

(F) The yacc parser wanted to grow its stack so it could continue
 parsing, but realloc()
wouldn't give it more memory, virtual or
 otherwise.

'.' outside of string in pack

(F) The argument to a '.' in your template tried to move the working
 position to before the start
of the packed string being built.

'@' outside of string in unpack

(F) You had a template that specified an absolute position outside
 the string being unpacked.
See "pack" in perlfunc.

'@' outside of string with malformed UTF-8 in unpack

(F) You had a template that specified an absolute position outside
 the string being unpacked.
The string being unpacked was also invalid
 UTF-8. See "pack" in perlfunc.

Overloaded dereference did not return a reference

(F) An object with an overloaded dereference operator was dereferenced,
 but the overloaded
operation did not return a reference. See overload.

Overloaded qr did not return a REGEXP

(F) An object with a qr overload was used as part of a match, but the
 overloaded operation
didn't return a compiled regexp. See overload.

%s package attribute may clash with future reserved word: %s

(W reserved) A lowercase attribute name was used that had a
 package-specific handler. That
name might have a meaning to Perl itself
 some day, even though it doesn't yet. Perhaps you
should use a
 mixed-case attribute name, instead. See attributes.

pack/unpack repeat count overflow

(F) You can't specify a repeat count so large that it overflows your
 signed integers. See "pack"
in perlfunc.

page overflow

Perl version 5.14.2 documentation - perldiag

Page 45http://perldoc.perl.org

(W io) A single call to write() produced more lines than can fit on a
 page. See perlform.

panic: %s

(P) An internal error.

panic: attempt to call %s in %s

(P) One of the file test operators entered a code branch that calls
 an ACL related-function, but
that function is not available on this
 platform. Earlier checks mean that it should not be
possible to
 enter this branch on this platform.

panic: ck_grep

(P) Failed an internal consistency check trying to compile a grep.

panic: ck_split

(P) Failed an internal consistency check trying to compile a split.

panic: corrupt saved stack index

(P) The savestack was requested to restore more localized values than
 there are in the
savestack.

panic: del_backref

(P) Failed an internal consistency check while trying to reset a weak
 reference.

panic: Devel::DProf inconsistent subroutine return

(P) Devel::DProf called a subroutine that exited using goto(LABEL),
 last(LABEL) or
next(LABEL). Leaving that way a subroutine called from
 an XSUB will lead very probably to a
crash of the interpreter. This is
 a bug that will hopefully one day get fixed.

panic: die %s

(P) We popped the context stack to an eval context, and then discovered
 it wasn't an eval
context.

panic: do_subst

(P) The internal pp_subst() routine was called with invalid operational
 data.

panic: do_trans_%s

(P) The internal do_trans routines were called with invalid operational
 data.

panic: fold_constants JMPENV_PUSH returned %d

(P) While attempting folding constants an exception other than an eval
 failure was caught.

panic: frexp

(P) The library function frexp() failed, making printf("%f") impossible.

panic: goto

(P) We popped the context stack to a context with the specified label,
 and then discovered it
wasn't a context we know how to do a goto in.

panic: gp_free failed to free glob pointer

(P) The internal routine used to clear a typeglob's entries tried
 repeatedly, but each time
something re-created entries in the glob. Most
 likely the glob contains an object with a
reference back to the glob and a
 destructor that adds a new object to the glob.

panic: hfreeentries failed to free hash

(P) The internal routine used to clear a hash's entries tried repeatedly,
 but each time
something added more entries to the hash. Most likely the hash
 contains an object with a

Perl version 5.14.2 documentation - perldiag

Page 46http://perldoc.perl.org

reference back to the hash and a destructor that
 adds a new object to the hash.

panic: INTERPCASEMOD

(P) The lexer got into a bad state at a case modifier.

panic: INTERPCONCAT

(P) The lexer got into a bad state parsing a string with brackets.

panic: kid popen errno read

(F) forked child returned an incomprehensible message about its errno.

panic: last

(P) We popped the context stack to a block context, and then discovered
 it wasn't a block
context.

panic: leave_scope clearsv

(P) A writable lexical variable became read-only somehow within the
 scope.

panic: leave_scope inconsistency

(P) The savestack probably got out of sync. At least, there was an
 invalid enum on the top of
it.

panic: magic_killbackrefs

(P) Failed an internal consistency check while trying to reset all weak
 references to an object.

panic: malloc

(P) Something requested a negative number of bytes of malloc.

panic: memory wrap

(P) Something tried to allocate more memory than possible.

panic: pad_alloc

(P) The compiler got confused about which scratch pad it was allocating
 and freeing
temporaries and lexicals from.

panic: pad_free curpad

(P) The compiler got confused about which scratch pad it was allocating
 and freeing
temporaries and lexicals from.

panic: pad_free po

(P) An invalid scratch pad offset was detected internally.

panic: pad_reset curpad

(P) The compiler got confused about which scratch pad it was allocating
 and freeing
temporaries and lexicals from.

panic: pad_sv po

(P) An invalid scratch pad offset was detected internally.

panic: pad_swipe curpad

(P) The compiler got confused about which scratch pad it was allocating
 and freeing
temporaries and lexicals from.

panic: pad_swipe po

(P) An invalid scratch pad offset was detected internally.

Perl version 5.14.2 documentation - perldiag

Page 47http://perldoc.perl.org

panic: pp_iter

(P) The foreach iterator got called in a non-loop context frame.

panic: pp_match%s

(P) The internal pp_match() routine was called with invalid operational
 data.

panic: pp_split

(P) Something terrible went wrong in setting up for the split.

panic: realloc

(P) Something requested a negative number of bytes of realloc.

panic: restartop

(P) Some internal routine requested a goto (or something like it), and
 didn't supply the
destination.

panic: return

(P) We popped the context stack to a subroutine or eval context, and
 then discovered it wasn't
a subroutine or eval context.

panic: scan_num

(P) scan_num() got called on something that wasn't a number.

panic: sv_chop %s

(P) The sv_chop() routine was passed a position that is not within the
 scalar's string buffer.

panic: sv_insert

(P) The sv_insert() routine was told to remove more string than there
 was string.

panic: top_env

(P) The compiler attempted to do a goto, or something weird like that.

panic: unimplemented op %s (#%d) called

(P) The compiler is screwed up and attempted to use an op that isn't
 permitted at run time.

panic: utf16_to_utf8: odd bytelen

(P) Something tried to call utf16_to_utf8 with an odd (as opposed
 to even) byte length.

panic: utf16_to_utf8_reversed: odd bytelen

(P) Something tried to call utf16_to_utf8_reversed with an odd (as opposed
 to even) byte
length.

panic: yylex

(P) The lexer got into a bad state while processing a case modifier.

Parsing code internal error (%s)

(F) Parsing code supplied by an extension violated the parser's API in
 a detectable way.

Pattern subroutine nesting without pos change exceeded limit in regex; marked by <-- HERE in m/%s/

(F) You used a pattern that uses too many nested subpattern calls without
 consuming any
text. Restructure the pattern so text is consumed before the
 nesting limit is exceeded.

The <-- HERE shows in the regular expression about where the problem was
 discovered.

Parentheses missing around "%s" list

(W parenthesis) You said something like

Perl version 5.14.2 documentation - perldiag

Page 48http://perldoc.perl.org

 my $foo, $bar = @_;

when you meant

 my ($foo, $bar) = @_;

Remember that "my", "our", "local" and "state" bind tighter than comma.

-p destination: %s

(F) An error occurred during the implicit output invoked by the -p
 command-line switch. (This
output goes to STDOUT unless you've
 redirected it with select().)

(perhaps you forgot to load "%s"?)

(F) This is an educated guess made in conjunction with the message
 "Can't locate object
method \"%s\" via package \"%s\"". It often means
 that a method requires a package that has
not been loaded.

Perl folding rules are not up-to-date for 0x%x; please use the perlbug utility to report

(W regex, deprecated) You used a regular expression with
 case-insensitive matching, and
there is a bug in Perl in which the
 built-in regular expression folding rules are not accurate.
This may
 lead to incorrect results. Please report this as a bug using the
 "perlbug" utility. (This
message is marked deprecated, so that it by
 default will be turned-on.)

Perl_my_%s() not available

(F) Your platform has very uncommon byte-order and integer size,
 so it was not possible to
set up some or all fixed-width byte-order
 conversion functions. This is only a problem when
you're using the
 '<' or '>' modifiers in (un)pack templates. See "pack" in perlfunc.

Perl %s required--this is only version %s, stopped

(F) The module in question uses features of a version of Perl more
 recent than the currently
running version. How long has it been since
 you upgraded, anyway? See "require" in perlfunc.

PERL_SH_DIR too long

(F) An error peculiar to OS/2. PERL_SH_DIR is the directory to find the sh-shell in. See
"PERL_SH_DIR" in perlos2.

PERL_SIGNALS illegal: "%s"

See "PERL_SIGNALS" in perlrun for legal values.

perl: warning: Setting locale failed.

(S) The whole warning message will look something like:

	 perl: warning: Setting locale failed.
	 perl: warning: Please check that your locale settings:
	 LC_ALL = "En_US",
	 LANG = (unset)
	 are supported and installed on your system.
	 perl: warning: Falling back to the standard locale ("C").

Exactly what were the failed locale settings varies. In the above the
 settings were that the
LC_ALL was "En_US" and the LANG had no value.
 This error means that Perl detected that
you and/or your operating
 system supplier and/or system administrator have set up the
so-called
 locale system but Perl could not use those settings. This was not
 dead serious,
fortunately: there is a "default locale" called "C" that
 Perl can and will use, and the script will
be run. Before you really
 fix the problem, however, you will get the same error message each

time you run Perl. How to really fix the problem can be found in perllocale section LOCALE
PROBLEMS.

Perl version 5.14.2 documentation - perldiag

Page 49http://perldoc.perl.org

pid %x not a child

(W exec) A warning peculiar to VMS. Waitpid() was asked to wait for a
 process which isn't a
subprocess of the current process. While this is
 fine from VMS' perspective, it's probably not
what you intended.

'P' must have an explicit size in unpack

(F) The unpack format P must have an explicit size, not "*".

POSIX class [:%s:] unknown in regex; marked by <-- HERE in m/%s/

(F) The class in the character class [: :] syntax is unknown. The <-- HERE
 shows in the regular
expression about where the problem was discovered.
 Note that the POSIX character classes
do not have the is prefix
 the corresponding C interfaces have: in other words, it's
[[:print:]],
 not isprint. See perlre.

POSIX getpgrp can't take an argument

(F) Your system has POSIX getpgrp(), which takes no argument, unlike
 the BSD version,
which takes a pid.

POSIX syntax [%s] belongs inside character classes in regex; marked by <-- HERE in m/%s/

(W regexp) The character class constructs [: :], [= =], and [. .] go inside character classes, the
[] are part of the construct, for example:
 /[012[:alpha:]345]/. Note that [= =] and [. .] are not
currently
 implemented; they are simply placeholders for future extensions and will
 cause fatal
errors. The <-- HERE shows in the regular expression about
 where the problem was
discovered. See perlre.

POSIX syntax [. .] is reserved for future extensions in regex; marked by <-- HERE in m/%s/

(F regexp) Within regular expression character classes ([]) the syntax
 beginning with "[." and
ending with ".]" is reserved for future extensions.
 If you need to represent those character
sequences inside a regular
 expression character class, just quote the square brackets with the
backslash: "\[." and ".\]". The <-- HERE shows in the regular expression
 about where the
problem was discovered. See perlre.

POSIX syntax [= =] is reserved for future extensions in regex; marked by <-- HERE in m/%s/

(F) Within regular expression character classes ([]) the syntax beginning
 with "[=" and ending
with "=]" is reserved for future extensions. If you
 need to represent those character sequences
inside a regular expression
 character class, just quote the square brackets with the backslash:
"\[="
 and "=\]". The <-- HERE shows in the regular expression about where the
 problem was
discovered. See perlre.

Possible attempt to put comments in qw() list

(W qw) qw() lists contain items separated by whitespace; as with literal
 strings, comment
characters are not ignored, but are instead treated as
 literal data. (You may have used
different delimiters than the
 parentheses shown here; braces are also frequently used.)

You probably wrote something like this:

 @list = qw(
	 a # a comment
 b # another comment
);

when you should have written this:

 @list = qw(
	 a
 b
);

Perl version 5.14.2 documentation - perldiag

Page 50http://perldoc.perl.org

If you really want comments, build your list the
 old-fashioned way, with quotes and commas:

 @list = (
 'a', # a comment
 'b', # another comment
);

Possible attempt to separate words with commas

(W qw) qw() lists contain items separated by whitespace; therefore
 commas aren't needed to
separate the items. (You may have used
 different delimiters than the parentheses shown
here; braces are also
 frequently used.)

You probably wrote something like this:

 qw! a, b, c !;

which puts literal commas into some of the list items. Write it without
 commas if you don't want
them to appear in your data:

 qw! a b c !;

Possible memory corruption: %s overflowed 3rd argument

(F) An ioctl() or fcntl() returned more than Perl was bargaining for.
 Perl guesses a reasonable
buffer size, but puts a sentinel byte at the
 end of the buffer just in case. This sentinel byte got
clobbered, and
 Perl assumes that memory is now corrupted. See "ioctl" in perlfunc.

Possible precedence problem on bitwise %c operator

(W precedence) Your program uses a bitwise logical operator in conjunction
 with a numeric
comparison operator, like this :

 if ($x & $y == 0) { ... }

This expression is actually equivalent to $x & ($y == 0), due to the
 higher precedence of
==. This is probably not what you want. (If you
 really meant to write this, disable the warning,
or, better, put the
 parentheses explicitly and write $x & ($y == 0)).

Possible unintended interpolation of $\ in regex

(W ambiguous) You said something like m/$\/ in a regex.
 The regex m/foo$\s+bar/m
translates to: match the word 'foo', the output
 record separator (see "$\" in perlvar) and the
letter 's' (one time or more)
 followed by the word 'bar'.

If this is what you intended then you can silence the warning by using m/${\}/ (for example:
m/foo${\}s+bar/).

If instead you intended to match the word 'foo' at the end of the line
 followed by whitespace
and the word 'bar' on the next line then you can use m/$(?)\/ (for example:
m/foo$(?)\s+bar/).

Possible unintended interpolation of %s in string

(W ambiguous) You said something like `@foo' in a double-quoted string
 but there was no
array @foo in scope at the time. If you wanted a
 literal @foo, then write it as \@foo; otherwise
find out what happened
 to the array you apparently lost track of.

Precedence problem: open %s should be open(%s)

(S precedence) The old irregular construct

 open FOO || die;

is now misinterpreted as

 open(FOO || die);

Perl version 5.14.2 documentation - perldiag

Page 51http://perldoc.perl.org

because of the strict regularization of Perl 5's grammar into unary and
 list operators. (The old
open was a little of both.) You must put
 parentheses around the filehandle, or use the new "or"
operator instead
 of "||".

Premature end of script headers

See Server error.

printf() on closed filehandle %s

(W closed) The filehandle you're writing to got itself closed sometime
 before now. Check your
control flow.

print() on closed filehandle %s

(W closed) The filehandle you're printing on got itself closed sometime
 before now. Check
your control flow.

Process terminated by SIG%s

(W) This is a standard message issued by OS/2 applications, while *nix
 applications die in
silence. It is considered a feature of the OS/2
 port. One can easily disable this by appropriate
sighandlers, see "Signals" in perlipc. See also "Process terminated by SIGTERM/SIGINT"
 in
perlos2.

Prototype after '%c' for %s : %s

(W illegalproto) A character follows % or @ in a prototype. This is useless,
 since % and @
gobble the rest of the subroutine arguments.

Prototype mismatch: %s vs %s

(S prototype) The subroutine being declared or defined had previously been
 declared or
defined with a different function prototype.

Prototype not terminated

(F) You've omitted the closing parenthesis in a function prototype
 definition.

\p{} uses Unicode rules, not locale rules

(W) You compiled a regular expression that contained a Unicode property
 match (\p or \P),
but the regular expression is also being told to
 use the run-time locale, not Unicode. Instead,
use a POSIX character
 class, which should know about the locale's rules.
 (See "POSIX
Character Classes" in perlrecharclass.)

Even if the run-time locale is ISO 8859-1 (Latin1), which is a subset of
 Unicode, some
properties will give results that are not valid for that
 subset.

Here are a couple of examples to help you see what's going on. If the
 locale is ISO 8859-7,
the character at code point 0xD7 is the "GREEK
 CAPITAL LETTER CHI". But in Unicode that
code point means the
 "MULTIPLICATION SIGN" instead, and \p always uses the Unicode

meaning. That means that \p{Alpha} won't match, but [[:alpha:]]
 should. Only in the
Latin1 locale are all the characters in the same
 positions as they are in Unicode. But, even
here, some properties give
 incorrect results. An example is
\p{Changes_When_Uppercased} which
 is true for "LATIN SMALL LETTER Y WITH
DIAERESIS", but since the upper
 case of that character is not in Latin1, in that locale it
doesn't
 change when upper cased.

Quantifier follows nothing in regex; marked by <-- HERE in m/%s/

(F) You started a regular expression with a quantifier. Backslash it if you
 meant it literally. The
<-- HERE shows in the regular expression about
 where the problem was discovered. See
perlre.

Quantifier in {,} bigger than %d in regex; marked by <-- HERE in m/%s/

Perl version 5.14.2 documentation - perldiag

Page 52http://perldoc.perl.org

(F) There is currently a limit to the size of the min and max values of the
 {min,max} construct.
The <-- HERE shows in the regular expression about where
 the problem was discovered. See
perlre.

Quantifier unexpected on zero-length expression; marked by <-- HERE in m/%s/

(W regexp) You applied a regular expression quantifier in a place where
 it makes no sense,
such as on a zero-width assertion. Try putting the
 quantifier inside the assertion instead. For
example, the way to match
 "abc" provided that it is followed by three repetitions of "xyz" is
/abc(?=(?:xyz){3})/, not /abc(?=xyz){3}/.

The <-- HERE shows in the regular expression about where the problem was
 discovered.

Range iterator outside integer range

(F) One (or both) of the numeric arguments to the range operator ".."
 are outside the range
which can be represented by integers internally.
 One possible workaround is to force Perl to
use magical string increment
 by prepending "0" to your numbers.

readdir() attempted on invalid dirhandle %s

(W io) The dirhandle you're reading from is either closed or not really
 a dirhandle. Check your
control flow.

readline() on closed filehandle %s

(W closed) The filehandle you're reading from got itself closed sometime
 before now. Check
your control flow.

read() on closed filehandle %s

(W closed) You tried to read from a closed filehandle.

read() on unopened filehandle %s

(W unopened) You tried to read from a filehandle that was never opened.

Reallocation too large: %x

(F) You can't allocate more than 64K on an MS-DOS machine.

realloc() of freed memory ignored

(S malloc) An internal routine called realloc() on something that had
 already been freed.

Recompile perl with -DDEBUGGING to use -D switch

(F debugging) You can't use the -D option unless the code to produce
 the desired output is
compiled into Perl, which entails some overhead,
 which is why it's currently left out of your
copy.

Recursive inheritance detected in package '%s'

(F) While calculating the method resolution order (MRO) of a package, Perl
 believes it found
an infinite loop in the @ISA hierarchy. This is a
 crude check that bails out after 100 levels of
@ISA depth.

refcnt_dec: fd %d%s

refcnt: fd %d%s

refcnt_inc: fd %d%s

(P) Perl's I/O implementation failed an internal consistency check. If
 you see this message,
something is very wrong.

Reference found where even-sized list expected

(W misc) You gave a single reference where Perl was expecting a list
 with an even number of
elements (for assignment to a hash). This usually
 means that you used the anon hash

Perl version 5.14.2 documentation - perldiag

Page 53http://perldoc.perl.org

constructor when you meant to use
 parens. In any case, a hash requires key/value pairs.

 %hash = { one => 1, two => 2, };	 # WRONG
 %hash = [qw/ an anon array /];	 # WRONG
 %hash = (one => 1, two => 2,);	 # right
 %hash = qw(one 1 two 2);			 # also fine

Reference is already weak

(W misc) You have attempted to weaken a reference that is already weak.
 Doing so has no
effect.

Reference miscount in sv_replace()

(W internal) The internal sv_replace() function was handed a new SV with
 a reference count
other than 1.

Reference to invalid group 0

(F) You used \g0 or similar in a regular expression. You may refer to
 capturing parentheses
only with strictly positive integers (normal
 backreferences) or with strictly negative integers
(relative
 backreferences). Using 0 does not make sense.

Reference to nonexistent group in regex; marked by <-- HERE in m/%s/

(F) You used something like \7 in your regular expression, but there are
 not at least seven
sets of capturing parentheses in the expression. If
 you wanted to have the character with
ordinal 7 inserted into the regular
 expression, prepend zeroes to make it three digits long:
\007

The <-- HERE shows in the regular expression about where the problem was
 discovered.

Reference to nonexistent named group in regex; marked by <-- HERE in m/%s/

(F) You used something like \k'NAME' or \k<NAME> in your regular
 expression, but there is
no corresponding named capturing parentheses
 such as (?'NAME'...) or (?<NAME>...).
Check if the name has been
 spelled correctly both in the backreference and the declaration.

The <-- HERE shows in the regular expression about where the problem was
 discovered.

Reference to nonexistent or unclosed group in regex; marked by <-- HERE in m/%s/

(F) You used something like \g{-7} in your regular expression, but there
 are not at least
seven sets of closed capturing parentheses in the
 expression before where the \g{-7} was
located.

The <-- HERE shows in the regular expression about where the problem was
 discovered.

regexp memory corruption

(P) The regular expression engine got confused by what the regular
 expression compiler gave
it.

Regexp modifier "/%c" may appear a maximum of twice

Regexp modifier "/%c" may not appear twice

(F syntax, regexp) The regular expression pattern had too many occurrences
 of the specified
modifier. Remove the extraneous ones.

Regexp modifier "%c" may not appear after the "-"

(F regexp) Turning off the given modifier has the side effect of turning
 on another one. Perl
currently doesn't allow this. Reword the regular
 expression to use the modifier you want to turn
on (and place it before
 the minus), instead of the one you want to turn off.

Regexp modifiers "/%c" and "/%c" are mutually exclusive

(F syntax, regexp) The regular expression pattern had more than one of these
 mutually

Perl version 5.14.2 documentation - perldiag

Page 54http://perldoc.perl.org

exclusive modifiers. Retain only the modifier that is
 supposed to be there.

Regexp out of space

(P) A "can't happen" error, because safemalloc() should have caught it
 earlier.

Repeated format line will never terminate (~~ and @# incompatible)

(F) Your format contains the ~~ repeat-until-blank sequence and a
 numeric field that will never
go blank so that the repetition never
 terminates. You might use ^# instead. See perlform.

Replacement list is longer than search list

(W misc) You have used a replacement list that is longer than the
 search list. So the additional
elements in the replacement list
 are meaningless.

Reversed %s= operator

(W syntax) You wrote your assignment operator backwards. The = must
 always come last, to
avoid ambiguity with subsequent unary operators.

rewinddir() attempted on invalid dirhandle %s

(W io) The dirhandle you tried to do a rewinddir() on is either closed or not
 really a dirhandle.
Check your control flow.

Scalars leaked: %d

(P) Something went wrong in Perl's internal bookkeeping of scalars:
 not all scalar variables
were deallocated by the time Perl exited.
 What this usually indicates is a memory leak, which
is of course bad,
 especially if the Perl program is intended to be long-running.

Scalar value @%s[%s] better written as $%s[%s]

(W syntax) You've used an array slice (indicated by @) to select a
 single element of an array.
Generally it's better to ask for a scalar
 value (indicated by $). The difference is that
$foo[&bar] always
 behaves like a scalar, both when assigning to it and when evaluating its

argument, while @foo[&bar] behaves like a list when you assign to it,
 and provides a list
context to its subscript, which can do weird things
 if you're expecting only one subscript.

On the other hand, if you were actually hoping to treat the array
 element as a list, you need to
look into how references work, because
 Perl will not magically convert between scalars and
lists for you. See perlref.

Scalar value @%s{%s} better written as $%s{%s}

(W syntax) You've used a hash slice (indicated by @) to select a single
 element of a hash.
Generally it's better to ask for a scalar value
 (indicated by $). The difference is that
$foo{&bar} always behaves
 like a scalar, both when assigning to it and when evaluating its

argument, while @foo{&bar} behaves like a list when you assign to it,
 and provides a list
context to its subscript, which can do weird things
 if you're expecting only one subscript.

On the other hand, if you were actually hoping to treat the hash element
 as a list, you need to
look into how references work, because Perl will
 not magically convert between scalars and
lists for you. See perlref.

Search pattern not terminated

(F) The lexer couldn't find the final delimiter of a // or m{}
 construct. Remember that bracketing
delimiters count nesting level.
 Missing the leading $ from a variable $m may cause this error.

Note that since Perl 5.9.0 a // can also be the defined-or
 construct, not just the empty search
pattern. Therefore code written
 in Perl 5.9.0 or later that uses the // as the defined-or can be

misparsed by pre-5.9.0 Perls as a non-terminated search pattern.

Search pattern not terminated or ternary operator parsed as search pattern

(F) The lexer couldn't find the final delimiter of a ?PATTERN?
 construct.

Perl version 5.14.2 documentation - perldiag

Page 55http://perldoc.perl.org

The question mark is also used as part of the ternary operator (as in foo ? 0 : 1) leading
to some ambiguous constructions being wrongly
 parsed. One way to disambiguate the parsing
is to put parentheses around
 the conditional expression, i.e. (foo) ? 0 : 1.

seekdir() attempted on invalid dirhandle %s

(W io) The dirhandle you are doing a seekdir() on is either closed or not
 really a dirhandle.
Check your control flow.

%sseek() on unopened filehandle

(W unopened) You tried to use the seek() or sysseek() function on a
 filehandle that was either
never opened or has since been closed.

select not implemented

(F) This machine doesn't implement the select() system call.

Self-ties of arrays and hashes are not supported

(F) Self-ties are of arrays and hashes are not supported in
 the current implementation.

Semicolon seems to be missing

(W semicolon) A nearby syntax error was probably caused by a missing
 semicolon, or
possibly some other missing operator, such as a comma.

semi-panic: attempt to dup freed string

(S internal) The internal newSVsv() routine was called to duplicate a
 scalar that had previously
been marked as free.

sem%s not implemented

(F) You don't have System V semaphore IPC on your system.

send() on closed socket %s

(W closed) The socket you're sending to got itself closed sometime
 before now. Check your
control flow.

Sequence (? incomplete in regex; marked by <-- HERE in m/%s/

(F) A regular expression ended with an incomplete extension (?. The <-- HERE
 shows in the
regular expression about where the problem was discovered. See perlre.

Sequence (?%s...) not implemented in regex; marked by <-- HERE in m/%s/

(F) A proposed regular expression extension has the character reserved but
 has not yet been
written. The <-- HERE shows in the regular expression about
 where the problem was
discovered. See perlre.

Sequence (?%s...) not recognized in regex; marked by <-- HERE in m/%s/

(F) You used a regular expression extension that doesn't make sense. The
 <-- HERE shows
in the regular expression about where the problem was
 discovered. This happens when using
the (?^...) construct to tell
 Perl to use the default regular expression modifiers, and you

redundantly specify a default modifier. For other
 causes, see perlre.

Sequence \%s... not terminated in regex; marked by <-- HERE in m/%s/

(F) The regular expression expects a mandatory argument following the escape
 sequence and
this has been omitted or incorrectly written.

Sequence (?#... not terminated in regex; marked by <-- HERE in m/%s/

(F) A regular expression comment must be terminated by a closing
 parenthesis. Embedded
parentheses aren't allowed. The <-- HERE shows in
 the regular expression about where the
problem was discovered. See perlre.

Perl version 5.14.2 documentation - perldiag

Page 56http://perldoc.perl.org

Sequence (?{...}) not terminated or not {}-balanced in regex; marked by <-- HERE in m/%s/

(F) If the contents of a (?{...}) clause contain braces, they must balance
 for Perl to detect the
end of the clause properly. The <-- HERE shows in
 the regular expression about where the
problem was discovered. See perlre.

500 Server error

See Server error.

Server error

(A) This is the error message generally seen in a browser window when trying
 to run a CGI
program (including SSI) over the web. The actual error text
 varies widely from server to
server. The most frequently-seen variants
 are "500 Server error", "Method (something) not
permitted", "Document
 contains no data", "Premature end of script headers", and "Did not

produce a valid header".

This is a CGI error, not a Perl error.

You need to make sure your script is executable, is accessible by the
 user CGI is running the
script under (which is probably not the user
 account you tested it under), does not rely on any
environment variables
 (like PATH) from the user it isn't running under, and isn't in a
 location
where the CGI server can't find it, basically, more or less.
 Please see the following for more
information:

	 http://www.perl.org/CGI_MetaFAQ.html
	 http://www.htmlhelp.org/faq/cgifaq.html
	 http://www.w3.org/Security/Faq/

You should also look at perlfaq9.

setegid() not implemented

(F) You tried to assign to $), and your operating system doesn't
 support the setegid() system
call (or equivalent), or at least Configure
 didn't think so.

seteuid() not implemented

(F) You tried to assign to $>, and your operating system doesn't
 support the seteuid() system
call (or equivalent), or at least Configure
 didn't think so.

setpgrp can't take arguments

(F) Your system has the setpgrp() from BSD 4.2, which takes no
 arguments, unlike POSIX
setpgid(), which takes a process ID and process
 group ID.

setrgid() not implemented

(F) You tried to assign to $(, and your operating system doesn't
 support the setrgid() system
call (or equivalent), or at least Configure
 didn't think so.

setruid() not implemented

(F) You tried to assign to $<, and your operating system doesn't
 support the setruid() system
call (or equivalent), or at least Configure
 didn't think so.

setsockopt() on closed socket %s

(W closed) You tried to set a socket option on a closed socket. Did you
 forget to check the
return value of your socket() call? See "setsockopt" in perlfunc.

shm%s not implemented

(F) You don't have System V shared memory IPC on your system.

!=~ should be !~

(W syntax) The non-matching operator is !~, not !=~. !=~ will be
 interpreted as the != (numeric

Perl version 5.14.2 documentation - perldiag

Page 57http://perldoc.perl.org

not equal) and ~ (1's complement)
 operators: probably not what you intended.

<> should be quotes

(F) You wrote require <file> when you should have written require 'file'.

/%s/ should probably be written as "%s"

(W syntax) You have used a pattern where Perl expected to find a string,
 as in the first
argument to join. Perl will treat the true or false
 result of matching the pattern against $_ as
the string, which is
 probably not what you had in mind.

shutdown() on closed socket %s

(W closed) You tried to do a shutdown on a closed socket. Seems a bit
 superfluous.

SIG%s handler "%s" not defined

(W signal) The signal handler named in %SIG doesn't, in fact, exist.
 Perhaps you put it into the
wrong package?

Smart matching a non-overloaded object breaks encapsulation

(F) You should not use the ~~ operator on an object that does not
 overload it: Perl refuses to
use the object's underlying structure for
 the smart match.

sort is now a reserved word

(F) An ancient error message that almost nobody ever runs into anymore.
 But before sort was
a keyword, people sometimes used it as a filehandle.

Sort subroutine didn't return single value

(F) A sort comparison subroutine may not return a list value with more
 or less than one
element. See "sort" in perlfunc.

splice() offset past end of array

(W misc) You attempted to specify an offset that was past the end of
 the array passed to
splice(). Splicing will instead commence at the end
 of the array, rather than past it. If this isn't
what you want, try
 explicitly pre-extending the array by assigning $#array = $offset. See
"splice" in perlfunc.

Split loop

(P) The split was looping infinitely. (Obviously, a split shouldn't
 iterate more times than there
are characters of input, which is what
 happened.) See "split" in perlfunc.

Statement unlikely to be reached

(W exec) You did an exec() with some statement after it other than a
 die(). This is almost
always an error, because exec() never returns
 unless there was a failure. You probably
wanted to use system()
 instead, which does return. To suppress this warning, put the exec() in
a block by itself.

"state" variable %s can't be in a package

(F) Lexically scoped variables aren't in a package, so it doesn't make
 sense to try to declare
one with a package qualifier on the front. Use
 local() if you want to localize a package
variable.

stat() on unopened filehandle %s

(W unopened) You tried to use the stat() function on a filehandle that
 was either never opened
or has since been closed.

Stub found while resolving method "%s" overloading "%s" in package "%s"

(P) Overloading resolution over @ISA tree may be broken by importation
 stubs. Stubs should

Perl version 5.14.2 documentation - perldiag

Page 58http://perldoc.perl.org

never be implicitly created, but explicit calls to can may break this.

Subroutine %s redefined

(W redefine) You redefined a subroutine. To suppress this warning, say

 {
	 no warnings 'redefine';
	 eval "sub name { ... }";
 }

Substitution loop

(P) The substitution was looping infinitely. (Obviously, a substitution
 shouldn't iterate more
times than there are characters of input, which
 is what happened.) See the discussion of
substitution in "Regexp Quote-Like Operators" in perlop.

Substitution pattern not terminated

(F) The lexer couldn't find the interior delimiter of an s/// or s{}{}
 construct. Remember that
bracketing delimiters count nesting level.
 Missing the leading $ from variable $s may cause
this error.

Substitution replacement not terminated

(F) The lexer couldn't find the final delimiter of an s/// or s{}{}
 construct. Remember that
bracketing delimiters count nesting level.
 Missing the leading $ from variable $s may cause
this error.

substr outside of string

(W substr),(F) You tried to reference a substr() that pointed outside of
 a string. That is, the
absolute value of the offset was larger than the
 length of the string. See "substr" in perlfunc.
This warning is fatal if
 substr is used in an lvalue context (as the left hand side of an

assignment or as a subroutine argument for example).

sv_upgrade from type %d down to type %d

(P) Perl tried to force the upgrade of an SV to a type which was actually
 inferior to its current
type.

Switch (?(condition)... contains too many branches in regex; marked by <-- HERE in m/%s/

(F) A (?(condition)if-clause|else-clause) construct can have at most two
 branches (the
if-clause and the else-clause). If you want one or both to
 contain alternation, such as using
this|that|other, enclose it in
 clustering parentheses:

 (?(condition)(?:this|that|other)|else-clause)

The <-- HERE shows in the regular expression about where the problem was
 discovered. See
perlre.

Switch condition not recognized in regex; marked by <-- HERE in m/%s/

(F) If the argument to the (?(...)if-clause|else-clause) construct is
 a number, it can be only a
number. The <-- HERE shows in the regular
 expression about where the problem was
discovered. See perlre.

switching effective %s is not implemented

(F) While under the use filetest pragma, we cannot switch the real
 and effective uids or
gids.

%s syntax OK

(F) The final summary message when a perl -c succeeds.

Perl version 5.14.2 documentation - perldiag

Page 59http://perldoc.perl.org

syntax error

(F) Probably means you had a syntax error. Common reasons include:

 A keyword is misspelled.
 A semicolon is missing.
 A comma is missing.
 An opening or closing parenthesis is missing.
 An opening or closing brace is missing.
 A closing quote is missing.

Often there will be another error message associated with the syntax
 error giving more
information. (Sometimes it helps to turn on -w.)
 The error message itself often tells you where
it was in the line when
 it decided to give up. Sometimes the actual error is several tokens

before this, because Perl is good at understanding random input.
 Occasionally the line
number may be misleading, and once in a blue moon
 the only way to figure out what's
triggering the error is to call perl -c repeatedly, chopping away half the program each time
to see
 if the error went away. Sort of the cybernetic version of 20
 questions.

syntax error at line %d: `%s' unexpected

(A) You've accidentally run your script through the Bourne shell instead
 of Perl. Check the #!
line, or manually feed your script into Perl
 yourself.

syntax error in file %s at line %d, next 2 tokens "%s"

(F) This error is likely to occur if you run a perl5 script through
 a perl4 interpreter, especially if
the next 2 tokens are "use strict"
 or "my $var" or "our $var".

sysread() on closed filehandle %s

(W closed) You tried to read from a closed filehandle.

sysread() on unopened filehandle %s

(W unopened) You tried to read from a filehandle that was never opened.

System V %s is not implemented on this machine

(F) You tried to do something with a function beginning with "sem",
 "shm", or "msg" but that
System V IPC is not implemented in your
 machine. In some machines the functionality can
exist but be
 unconfigured. Consult your system support.

syswrite() on closed filehandle %s

(W closed) The filehandle you're writing to got itself closed sometime
 before now. Check your
control flow.

-T and -B not implemented on filehandles

(F) Perl can't peek at the stdio buffer of filehandles when it doesn't
 know about your kind of
stdio. You'll have to use a filename instead.

Target of goto is too deeply nested

(F) You tried to use goto to reach a label that was too deeply nested
 for Perl to reach. Perl is
doing you a favor by refusing.

telldir() attempted on invalid dirhandle %s

(W io) The dirhandle you tried to telldir() is either closed or not really
 a dirhandle. Check your
control flow.

tell() on unopened filehandle

(W unopened) You tried to use the tell() function on a filehandle that
 was either never opened
or has since been closed.

Perl version 5.14.2 documentation - perldiag

Page 60http://perldoc.perl.org

That use of $[is unsupported

(F) Assignment to $[is now strictly circumscribed, and interpreted
 as a compiler directive.
You may say only one of

 $[= 0;
 $[= 1;
 ...
 local $[= 0;
 local $[= 1;
 ...

This is to prevent the problem of one module changing the array base out
 from under another
module inadvertently. See "$[" in perlvar.

The crypt() function is unimplemented due to excessive paranoia

(F) Configure couldn't find the crypt() function on your machine,
 probably because your vendor
didn't supply it, probably because they
 think the U.S. Government thinks it's a secret, or at
least that they
 will continue to pretend that it is. And if you quote me on that, I
 will deny it.

The %s function is unimplemented

(F) The function indicated isn't implemented on this architecture, according
 to the probings of
Configure.

The stat preceding %s wasn't an lstat

(F) It makes no sense to test the current stat buffer for symbolic
 linkhood if the last stat that
wrote to the stat buffer already went
 past the symlink to get to the real file. Use an actual
filename
 instead.

The 'unique' attribute may only be applied to 'our' variables

(F) This attribute was never supported on my or sub declarations.

This Perl can't reset CRTL environ elements (%s)

This Perl can't set CRTL environ elements (%s=%s)

(W internal) Warnings peculiar to VMS. You tried to change or delete an
 element of the
CRTL's internal environ array, but your copy of Perl
 wasn't built with a CRTL that contained
the setenv() function. You'll
 need to rebuild Perl with a CRTL that does, or redefine
PERL_ENV_TABLES (see perlvms) so that the environ array isn't the
 target of the change to

%ENV which produced the warning.

thread failed to start: %s

(W threads)(S) The entry point function of threads->create() failed for some reason.

times not implemented

(F) Your version of the C library apparently doesn't do times(). I
 suspect you're not running on
Unix.

"-T" is on the #! line, it must also be used on the command line

(X) The #! line (or local equivalent) in a Perl script contains the -T option (or the -t option), but
Perl was not invoked with -T in its command line.
 This is an error because, by the time Perl
discovers a -T in a
 script, it's too late to properly taint everything from the environment.
 So Perl
gives up.

If the Perl script is being executed as a command using the #!
 mechanism (or its local
equivalent), this error can usually be fixed by
 editing the #! line so that the -%c option is a part
of Perl's first
 argument: e.g. change perl -n -%c to perl -%c -n.

If the Perl script is being executed as perl scriptname, then the -%c option must appear

Perl version 5.14.2 documentation - perldiag

Page 61http://perldoc.perl.org

on the command line: perl -%c scriptname.

To%s: illegal mapping '%s'

(F) You tried to define a customized To-mapping for lc(), lcfirst,
 uc(), or ucfirst() (or their
string-inlined versions), but you
 specified an illegal mapping.
 See "User-Defined Character
Properties" in perlunicode.

Too deeply nested ()-groups

(F) Your template contains ()-groups with a ridiculously deep nesting level.

Too few args to syscall

(F) There has to be at least one argument to syscall() to specify the
 system call to call, silly
dilly.

Too late for "-%s" option

(X) The #! line (or local equivalent) in a Perl script contains the -M, -m or -C option.

In the case of -M and -m, this is an error because those options are
 not intended for use
inside scripts. Use the use pragma instead.

The -C option only works if it is specified on the command line as well
 (with the same
sequence of letters or numbers following). Either specify
 this option on the command line, or, if
your system supports it, make your
 script executable and run it directly instead of passing it to
perl.

Too late to run %s block

(W void) A CHECK or INIT block is being defined during run time proper,
 when the opportunity
to run them has already passed. Perhaps you are
 loading a file with require or do when you
should be using use
 instead. Or perhaps you should put the require or do inside a
 BEGIN
block.

Too many args to syscall

(F) Perl supports a maximum of only 14 args to syscall().

Too many arguments for %s

(F) The function requires fewer arguments than you specified.

Too many)'s

(A) You've accidentally run your script through csh instead of Perl.
 Check the #! line, or
manually feed your script into Perl yourself.

Too many ('s

(A) You've accidentally run your script through csh instead of Perl.
 Check the #! line, or
manually feed your script into Perl yourself.

Trailing \ in regex m/%s/

(F) The regular expression ends with an unbackslashed backslash.
 Backslash it. See perlre.

Transliteration pattern not terminated

(F) The lexer couldn't find the interior delimiter of a tr/// or tr[][]
 or y/// or y[][] construct. Missing
the leading $ from variables $tr or $y may cause this error.

Transliteration replacement not terminated

(F) The lexer couldn't find the final delimiter of a tr///, tr[][],
 y/// or y[][] construct.

'%s' trapped by operation mask

(F) You tried to use an operator from a Safe compartment in which it's
 disallowed. See Safe.

Perl version 5.14.2 documentation - perldiag

Page 62http://perldoc.perl.org

truncate not implemented

(F) Your machine doesn't implement a file truncation mechanism that
 Configure knows about.

Type of arg %d to %s must be %s (not %s)

(F) This function requires the argument in that position to be of a
 certain type. Arrays must be
@NAME or @{EXPR}. Hashes must be
 %NAME or %{EXPR}. No implicit dereferencing is
allowed--use the
 {EXPR} forms as an explicit dereference. See perlref.

Type of argument to %s must be unblessed hashref or arrayref

(F) You called keys, values or each with a scalar argument that
 was not a reference to an
unblessed hash or array.

umask not implemented

(F) Your machine doesn't implement the umask function and you tried to
 use it to restrict
permissions for yourself (EXPR & 0700).

Unable to create sub named "%s"

(F) You attempted to create or access a subroutine with an illegal name.

Unbalanced context: %d more PUSHes than POPs

(W internal) The exit code detected an internal inconsistency in how
 many execution contexts
were entered and left.

Unbalanced saves: %d more saves than restores

(W internal) The exit code detected an internal inconsistency in how
 many values were
temporarily localized.

Unbalanced scopes: %d more ENTERs than LEAVEs

(W internal) The exit code detected an internal inconsistency in how
 many blocks were
entered and left.

Unbalanced tmps: %d more allocs than frees

(W internal) The exit code detected an internal inconsistency in how
 many mortal scalars were
allocated and freed.

Undefined format "%s" called

(F) The format indicated doesn't seem to exist. Perhaps it's really in
 another package? See
perlform.

Undefined sort subroutine "%s" called

(F) The sort comparison routine specified doesn't seem to exist.
 Perhaps it's in a different
package? See "sort" in perlfunc.

Undefined subroutine &%s called

(F) The subroutine indicated hasn't been defined, or if it was, it has
 since been undefined.

Undefined subroutine called

(F) The anonymous subroutine you're trying to call hasn't been defined,
 or if it was, it has
since been undefined.

Undefined subroutine in sort

(F) The sort comparison routine specified is declared but doesn't seem
 to have been defined
yet. See "sort" in perlfunc.

Undefined top format "%s" called

(F) The format indicated doesn't seem to exist. Perhaps it's really in
 another package? See

Perl version 5.14.2 documentation - perldiag

Page 63http://perldoc.perl.org

perlform.

Undefined value assigned to typeglob

(W misc) An undefined value was assigned to a typeglob, a la *foo = undef. This does
nothing. It's possible that you really mean undef *foo.

%s: Undefined variable

(A) You've accidentally run your script through csh instead of Perl.
 Check the #! line, or
manually feed your script into Perl yourself.

unexec of %s into %s failed!

(F) The unexec() routine failed for some reason. See your local FSF
 representative, who
probably put it there in the first place.

Unicode non-character U+%X is illegal for open interchange

(W utf8, nonchar) Certain codepoints, such as U+FFFE and U+FFFF, are
 defined by the

Unicode standard to be non-characters. Those are legal codepoints, but are
 reserved for
internal use; so, applications shouldn't attempt to exchange
 them. If you know what you are
doing you can turn
 off this warning by no warnings 'nonchar';.

Unicode surrogate U+%X is illegal in UTF-8

(W utf8, surrogate) You had a UTF-16 surrogate in a context where they are
 not considered
acceptable. These code points, between U+D800 and
 U+DFFF (inclusive), are used by
Unicode only for UTF-16. However, Perl
 internally allows all unsigned integer code points (up
to the size limit
 available on your platform), including surrogates. But these can cause

problems when being input or output, which is likely where this message
 came from. If you
really really know what you are doing you can turn
 off this warning by no warnings
'surrogate';.

Unknown BYTEORDER

(F) There are no byte-swapping functions for a machine with this byte
 order.

Unknown open() mode '%s'

(F) The second argument of 3-argument open() is not among the list
 of valid modes: <, >, >>,
+<, +>, +>>, -|, |-, <&, >&.

Unknown PerlIO layer "%s"

(W layer) An attempt was made to push an unknown layer onto the Perl I/O
 system. (Layers
take care of transforming data between external and
 internal representations.) Note that some
layers, such as mmap,
 are not supported in all environments. If your program didn't
 explicitly
request the failing operation, it may be the result of the
 value of the environment variable
PERLIO.

Unknown process %x sent message to prime_env_iter: %s

(P) An error peculiar to VMS. Perl was reading values for %ENV before
 iterating over it, and
someone else stuck a message in the stream of
 data Perl expected. Someone's very
confused, or perhaps trying to
 subvert Perl's population of %ENV for nefarious purposes.

Unknown "re" subpragma '%s' (known ones are: %s)

(W) You tried to use an unknown subpragma of the "re" pragma.

Unknown switch condition (?(%s in regex; marked by <-- HERE in m/%s/

(F) The condition part of a (?(condition)if-clause|else-clause) construct
 is not known. The
condition must be one of the following:

 (1) (2) ... true if 1st, 2nd, etc., capture matched
 (<NAME>) ('NAME') true if named capture matched

Perl version 5.14.2 documentation - perldiag

Page 64http://perldoc.perl.org

 (?=...) (?<=...) true if subpattern matches
 (?!...) (?<!...) true if subpattern fails to match
 (?{ CODE }) true if code returns a true value
 (R) true if evaluating inside recursion
 (R1) (R2) ... true if directly inside capture group 1, 2, etc.
 (R&NAME) true if directly inside named capture
 (DEFINE) always false; for defining named subpatterns

The <-- HERE shows in the regular expression about where the problem was
 discovered. See
perlre.

Unknown Unicode option letter '%c'

(F) You specified an unknown Unicode option. See perlrun documentation
 of the -C switch for
the list of known options.

Unknown Unicode option value %x

(F) You specified an unknown Unicode option. See perlrun documentation
 of the -C switch for
the list of known options.

Unknown verb pattern '%s' in regex; marked by <-- HERE in m/%s/

(F) You either made a typo or have incorrectly put a * quantifier
 after an open brace in your
pattern. Check the pattern and review perlre for details on legal verb patterns.

Unknown warnings category '%s'

(F) An error issued by the warnings pragma. You specified a warnings
 category that is
unknown to perl at this point.

Note that if you want to enable a warnings category registered by a
 module (e.g. use
warnings 'File::Find'), you must have loaded this
 module first.

unmatched [in regex; marked by <-- HERE in m/%s/

(F) The brackets around a character class must match. If you wish to
 include a closing bracket
in a character class, backslash it or put it
 first. The <-- HERE shows in the regular expression
about where the problem
 was discovered. See perlre.

unmatched (in regex; marked by <-- HERE in m/%s/

(F) Unbackslashed parentheses must always be balanced in regular
 expressions. If you're a vi
user, the % key is valuable for finding the
 matching parenthesis. The <-- HERE shows in the
regular expression about
 where the problem was discovered. See perlre.

Unmatched right %s bracket

(F) The lexer counted more closing curly or square brackets than opening
 ones, so you're
probably missing a matching opening bracket. As a
 general rule, you'll find the missing one
(so to speak) near the place
 you were last editing.

Unquoted string "%s" may clash with future reserved word

(W reserved) You used a bareword that might someday be claimed as a
 reserved word. It's
best to put such a word in quotes, or capitalize it
 somehow, or insert an underbar into it. You
might also declare it as a
 subroutine.

Unrecognized character %s; marked by <-- HERE after %s near column %d

(F) The Perl parser has no idea what to do with the specified character
 in your Perl script (or
eval) near the specified column. Perhaps you tried to run a compressed script, a binary
program, or a directory as a Perl program.

Unrecognized escape \%c in character class passed through in regex; marked by <-- HERE in m/%s/

(W regexp) You used a backslash-character combination which is not
 recognized by Perl

Perl version 5.14.2 documentation - perldiag

Page 65http://perldoc.perl.org

inside character classes. The character was
 understood literally, but this may change in a
future version of Perl.
 The <-- HERE shows in the regular expression about where the
 escape
was discovered.

Unrecognized escape \%c passed through

(W misc) You used a backslash-character combination which is not
 recognized by Perl. The
character was understood literally, but this may
 change in a future version of Perl.

Unrecognized escape \%s passed through in regex; marked by <-- HERE in m/%s/

(W regexp) You used a backslash-character combination which is not
 recognized by Perl. The
character(s) were understood literally, but this may
 change in a future version of Perl.
 The <--
HERE shows in the regular expression about where the
 escape was discovered.

Unrecognized signal name "%s"

(F) You specified a signal name to the kill() function that was not
 recognized. Say kill -l in
your shell to see the valid signal names
 on your system.

Unrecognized switch: -%s (-h will show valid options)

(F) You specified an illegal option to Perl. Don't do that. (If you
 think you didn't do that, check
the #! line to see if it's supplying the
 bad switch on your behalf.)

Unsuccessful %s on filename containing newline

(W newline) A file operation was attempted on a filename, and that
 operation failed,
PROBABLY because the filename contained a newline,
 PROBABLY because you forgot to
chomp() it off. See "chomp" in perlfunc.

Unsupported directory function "%s" called

(F) Your machine doesn't support opendir() and readdir().

Unsupported function %s

(F) This machine doesn't implement the indicated function, apparently.
 At least, Configure
doesn't think so.

Unsupported function fork

(F) Your version of executable does not support forking.

Note that under some systems, like OS/2, there may be different flavors
 of Perl executables,
some of which may support fork, some not. Try
 changing the name you call Perl by to perl_,
perl__, and so on.

Unsupported script encoding %s

(F) Your program file begins with a Unicode Byte Order Mark (BOM) which
 declares it to be in
a Unicode encoding that Perl cannot read.

Unsupported socket function "%s" called

(F) Your machine doesn't support the Berkeley socket mechanism, or at
 least that's what
Configure thought.

Unterminated attribute list

(F) The lexer found something other than a simple identifier at the
 start of an attribute, and it
wasn't a semicolon or the start of a
 block. Perhaps you terminated the parameter list of the
previous
 attribute too soon. See attributes.

Unterminated attribute parameter in attribute list

(F) The lexer saw an opening (left) parenthesis character while parsing
 an attribute list, but the
matching closing (right) parenthesis
 character was not found. You may need to add (or
remove) a backslash
 character to get your parentheses to balance. See attributes.

Perl version 5.14.2 documentation - perldiag

Page 66http://perldoc.perl.org

Unterminated compressed integer

(F) An argument to unpack("w",...) was incompatible with the BER
 compressed integer format
and could not be converted to an integer.
 See "pack" in perlfunc.

Unterminated \g{...} pattern in regex; marked by <-- HERE in m/%s/

(F) You missed a close brace on a \g{..} pattern (group reference) in
 a regular expression. Fix
the pattern and retry.

Unterminated <> operator

(F) The lexer saw a left angle bracket in a place where it was expecting
 a term, so it's looking
for the corresponding right angle bracket, and
 not finding it. Chances are you left some
needed parentheses out
 earlier in the line, and you really meant a "less than".

Unterminated verb pattern argument in regex; marked by <-- HERE in m/%s/

(F) You used a pattern of the form (*VERB:ARG) but did not terminate
 the pattern with a).
Fix the pattern and retry.

Unterminated verb pattern in regex; marked by <-- HERE in m/%s/

(F) You used a pattern of the form (*VERB) but did not terminate
 the pattern with a). Fix the
pattern and retry.

untie attempted while %d inner references still exist

(W untie) A copy of the object returned from tie (or tied) was
 still valid when untie was
called.

Usage: POSIX::%s(%s)

(F) You called a POSIX function with incorrect arguments.
 See "FUNCTIONS" in POSIX for
more information.

Usage: Win32::%s(%s)

(F) You called a Win32 function with incorrect arguments.
 See Win32 for more information.

Useless (?-%s) - don't use /%s modifier in regex; marked by <-- HERE in m/%s/

(W regexp) You have used an internal modifier such as (?-o) that has no
 meaning unless
removed from the entire regexp:

 if ($string =~ /(?-o)$pattern/o) { ... }

must be written as

 if ($string =~ /$pattern/) { ... }

The <-- HERE shows in the regular expression about
 where the problem was discovered. See
perlre.

Useless localization of %s

(W syntax) The localization of lvalues such as local($x=10) is
 legal, but in fact the local()
currently has no effect. This may change at
 some point in the future, but in the meantime such
code is discouraged.

Useless (?%s) - use /%s modifier in regex; marked by <-- HERE in m/%s/

(W regexp) You have used an internal modifier such as (?o) that has no
 meaning unless
applied to the entire regexp:

 if ($string =~ /(?o)$pattern/) { ... }

must be written as

Perl version 5.14.2 documentation - perldiag

Page 67http://perldoc.perl.org

 if ($string =~ /$pattern/o) { ... }

The <-- HERE shows in the regular expression about
 where the problem was discovered. See
perlre.

Useless use of /d modifier in transliteration operator

(W misc) You have used the /d modifier where the searchlist has the
 same length as the
replacelist. See perlop for more information
 about the /d modifier.

Useless use of %s in void context

(W void) You did something without a side effect in a context that does
 nothing with the return
value, such as a statement that doesn't return a
 value from a block, or the left side of a scalar
comma operator. Very
 often this points not to stupidity on your part, but a failure of Perl
 to
parse your program the way you thought it would. For example, you'd
 get this if you mixed up
your C precedence with Python precedence and
 said

 $one, $two = 1, 2;

when you meant to say

 ($one, $two) = (1, 2);

Another common error is to use ordinary parentheses to construct a list
 reference when you
should be using square or curly brackets, for
 example, if you say

 $array = (1,2);

when you should have said

 $array = [1,2];

The square brackets explicitly turn a list value into a scalar value,
 while parentheses do not.
So when a parenthesized list is evaluated in
 a scalar context, the comma is treated like C's
comma operator, which
 throws away the left argument, which is not what you want. See
perlref for more on this.

This warning will not be issued for numerical constants equal to 0 or 1
 since they are often
used in statements like

 1 while sub_with_side_effects();

String constants that would normally evaluate to 0 or 1 are warned
 about.

Useless use of "re" pragma

(W) You did use re; without any arguments. That isn't very useful.

Useless use of sort in scalar context

(W void) You used sort in scalar context, as in :

 my $x = sort @y;

This is not very useful, and perl currently optimizes this away.

Useless use of %s with no values

(W syntax) You used the push() or unshift() function with no arguments
 apart from the array,
like push(@x) or unshift(@foo). That won't
 usually have any effect on the array, so is
completely useless. It's
 possible in principle that push(@tied_array) could have some effect
 if
the array is tied to a class which implements a PUSH method. If so,
 you can write it as
push(@tied_array,()) to avoid this warning.

"use" not allowed in expression

Perl version 5.14.2 documentation - perldiag

Page 68http://perldoc.perl.org

(F) The "use" keyword is recognized and executed at compile time, and
 returns no useful
value. See perlmod.

Use of assignment to $[is deprecated

(D deprecated) The $[variable (index of the first element in an array)
 is deprecated. See "$["
in perlvar.

Use of bare << to mean <<"" is deprecated

(D deprecated) You are now encouraged to use the explicitly quoted
 form if you wish to use
an empty line as the terminator of the here-document.

Use of comma-less variable list is deprecated

(D deprecated) The values you give to a format should be
 separated by commas, not just
aligned on a line.

Use of chdir('') or chdir(undef) as chdir() deprecated

(D deprecated) chdir() with no arguments is documented to change to
 $ENV{HOME} or
$ENV{LOGDIR}. chdir(undef) and chdir('') share this
 behavior, but that has been deprecated.
In future versions they
 will simply fail.

Be careful to check that what you pass to chdir() is defined and not
 blank, else you might find
yourself in your home directory.

Use of /c modifier is meaningless in s///

(W regexp) You used the /c modifier in a substitution. The /c
 modifier is not presently
meaningful in substitutions.

Use of /c modifier is meaningless without /g

(W regexp) You used the /c modifier with a regex operand, but didn't
 use the /g modifier.
Currently, /c is meaningful only when /g is
 used. (This may change in the future.)

Use of := for an empty attribute list is not allowed

(F) The construction my $x := 42 used to parse as equivalent to my $x : = 42 (applying
an empty attribute list to $x).
 This construct was deprecated in 5.12.0, and has now been
made a syntax
 error, so := can be reclaimed as a new operator in the future.

If you need an empty attribute list, for example in a code generator, add
 a space before the =.

Use of freed value in iteration

(F) Perhaps you modified the iterated array within the loop?
 This error is typically caused by
code like the following:

 @a = (3,4);
 @a = () for (1,2,@a);

You are not supposed to modify arrays while they are being iterated over.
 For speed and
efficiency reasons, Perl internally does not do full
 reference-counting of iterated items, hence
deleting such an item in the
 middle of an iteration causes Perl to see a freed value.

Use of *glob{FILEHANDLE} is deprecated

(D deprecated) You are now encouraged to use the shorter *glob{IO} form
 to access the
filehandle slot within a typeglob.

Use of /g modifier is meaningless in split

(W regexp) You used the /g modifier on the pattern for a split
 operator. Since split always
tries to match the pattern
 repeatedly, the /g has no effect.

Use of "goto" to jump into a construct is deprecated

Perl version 5.14.2 documentation - perldiag

Page 69http://perldoc.perl.org

(D deprecated) Using goto to jump from an outer scope into an inner
 scope is deprecated
and should be avoided.

Use of inherited AUTOLOAD for non-method %s() is deprecated

(D deprecated) As an (ahem) accidental feature, AUTOLOAD
 subroutines are looked up as
methods (using the @ISA hierarchy)
 even when the subroutines to be autoloaded were called
as plain
 functions (e.g. Foo::bar()), not as methods (e.g. Foo->bar() or $obj->bar()).

This bug will be rectified in future by using method lookup only for
 methods' AUTOLOADs.
However, there is a significant base of existing
 code that may be using the old behavior. So,
as an interim step, Perl
 currently issues an optional warning when non-methods use inherited
AUTOLOADs.

The simple rule is: Inheritance will not work when autoloading
 non-methods. The simple fix for
old code is: In any module that used
 to depend on inheriting AUTOLOAD for non-methods from
a base class
 named BaseClass, execute *AUTOLOAD = \&BaseClass::AUTOLOAD during
startup.

In code that currently says use AutoLoader; @ISA = qw(AutoLoader);
 you should
remove AutoLoader from @ISA and change use AutoLoader; to use AutoLoader
'AUTOLOAD';.

Use of %s in printf format not supported

(F) You attempted to use a feature of printf that is accessible from
 only C. This usually means
there's a better way to do it in Perl.

Use of %s is deprecated

(D deprecated) The construct indicated is no longer recommended for use,
 generally because
there's a better way to do it, and also because the
 old way has bad side effects.

Use of -l on filehandle %s

(W io) A filehandle represents an opened file, and when you opened the file
 it already went
past any symlink you are presumably trying to look for.
 The operation returned undef. Use a
filename instead.

Use of %s on a handle without * is deprecated

(D deprecated) You used tie, tied or untie on a scalar but that
 scalar happens to hold a
typeglob, which means its filehandle will
 be tied. If you mean to tie a handle, use an explicit *
as in tie *$handle.

This is a long-standing bug that will be removed in Perl 5.16, as
 there is currently no way to tie
the scalar itself when it holds
 a typeglob, and no way to untie a scalar that has had a typeglob

assigned to it.

Use of ?PATTERN? without explicit operator is deprecated

(D deprecated) You have written something like ?\w?, for a regular
 expression that matches
only once. Starting this term directly with
 the question mark delimiter is now deprecated, so
that the question mark
 will be available for use in new operators in the future. Write m?\w?

instead, explicitly using the m operator: the question mark delimiter
 still invokes match-once
behaviour.

Use of qw(...) as parentheses is deprecated

(D deprecated) You have something like foreach $x qw(a b c) {...},
 using a
qw(...) list literal where a parenthesised expression is
 expected. Historically the parser
fooled itself into thinking that qw(...) literals were always enclosed in parentheses, and as a
result
 you could sometimes omit parentheses around them. (You could never do
 the foreach
 qw(a b c) {...} that you might have expected, though.)
 The parser no longer lies to
itself in this way. Wrap the list literal
 in parentheses, like foreach $x (qw(a b c)) {...}
.

Perl version 5.14.2 documentation - perldiag

Page 70http://perldoc.perl.org

Use of reference "%s" as array index

(W misc) You tried to use a reference as an array index; this probably
 isn't what you mean,
because references in numerical context tend
 to be huge numbers, and so usually indicates
programmer error.

If you really do mean it, explicitly numify your reference, like so: $array[0+$ref]. This
warning is not given for overloaded objects,
 however, because you can overload the
numification and stringification
 operators and then you presumably know what you are doing.

Use of reserved word "%s" is deprecated

(D deprecated) The indicated bareword is a reserved word. Future
 versions of perl may use it
as a keyword, so you're better off either
 explicitly quoting the word in a manner appropriate for
its context of
 use, or using a different name altogether. The warning can be
 suppressed for
subroutine names by either adding a & prefix, or using
 a package qualifier, e.g. &our(), or
Foo::our().

Use of tainted arguments in %s is deprecated

(W taint, deprecated) You have supplied system() or exec() with multiple
 arguments and
at least one of them is tainted. This used to be allowed
 but will become a fatal error in a future
version of perl. Untaint your
 arguments. See perlsec.

Use of uninitialized value%s

(W uninitialized) An undefined value was used as if it were already
 defined. It was interpreted
as a "" or a 0, but maybe it was a mistake.
 To suppress this warning assign a defined value to
your variables.

To help you figure out what was undefined, perl will try to tell you the
 name of the variable (if
any) that was undefined. In some cases it cannot
 do this, so it also tells you what operation
you used the undefined value
 in. Note, however, that perl optimizes your program and the
operation
 displayed in the warning may not necessarily appear literally in your
 program. For
example, "that $foo" is usually optimized into "that "
 . $foo, and the warning will
refer to the concatenation (.) operator,
 even though there is no . in your program.

Using a hash as a reference is deprecated

(D deprecated) You tried to use a hash as a reference, as in %foo->{"bar"} or
%$ref->{"hello"}. Versions of perl <= 5.6.1
 used to allow this syntax, but shouldn't have.
It is now deprecated, and will
 be removed in a future version.

Using an array as a reference is deprecated

(D deprecated) You tried to use an array as a reference, as in @foo->[23] or @$ref->[99]
. Versions of perl <= 5.6.1 used to
 allow this syntax, but shouldn't have. It is now deprecated,
and will be
 removed in a future version.

Using just the first character returned by \N{} in character class

(W) A charnames handler may return a sequence of more than one character.
 Currently all but
the first one are discarded when used in a regular
 expression pattern bracketed character
class.

Using !~ with %s doesn't make sense

(F) Using the !~ operator with s///r, tr///r or y///r is
 currently reserved for future use,
as the exact behaviour has not
 been decided. (Simply returning the boolean opposite of the

modified string is usually not particularly useful.)

User-defined case-mapping '%s' is deprecated

(W deprecated) You defined a function, such as ToLower that overrides
 the standard case
mapping, such as lc() gives. This feature is being
 deprecated due to its many issues, as
documented in "User-Defined Case Mappings (for serious hackers only)" in perlunicode.
 It is

Perl version 5.14.2 documentation - perldiag

Page 71http://perldoc.perl.org

planned to remove this feature in Perl 5.16. A CPAN module
 providing improved functionality
is being prepared.

UTF-16 surrogate U+%X

(W utf8, surrogate) You had a UTF-16 surrogate in a context where they are
 not considered
acceptable. These code points, between U+D800 and
 U+DFFF (inclusive), are used by
Unicode only for UTF-16. However, Perl
 internally allows all unsigned integer code points (up
to the size limit
 available on your platform), including surrogates. But these can cause

problems when being input or output, which is likely where this message
 came from. If you
really really know what you are doing you can turn
 off this warning by no warnings
'surrogate';.

Value of %s can be "0"; test with defined()

(W misc) In a conditional expression, you used <HANDLE>, <*> (glob), each(), or
readdir() as a boolean value. Each of these constructs
 can return a value of "0"; that would
make the conditional expression
 false, which is probably not what you intended. When using
these
 constructs in conditional expressions, test their values with the defined operator.

Value of CLI symbol "%s" too long

(W misc) A warning peculiar to VMS. Perl tried to read the value of an
 %ENV element from a
CLI symbol table, and found a resultant string
 longer than 1024 characters. The return value
has been truncated to
 1024 characters.

Variable "%s" is not available

(W closure) During compilation, an inner named subroutine or eval is
 attempting to capture an
outer lexical that is not currently available.
 This can happen for one of two reasons. First, the
outer lexical may be
 declared in an outer anonymous subroutine that has not yet been
created.
 (Remember that named subs are created at compile time, while anonymous
 subs are
created at run-time.) For example,

 sub { my $a; sub f { $a } }

At the time that f is created, it can't capture the current value of $a,
 since the anonymous
subroutine hasn't been created yet. Conversely,
 the following won't give a warning since the
anonymous subroutine has by
 now been created and is live:

 sub { my $a; eval 'sub f { $a }' }->();

The second situation is caused by an eval accessing a variable that has
 gone out of scope, for
example,

 sub f {
	 my $a;
	 sub { eval '$a' }
 }
 f()->();

Here, when the '$a' in the eval is being compiled, f() is not currently being
 executed, so its $a
is not available for capture.

Variable "%s" is not imported%s

(W misc) With "use strict" in effect, you referred to a global variable
 that you apparently
thought was imported from another module, because
 something else of the same name
(usually a subroutine) is exported by
 that module. It usually means you put the wrong funny
character on the
 front of your variable.

Variable length lookbehind not implemented in m/%s/

(F) Lookbehind is allowed only for subexpressions whose length is fixed and
 known at compile

Perl version 5.14.2 documentation - perldiag

Page 72http://perldoc.perl.org

time. See perlre.

"%s" variable %s masks earlier declaration in same %s

(W misc) A "my", "our" or "state" variable has been redeclared in the
 current scope or
statement, effectively eliminating all access to the
 previous instance. This is almost always a
typographical error. Note
 that the earlier variable will still exist until the end of the scope
 or
until all closure referents to it are destroyed.

Variable syntax

(A) You've accidentally run your script through csh instead
 of Perl. Check the #! line, or
manually feed your script into
 Perl yourself.

Variable "%s" will not stay shared

(W closure) An inner (nested) named subroutine is referencing a
 lexical variable defined in an
outer named subroutine.

When the inner subroutine is called, it will see the value of
 the outer subroutine's variable as it
was before and during the *first*
 call to the outer subroutine; in this case, after the first call to
the
 outer subroutine is complete, the inner and outer subroutines will no
 longer share a
common value for the variable. In other words, the
 variable will no longer be shared.

This problem can usually be solved by making the inner subroutine
 anonymous, using the sub
 {} syntax. When inner anonymous subs that
 reference variables in outer subroutines are
created, they
 are automatically rebound to the current values of such variables.

Verb pattern '%s' has a mandatory argument in regex; marked by <-- HERE in m/%s/

(F) You used a verb pattern that requires an argument. Supply an argument
 or check that you
are using the right verb.

Verb pattern '%s' may not have an argument in regex; marked by <-- HERE in m/%s/

(F) You used a verb pattern that is not allowed an argument. Remove the argument or check
that you are using the right verb.

Version number must be a constant number

(P) The attempt to translate a use Module n.n LIST statement into
 its equivalent BEGIN
block found an internal inconsistency with
 the version number.

Version string '%s' contains invalid data; ignoring: '%s'

(W misc) The version string contains invalid characters at the end, which
 are being ignored.

Warning: something's wrong

(W) You passed warn() an empty string (the equivalent of warn "") or
 you called it with no
args and $@ was empty.

Warning: unable to close filehandle %s properly

(S) The implicit close() done by an open() got an error indication on
 the close(). This usually
indicates your file system ran out of disk
 space.

Warning: Use of "%s" without parentheses is ambiguous

(S ambiguous) You wrote a unary operator followed by something that
 looks like a binary
operator that could also have been interpreted as a
 term or unary operator. For instance, if
you know that the rand
 function has a default argument of 1.0, and you write

 rand + 5;

you may THINK you wrote the same thing as

 rand() + 5;

Perl version 5.14.2 documentation - perldiag

Page 73http://perldoc.perl.org

but in actual fact, you got

 rand(+5);

So put in parentheses to say what you really mean.

Wide character in %s

(S utf8) Perl met a wide character (>255) when it wasn't expecting
 one. This warning is by
default on for I/O (like print). The easiest
 way to quiet this warning is simply to add the :utf8
layer to the
 output, e.g. binmode STDOUT, ':utf8'. Another way to turn off the
 warning is
to add no warnings 'utf8'; but that is often closer to
 cheating. In general, you are
supposed to explicitly mark the
 filehandle with an encoding, see open and "binmode" in
perlfunc.

Within []-length '%c' not allowed

(F) The count in the (un)pack template may be replaced by [TEMPLATE] only if TEMPLATE
always matches the same amount of packed bytes that can be
 determined from the template
alone. This is not possible if it contains any
 of the codes @, /, U, u, w or a *-length. Redesign
the template.

write() on closed filehandle %s

(W closed) The filehandle you're writing to got itself closed sometime
 before now. Check your
control flow.

%s "\x%X" does not map to Unicode

(F) When reading in different encodings Perl tries to map everything
 into Unicode characters.
The bytes you read in are not legal in
 this encoding, for example

 utf8 "\xE4" does not map to Unicode

if you try to read in the a-diaereses Latin-1 as UTF-8.

'X' outside of string

(F) You had a (un)pack template that specified a relative position before
 the beginning of the
string being (un)packed. See "pack" in perlfunc.

'x' outside of string in unpack

(F) You had a pack template that specified a relative position after
 the end of the string being
unpacked. See "pack" in perlfunc.

YOU HAVEN'T DISABLED SET-ID SCRIPTS IN THE KERNEL YET!

(F) And you probably never will, because you probably don't have the
 sources to your kernel,
and your vendor probably doesn't give a rip
 about what you want. Your best bet is to put a
setuid C wrapper around
 your script.

You need to quote "%s"

(W syntax) You assigned a bareword as a signal handler name.
 Unfortunately, you already
have a subroutine of that name declared,
 which means that Perl 5 will try to call the subroutine
when the
 assignment is executed, which is probably not what you want. (If it IS
 what you want,
put an & in front.)

Your random numbers are not that random

(F) When trying to initialise the random seed for hashes, Perl could
 not get any randomness
out of your system. This usually indicates
 Something Very Wrong.

Perl version 5.14.2 documentation - perldiag

Page 74http://perldoc.perl.org

SEE ALSO
warnings, perllexwarn.

