
Perl version 5.14.2 documentation - perlembed

Page 1http://perldoc.perl.org

NAME
perlembed - how to embed perl in your C program

DESCRIPTION
PREAMBLE

Do you want to:

Use C from Perl?

Read perlxstut, perlxs, h2xs, perlguts, and perlapi.

Use a Unix program from Perl?

Read about back-quotes and about system and exec in perlfunc.

Use Perl from Perl?

Read about "do" in perlfunc and "eval" in perlfunc and "require" in perlfunc and "use" in
perlfunc.

Use C from C?

Rethink your design.

Use Perl from C?

Read on...

ROADMAP
Compiling your C program

Adding a Perl interpreter to your C program

Calling a Perl subroutine from your C program

Evaluating a Perl statement from your C program

Performing Perl pattern matches and substitutions from your C program

Fiddling with the Perl stack from your C program

Maintaining a persistent interpreter

Maintaining multiple interpreter instances

Using Perl modules, which themselves use C libraries, from your C program

Embedding Perl under Win32

Compiling your C program
If you have trouble compiling the scripts in this documentation,
 you're not alone. The cardinal rule:
COMPILE THE PROGRAMS IN EXACTLY
 THE SAME WAY THAT YOUR PERL WAS COMPILED.
(Sorry for yelling.)

Also, every C program that uses Perl must link in the perl library.
 What's that, you ask? Perl is itself
written in C; the perl library
 is the collection of compiled C programs that were used to create your
 perl
executable (/usr/bin/perl or equivalent). (Corollary: you
 can't use Perl from your C program unless Perl
has been compiled on
 your machine, or installed properly--that's why you shouldn't blithely
 copy Perl
executables from machine to machine without also copying the lib directory.)

When you use Perl from C, your C program will--usually--allocate,
 "run", and deallocate a
PerlInterpreter object, which is defined by
 the perl library.

If your copy of Perl is recent enough to contain this documentation
 (version 5.002 or later), then the

Perl version 5.14.2 documentation - perlembed

Page 2http://perldoc.perl.org

perl library (and EXTERN.h and perl.h, which you'll also need) will reside in a directory
 that looks like
this:

 /usr/local/lib/perl5/your_architecture_here/CORE

or perhaps just

 /usr/local/lib/perl5/CORE

or maybe something like

 /usr/opt/perl5/CORE

Execute this statement for a hint about where to find CORE:

 perl -MConfig -e 'print $Config{archlib}'

Here's how you'd compile the example in the next section, Adding a Perl interpreter to your C
program, on my Linux box:

 % gcc -O2 -Dbool=char -DHAS_BOOL -I/usr/local/include
 -I/usr/local/lib/perl5/i586-linux/5.003/CORE
 -L/usr/local/lib/perl5/i586-linux/5.003/CORE
 -o interp interp.c -lperl -lm

(That's all one line.) On my DEC Alpha running old 5.003_05, the incantation is a bit different:

 % cc -O2 -Olimit 2900 -DSTANDARD_C -I/usr/local/include
 -I/usr/local/lib/perl5/alpha-dec_osf/5.00305/CORE
 -L/usr/local/lib/perl5/alpha-dec_osf/5.00305/CORE -L/usr/local/lib
 -D__LANGUAGE_C__ -D_NO_PROTO -o interp interp.c -lperl -lm

How can you figure out what to add? Assuming your Perl is post-5.001,
 execute a perl -V
command and pay special attention to the "cc" and
 "ccflags" information.

You'll have to choose the appropriate compiler (cc, gcc, et al.) for
 your machine: perl -MConfig
-e 'print $Config{cc}' will tell you what
 to use.

You'll also have to choose the appropriate library directory
 (/usr/local/lib/...) for your machine. If your
compiler complains
 that certain functions are undefined, or that it can't locate -lperl, then you need to
change the path following the -L. If it
 complains that it can't find EXTERN.h and perl.h, you need to

change the path following the -I.

You may have to add extra libraries as well. Which ones?
 Perhaps those printed by

 perl -MConfig -e 'print $Config{libs}'

Provided your perl binary was properly configured and installed the ExtUtils::Embed module will
determine all of this information for
 you:

 % cc -o interp interp.c `perl -MExtUtils::Embed -e ccopts -e ldopts`

If the ExtUtils::Embed module isn't part of your Perl distribution,
 you can retrieve it from

http://www.perl.com/perl/CPAN/modules/by-module/ExtUtils/
 (If this documentation came from your
Perl distribution, then you're
 running 5.004 or better and you already have it.)

The ExtUtils::Embed kit on CPAN also contains all source code for
 the examples in this document,

Perl version 5.14.2 documentation - perlembed

Page 3http://perldoc.perl.org

tests, additional examples and other
 information you may find useful.

Adding a Perl interpreter to your C program
In a sense, perl (the C program) is a good example of embedding Perl
 (the language), so I'll
demonstrate embedding with miniperlmain.c,
 included in the source distribution. Here's a bastardized,
non-portable
 version of miniperlmain.c containing the essentials of embedding:

 #include <EXTERN.h> /* from the Perl distribution */
 #include <perl.h> /* from the Perl distribution */

 static PerlInterpreter *my_perl; /*** The Perl interpreter ***/

 int main(int argc, char **argv, char **env)
 {
	 PERL_SYS_INIT3(&argc,&argv,&env);
 my_perl = perl_alloc();
 perl_construct(my_perl);
	 PL_exit_flags |= PERL_EXIT_DESTRUCT_END;
 perl_parse(my_perl, NULL, argc, argv, (char **)NULL);
 perl_run(my_perl);
 perl_destruct(my_perl);
 perl_free(my_perl);
	 PERL_SYS_TERM();
 }

Notice that we don't use the env pointer. Normally handed to perl_parse as its final argument, env
here is replaced by NULL, which means that the current environment will be used.

The macros PERL_SYS_INIT3() and PERL_SYS_TERM() provide system-specific
 tune up of the C
runtime environment necessary to run Perl interpreters;
 they should only be called once regardless of
how many interpreters you
 create or destroy. Call PERL_SYS_INIT3() before you create your first

interpreter, and PERL_SYS_TERM() after you free your last interpreter.

Since PERL_SYS_INIT3() may change env, it may be more appropriate to
 provide env as an
argument to perl_parse().

Also notice that no matter what arguments you pass to perl_parse(),
 PERL_SYS_INIT3() must be
invoked on the C main() argc, argv and env and
 only once.

Now compile this program (I'll call it interp.c) into an executable:

 % cc -o interp interp.c `perl -MExtUtils::Embed -e ccopts -e ldopts`

After a successful compilation, you'll be able to use interp just
 like perl itself:

 % interp
 print "Pretty Good Perl \n";
 print "10890 - 9801 is ", 10890 - 9801;
 <CTRL-D>
 Pretty Good Perl
 10890 - 9801 is 1089

or

 % interp -e 'printf("%x", 3735928559)'
 deadbeef

Perl version 5.14.2 documentation - perlembed

Page 4http://perldoc.perl.org

You can also read and execute Perl statements from a file while in the
 midst of your C program, by
placing the filename in argv[1] before
 calling perl_run.

Calling a Perl subroutine from your C program
To call individual Perl subroutines, you can use any of the call_*
 functions documented in perlcall.
 In
this example we'll use call_argv.

That's shown below, in a program I'll call showtime.c.

 #include <EXTERN.h>
 #include <perl.h>

 static PerlInterpreter *my_perl;

 int main(int argc, char **argv, char **env)
 {
 char *args[] = { NULL };
	 PERL_SYS_INIT3(&argc,&argv,&env);
 my_perl = perl_alloc();
 perl_construct(my_perl);

 perl_parse(my_perl, NULL, argc, argv, NULL);
	 PL_exit_flags |= PERL_EXIT_DESTRUCT_END;

 /*** skipping perl_run() ***/

 call_argv("showtime", G_DISCARD | G_NOARGS, args);

 perl_destruct(my_perl);
 perl_free(my_perl);
	 PERL_SYS_TERM();
 }

where showtime is a Perl subroutine that takes no arguments (that's the G_NOARGS) and for which
I'll ignore the return value (that's the G_DISCARD). Those flags, and others, are discussed in perlcall.

I'll define the showtime subroutine in a file called showtime.pl:

 print "I shan't be printed.";

 sub showtime {
 print time;
 }

Simple enough. Now compile and run:

 % cc -o showtime showtime.c `perl -MExtUtils::Embed -e ccopts -e
ldopts`

 % showtime showtime.pl
 818284590

yielding the number of seconds that elapsed between January 1, 1970
 (the beginning of the Unix
epoch), and the moment I began writing this
 sentence.

Perl version 5.14.2 documentation - perlembed

Page 5http://perldoc.perl.org

In this particular case we don't have to call perl_run, as we set the PL_exit_flag
PERL_EXIT_DESTRUCT_END which executes END blocks in
 perl_destruct.

If you want to pass arguments to the Perl subroutine, you can add
 strings to the NULL-terminated
args list passed to call_argv. For other data types, or to examine return values,
 you'll need to
manipulate the Perl stack. That's demonstrated in Fiddling with the Perl stack from your C program.

Evaluating a Perl statement from your C program
Perl provides two API functions to evaluate pieces of Perl code.
 These are "eval_sv" in perlapi and
"eval_pv" in perlapi.

Arguably, these are the only routines you'll ever need to execute
 snippets of Perl code from within
your C program. Your code can be as
 long as you wish; it can contain multiple statements; it can
employ "use" in perlfunc, "require" in perlfunc, and "do" in perlfunc to
 include external Perl files.

eval_pv lets us evaluate individual Perl strings, and then
 extract variables for coercion into C types.
The following program, string.c, executes three Perl strings, extracting an int from
 the first, a float
from the second, and a char * from the third.

 #include <EXTERN.h>
 #include <perl.h>

 static PerlInterpreter *my_perl;

 main (int argc, char **argv, char **env)
 {
 char *embedding[] = { "", "-e", "0" };

 PERL_SYS_INIT3(&argc,&argv,&env);
 my_perl = perl_alloc();
 perl_construct(my_perl);

 perl_parse(my_perl, NULL, 3, embedding, NULL);
 PL_exit_flags |= PERL_EXIT_DESTRUCT_END;
 perl_run(my_perl);

 /** Treat $a as an integer **/
 eval_pv("$a = 3; $a **= 2", TRUE);
 printf("a = %d\n", SvIV(get_sv("a", 0)));

 /** Treat $a as a float **/
 eval_pv("$a = 3.14; $a **= 2", TRUE);
 printf("a = %f\n", SvNV(get_sv("a", 0)));

 /** Treat $a as a string **/
 eval_pv("$a = 'rekcaH lreP rehtonA tsuJ'; $a = reverse($a);", TRUE);
 printf("a = %s\n", SvPV_nolen(get_sv("a", 0)));

 perl_destruct(my_perl);
 perl_free(my_perl);
 PERL_SYS_TERM();
 }

All of those strange functions with sv in their names help convert Perl scalars to C types. They're

Perl version 5.14.2 documentation - perlembed

Page 6http://perldoc.perl.org

described in perlguts and perlapi.

If you compile and run string.c, you'll see the results of using SvIV() to create an int, SvNV() to
create a float, and SvPV() to create a string:

 a = 9
 a = 9.859600
 a = Just Another Perl Hacker

In the example above, we've created a global variable to temporarily
 store the computed value of our
eval'ed expression. It is also
 possible and in most cases a better strategy to fetch the return value

from eval_pv() instead. Example:

 ...
 SV *val = eval_pv("reverse 'rekcaH lreP rehtonA tsuJ'", TRUE);
 printf("%s\n", SvPV_nolen(val));
 ...

This way, we avoid namespace pollution by not creating global
 variables and we've simplified our
code as well.

Performing Perl pattern matches and substitutions from your C program
The eval_sv() function lets us evaluate strings of Perl code, so we can
 define some functions that use
it to "specialize" in matches and
 substitutions: match(), substitute(), and matches().

 I32 match(SV *string, char *pattern);

Given a string and a pattern (e.g., m/clasp/ or /\b\w*\b/, which
 in your C program might appear
as "/\\b\\w*\\b/"), match()
 returns 1 if the string matches the pattern and 0 otherwise.

 int substitute(SV **string, char *pattern);

Given a pointer to an SV and an =~ operation (e.g., s/bob/robert/g or tr[A-Z][a-z]),
substitute() modifies the string
 within the SV as according to the operation, returning the number of
substitutions
 made.

 int matches(SV *string, char *pattern, AV **matches);

Given an SV, a pattern, and a pointer to an empty AV,
 matches() evaluates $string =~ $pattern
in a list context, and
 fills in matches with the array elements, returning the number of matches found.

Here's a sample program, match.c, that uses all three (long lines have
 been wrapped here):

 #include <EXTERN.h>
 #include <perl.h>

 static PerlInterpreter *my_perl;

 /** my_eval_sv(code, error_check)
 ** kinda like eval_sv(),
 ** but we pop the return value off the stack
 **/
 SV* my_eval_sv(SV *sv, I32 croak_on_error)
 {
 dSP;
 SV* retval;

Perl version 5.14.2 documentation - perlembed

Page 7http://perldoc.perl.org

 PUSHMARK(SP);
 eval_sv(sv, G_SCALAR);

 SPAGAIN;
 retval = POPs;
 PUTBACK;

 if (croak_on_error && SvTRUE(ERRSV))
 	 croak(SvPVx_nolen(ERRSV));

 return retval;
 }

 /** match(string, pattern)
 **
 ** Used for matches in a scalar context.
 **
 ** Returns 1 if the match was successful; 0 otherwise.
 **/

 I32 match(SV *string, char *pattern)
 {
 SV *command = newSV(0), *retval;

 sv_setpvf(command, "my $string = '%s'; $string =~ %s",
 	 SvPV_nolen(string), pattern);

 retval = my_eval_sv(command, TRUE);
 SvREFCNT_dec(command);

 return SvIV(retval);
 }

 /** substitute(string, pattern)
 **
 ** Used for =~ operations that modify their left-hand side (s/// and
tr///)
 **
 ** Returns the number of successful matches, and
 ** modifies the input string if there were any.
 **/

 I32 substitute(SV **string, char *pattern)
 {
 SV *command = newSV(0), *retval;

 sv_setpvf(command, "$string = '%s'; ($string =~ %s)",
 	 SvPV_nolen(*string), pattern);

 retval = my_eval_sv(command, TRUE);
 SvREFCNT_dec(command);

Perl version 5.14.2 documentation - perlembed

Page 8http://perldoc.perl.org

 *string = get_sv("string", 0);
 return SvIV(retval);
 }

 /** matches(string, pattern, matches)
 **
 ** Used for matches in a list context.
 **
 ** Returns the number of matches,
 ** and fills in **matches with the matching substrings
 **/

 I32 matches(SV *string, char *pattern, AV **match_list)
 {
 SV *command = newSV(0);
 I32 num_matches;

 sv_setpvf(command, "my $string = '%s'; @array = ($string =~ %s)",
 	 SvPV_nolen(string), pattern);

 my_eval_sv(command, TRUE);
 SvREFCNT_dec(command);

 *match_list = get_av("array", 0);
 num_matches = av_len(*match_list) + 1;

 return num_matches;
 }

 main (int argc, char **argv, char **env)
 {
 char *embedding[] = { "", "-e", "0" };
 AV *match_list;
 I32 num_matches, i;
 SV *text;

 PERL_SYS_INIT3(&argc,&argv,&env);
 my_perl = perl_alloc();
 perl_construct(my_perl);
 perl_parse(my_perl, NULL, 3, embedding, NULL);
 PL_exit_flags |= PERL_EXIT_DESTRUCT_END;

 text = newSV(0);
 sv_setpv(text, "When he is at a convenience store and the "
	 "bill comes to some amount like 76 cents, Maynard is "
	 "aware that there is something he *should* do, something "
	 "that will enable him to get back a quarter, but he has "
	 "no idea *what*. He fumbles through his red squeezey "
	 "changepurse and gives the boy three extra pennies with "
	 "his dollar, hoping that he might luck into the correct "
	 "amount. The boy gives him back two of his own pennies "
	 "and then the big shiny quarter that is his prize. "
	 "-RICHH");

Perl version 5.14.2 documentation - perlembed

Page 9http://perldoc.perl.org

 if (match(text, "m/quarter/")) /** Does text contain 'quarter'? **/
 	 printf("match: Text contains the word 'quarter'.\n\n");
 else
 	 printf("match: Text doesn't contain the word 'quarter'.\n\n");

 if (match(text, "m/eighth/")) /** Does text contain 'eighth'? **/
 	 printf("match: Text contains the word 'eighth'.\n\n");
 else
 	 printf("match: Text doesn't contain the word 'eighth'.\n\n");

 /** Match all occurrences of /wi../ **/
 num_matches = matches(text, "m/(wi..)/g", &match_list);
 printf("matches: m/(wi..)/g found %d matches...\n", num_matches);

 for (i = 0; i < num_matches; i++)
 	 printf("match: %s\n", SvPV_nolen(*av_fetch(match_list, i, FALSE)));
 printf("\n");

 /** Remove all vowels from text **/
 num_matches = substitute(&text, "s/[aeiou]//gi");
 if (num_matches) {
 	 printf("substitute: s/[aeiou]//gi...%d substitutions made.\n",
 	 num_matches);
 	 printf("Now text is: %s\n\n", SvPV_nolen(text));
 }

 /** Attempt a substitution **/
 if (!substitute(&text, "s/Perl/C/")) {
 	 printf("substitute: s/Perl/C...No substitution made.\n\n");
 }

 SvREFCNT_dec(text);
 PL_perl_destruct_level = 1;
 perl_destruct(my_perl);
 perl_free(my_perl);
 PERL_SYS_TERM();
 }

which produces the output (again, long lines have been wrapped here)

 match: Text contains the word 'quarter'.

 match: Text doesn't contain the word 'eighth'.

 matches: m/(wi..)/g found 2 matches...
 match: will
 match: with

 substitute: s/[aeiou]//gi...139 substitutions made.
 Now text is: Whn h s t cnvnnc str nd th bll cms t sm mnt lk 76 cnts,
 Mynrd s wr tht thr s smthng h *shld* d, smthng tht wll nbl hm t gt bck
 qrtr, bt h hs n d *wht*. H fmbls thrgh hs rd sqzy chngprs nd gvs th by
 thr xtr pnns wth hs dllr, hpng tht h mght lck nt th crrct mnt. Th by

Perl version 5.14.2 documentation - perlembed

Page 10http://perldoc.perl.org

gvs hm bck tw f hs wn pnns nd thn th bg shny qrtr tht s hs prz. -RCHH

 substitute: s/Perl/C...No substitution made.

Fiddling with the Perl stack from your C program
When trying to explain stacks, most computer science textbooks mumble
 something about
spring-loaded columns of cafeteria plates: the last
 thing you pushed on the stack is the first thing you
pop off. That'll
 do for our purposes: your C program will push some arguments onto "the Perl
 stack",
shut its eyes while some magic happens, and then pop the
 results--the return value of your Perl
subroutine--off the stack.

First you'll need to know how to convert between C types and Perl
 types, with newSViv() and
sv_setnv() and newAV() and all their
 friends. They're described in perlguts and perlapi.

Then you'll need to know how to manipulate the Perl stack. That's
 described in perlcall.

Once you've understood those, embedding Perl in C is easy.

Because C has no builtin function for integer exponentiation, let's
 make Perl's ** operator available to
it (this is less useful than it
 sounds, because Perl implements ** with C's pow() function). First
 I'll
create a stub exponentiation function in power.pl:

 sub expo {
 my ($a, $b) = @_;
 return $a ** $b;
 }

Now I'll create a C program, power.c, with a function PerlPower() that contains all the perlguts
necessary to push the
 two arguments into expo() and to pop the return value out. Take a
 deep
breath...

 #include <EXTERN.h>
 #include <perl.h>

 static PerlInterpreter *my_perl;

 static void
 PerlPower(int a, int b)
 {
 dSP; /* initialize stack pointer */
 ENTER; /* everything created after here */
 SAVETMPS; /* ...is a temporary variable. */
 PUSHMARK(SP); /* remember the stack pointer */
 XPUSHs(sv_2mortal(newSViv(a))); /* push the base onto the stack */
 XPUSHs(sv_2mortal(newSViv(b))); /* push the exponent onto stack */
 PUTBACK; /* make local stack pointer global */
 call_pv("expo", G_SCALAR); /* call the function */
 SPAGAIN; /* refresh stack pointer */
 /* pop the return value from stack */
 printf ("%d to the %dth power is %d.\n", a, b, POPi);
 PUTBACK;
 FREETMPS; /* free that return value */
 LEAVE; /* ...and the XPUSHed "mortal" args.*/
 }

 int main (int argc, char **argv, char **env)

Perl version 5.14.2 documentation - perlembed

Page 11http://perldoc.perl.org

 {
 char *my_argv[] = { "", "power.pl" };

 PERL_SYS_INIT3(&argc,&argv,&env);
 my_perl = perl_alloc();
 perl_construct(my_perl);

 perl_parse(my_perl, NULL, 2, my_argv, (char **)NULL);
 PL_exit_flags |= PERL_EXIT_DESTRUCT_END;
 perl_run(my_perl);

 PerlPower(3, 4); /*** Compute 3 ** 4 ***/

 perl_destruct(my_perl);
 perl_free(my_perl);
 PERL_SYS_TERM();
 }

Compile and run:

 % cc -o power power.c `perl -MExtUtils::Embed -e ccopts -e ldopts`

 % power
 3 to the 4th power is 81.

Maintaining a persistent interpreter
When developing interactive and/or potentially long-running
 applications, it's a good idea to maintain
a persistent interpreter
 rather than allocating and constructing a new interpreter multiple
 times. The
major reason is speed: since Perl will only be loaded into
 memory once.

However, you have to be more cautious with namespace and variable
 scoping when using a
persistent interpreter. In previous examples
 we've been using global variables in the default package
main. We
 knew exactly what code would be run, and assumed we could avoid
 variable collisions and
outrageous symbol table growth.

Let's say your application is a server that will occasionally run Perl
 code from some arbitrary file. Your
server has no way of knowing what
 code it's going to run. Very dangerous.

If the file is pulled in by perl_parse(), compiled into a newly
 constructed interpreter, and
subsequently cleaned out with perl_destruct() afterwards, you're shielded from most namespace
troubles.

One way to avoid namespace collisions in this scenario is to translate
 the filename into a
guaranteed-unique package name, and then compile
 the code into that package using "eval" in
perlfunc. In the example
 below, each file will only be compiled once. Or, the application
 might choose
to clean out the symbol table associated with the file
 after it's no longer needed. Using "call_argv" in
perlapi, We'll
 call the subroutine Embed::Persistent::eval_file which lives in the
 file
persistent.pl and pass the filename and boolean cleanup/cache
 flag as arguments.

Note that the process will continue to grow for each file that it
 uses. In addition, there might be
AUTOLOADed subroutines and other
 conditions that cause Perl's symbol table to grow. You might
want to
 add some logic that keeps track of the process size, or restarts
 itself after a certain number of
requests, to ensure that memory
 consumption is minimized. You'll also want to scope your variables

with "my" in perlfunc whenever possible.

 package Embed::Persistent;

Perl version 5.14.2 documentation - perlembed

Page 12http://perldoc.perl.org

 #persistent.pl

 use strict;
 our %Cache;
 use Symbol qw(delete_package);

 sub valid_package_name {
 my($string) = @_;
 $string =~ s/([^A-Za-z0-9\/])/sprintf("_%2x",unpack("C",$1))/eg;
 # second pass only for words starting with a digit
 $string =~ s|/(\d)|sprintf("/_%2x",unpack("C",$1))|eg;

 # Dress it up as a real package name
 $string =~ s|/|::|g;
 return "Embed" . $string;
 }

 sub eval_file {
 my($filename, $delete) = @_;
 my $package = valid_package_name($filename);
 my $mtime = -M $filename;
 if(defined $Cache{$package}{mtime}
 &&
 $Cache{$package}{mtime} <= $mtime)
 {
 # we have compiled this subroutine already,
 # it has not been updated on disk, nothing left to do
 print STDERR "already compiled $package->handler\n";
 }
 else {
 local *FH;
 open FH, $filename or die "open '$filename' $!";
 local($/) = undef;
 my $sub = <FH>;
 close FH;

 #wrap the code into a subroutine inside our unique package
 my $eval = qq{package $package; sub handler { $sub; }};
 {
 # hide our variables within this block
 my($filename,$mtime,$package,$sub);
 eval $eval;
 }
 die $@ if $@;

 #cache it unless we're cleaning out each time
 $Cache{$package}{mtime} = $mtime unless $delete;
 }

 eval {$package->handler;};
 die $@ if $@;

 delete_package($package) if $delete;

Perl version 5.14.2 documentation - perlembed

Page 13http://perldoc.perl.org

 #take a look if you want
 #print Devel::Symdump->rnew($package)->as_string, $/;
 }

 1;

 __END__

 /* persistent.c */
 #include <EXTERN.h>
 #include <perl.h>

 /* 1 = clean out filename's symbol table after each request, 0 = don't */
 #ifndef DO_CLEAN
 #define DO_CLEAN 0
 #endif

 #define BUFFER_SIZE 1024

 static PerlInterpreter *my_perl = NULL;

 int
 main(int argc, char **argv, char **env)
 {
 char *embedding[] = { "", "persistent.pl" };
 char *args[] = { "", DO_CLEAN, NULL };
 char filename[BUFFER_SIZE];
 int exitstatus = 0;

 PERL_SYS_INIT3(&argc,&argv,&env);
 if((my_perl = perl_alloc()) == NULL) {
 fprintf(stderr, "no memory!");
 exit(1);
 }
 perl_construct(my_perl);

 PL_origalen = 1; /* don't let $0 assignment update the proctitle or
embedding[0] */
 exitstatus = perl_parse(my_perl, NULL, 2, embedding, NULL);
 PL_exit_flags |= PERL_EXIT_DESTRUCT_END;
 if(!exitstatus) {
 exitstatus = perl_run(my_perl);

 while(printf("Enter file name: ") &&
 fgets(filename, BUFFER_SIZE, stdin)) {

 filename[strlen(filename)-1] = '\0'; /* strip \n */
 /* call the subroutine, passing it the filename as an argument
*/
 args[0] = filename;
 call_argv("Embed::Persistent::eval_file",
 G_DISCARD | G_EVAL, args);

Perl version 5.14.2 documentation - perlembed

Page 14http://perldoc.perl.org

 /* check $@ */
 if(SvTRUE(ERRSV))
 fprintf(stderr, "eval error: %s\n", SvPV_nolen(ERRSV));
 }
 }

 PL_perl_destruct_level = 0;
 perl_destruct(my_perl);
 perl_free(my_perl);
 PERL_SYS_TERM();
 exit(exitstatus);
 }

Now compile:

 % cc -o persistent persistent.c `perl -MExtUtils::Embed -e ccopts -e
ldopts`

Here's an example script file:

 #test.pl
 my $string = "hello";
 foo($string);

 sub foo {
 print "foo says: @_\n";
 }

Now run:

 % persistent
 Enter file name: test.pl
 foo says: hello
 Enter file name: test.pl
 already compiled Embed::test_2epl->handler
 foo says: hello
 Enter file name: ^C

Execution of END blocks
Traditionally END blocks have been executed at the end of the perl_run.
 This causes problems for
applications that never call perl_run. Since
 perl 5.7.2 you can specify PL_exit_flags |=
PERL_EXIT_DESTRUCT_END
 to get the new behaviour. This also enables the running of END blocks
if
 the perl_parse fails and perl_destruct will return the exit value.

$0 assignments
When a perl script assigns a value to $0 then the perl runtime will
 try to make this value show up as
the program name reported by "ps" by
 updating the memory pointed to by the argv passed to
perl_parse() and
 also calling API functions like setproctitle() where available. This
 behaviour might not
be appropriate when embedding perl and can be
 disabled by assigning the value 1 to the variable
PL_origalen
 before perl_parse() is called.

The persistent.c example above is for instance likely to segfault
 when $0 is assigned to if the
PL_origalen = 1; assignment is
 removed. This because perl will try to write to the read only
memory
 of the embedding[] strings.

Perl version 5.14.2 documentation - perlembed

Page 15http://perldoc.perl.org

Maintaining multiple interpreter instances
Some rare applications will need to create more than one interpreter
 during a session. Such an
application might sporadically decide to
 release any resources associated with the interpreter.

The program must take care to ensure that this takes place before
 the next interpreter is constructed.
By default, when perl is not
 built with any special options, the global variable
PL_perl_destruct_level is set to 0, since extra cleaning isn't
 usually needed when a program
only ever creates a single interpreter
 in its entire lifetime.

Setting PL_perl_destruct_level to 1 makes everything squeaky clean:

 while(1) {
 ...
 /* reset global variables here with PL_perl_destruct_level = 1 */
 PL_perl_destruct_level = 1;
 perl_construct(my_perl);
 ...
 /* clean and reset _everything_ during perl_destruct */
 PL_perl_destruct_level = 1;
 perl_destruct(my_perl);
 perl_free(my_perl);
 ...
 /* let's go do it again! */
 }

When perl_destruct() is called, the interpreter's syntax parse tree
 and symbol tables are cleaned up,
and global variables are reset. The
 second assignment to PL_perl_destruct_level is needed
because
 perl_construct resets it to 0.

Now suppose we have more than one interpreter instance running at the
 same time. This is feasible,
but only if you used the Configure option -Dusemultiplicity or the options -Dusethreads
-Duseithreads when
 building perl. By default, enabling one of these Configure options
 sets the
per-interpreter global variable PL_perl_destruct_level to 1, so that thorough cleaning is
automatic and interpreter variables
 are initialized correctly. Even if you don't intend to run two or
 more
interpreters at the same time, but to run them sequentially, like
 in the above example, it is
recommended to build perl with the -Dusemultiplicity option otherwise some interpreter
variables may
 not be initialized correctly between consecutive runs and your
 application may crash.

See also "Thread-aware system interfaces" in perlxs.

Using -Dusethreads -Duseithreads rather than -Dusemultiplicity
 is more appropriate if
you intend to run multiple interpreters
 concurrently in different threads, because it enables support for

linking in the thread libraries of your system with the interpreter.

Let's give it a try:

 #include <EXTERN.h>
 #include <perl.h>

 /* we're going to embed two interpreters */

 #define SAY_HELLO "-e", "print qq(Hi, I'm $^X\n)"

 int main(int argc, char **argv, char **env)
 {
 PerlInterpreter *one_perl, *two_perl;
 char *one_args[] = { "one_perl", SAY_HELLO };

Perl version 5.14.2 documentation - perlembed

Page 16http://perldoc.perl.org

 char *two_args[] = { "two_perl", SAY_HELLO };

 PERL_SYS_INIT3(&argc,&argv,&env);
 one_perl = perl_alloc();
 two_perl = perl_alloc();

 PERL_SET_CONTEXT(one_perl);
 perl_construct(one_perl);
 PERL_SET_CONTEXT(two_perl);
 perl_construct(two_perl);

 PERL_SET_CONTEXT(one_perl);
 perl_parse(one_perl, NULL, 3, one_args, (char **)NULL);
 PERL_SET_CONTEXT(two_perl);
 perl_parse(two_perl, NULL, 3, two_args, (char **)NULL);

 PERL_SET_CONTEXT(one_perl);
 perl_run(one_perl);
 PERL_SET_CONTEXT(two_perl);
 perl_run(two_perl);

 PERL_SET_CONTEXT(one_perl);
 perl_destruct(one_perl);
 PERL_SET_CONTEXT(two_perl);
 perl_destruct(two_perl);

 PERL_SET_CONTEXT(one_perl);
 perl_free(one_perl);
 PERL_SET_CONTEXT(two_perl);
 perl_free(two_perl);
 PERL_SYS_TERM();
 }

Note the calls to PERL_SET_CONTEXT(). These are necessary to initialize
 the global state that
tracks which interpreter is the "current" one on
 the particular process or thread that may be running it.
It should
 always be used if you have more than one interpreter and are making
 perl API calls on both
interpreters in an interleaved fashion.

PERL_SET_CONTEXT(interp) should also be called whenever interp is
 used by a thread that did
not create it (using either perl_alloc(), or
 the more esoteric perl_clone()).

Compile as usual:

 % cc -o multiplicity multiplicity.c `perl -MExtUtils::Embed -e ccopts -e
ldopts`

Run it, Run it:

 % multiplicity
 Hi, I'm one_perl
 Hi, I'm two_perl

Perl version 5.14.2 documentation - perlembed

Page 17http://perldoc.perl.org

Using Perl modules, which themselves use C libraries, from your C program
If you've played with the examples above and tried to embed a script
 that use()s a Perl module (such
as Socket) which itself uses a C or C++ library,
 this probably happened:

 Can't load module Socket, dynamic loading not available in this perl.
 (You may need to build a new perl executable which either supports
 dynamic loading or has the Socket module statically linked into it.)

What's wrong?

Your interpreter doesn't know how to communicate with these extensions
 on its own. A little glue will
help. Up until now you've been
 calling perl_parse(), handing it NULL for the second argument:

 perl_parse(my_perl, NULL, argc, my_argv, NULL);

That's where the glue code can be inserted to create the initial contact between
 Perl and linked
C/C++ routines. Let's take a look some pieces of perlmain.c
 to see how Perl does this:

 static void xs_init (pTHX);

 EXTERN_C void boot_DynaLoader (pTHX_ CV* cv);
 EXTERN_C void boot_Socket (pTHX_ CV* cv);

 EXTERN_C void
 xs_init(pTHX)
 {
 char *file = __FILE__;
 /* DynaLoader is a special case */
 newXS("DynaLoader::boot_DynaLoader", boot_DynaLoader, file);
 newXS("Socket::bootstrap", boot_Socket, file);
 }

Simply put: for each extension linked with your Perl executable
 (determined during its initial
configuration on your
 computer or when adding a new extension),
 a Perl subroutine is created to
incorporate the extension's
 routines. Normally, that subroutine is named Module::bootstrap() and is
invoked when you say use Module. In
 turn, this hooks into an XSUB, boot_Module, which creates a
Perl
 counterpart for each of the extension's XSUBs. Don't worry about this
 part; leave that to the
xsubpp and extension authors. If your
 extension is dynamically loaded, DynaLoader creates
Module::bootstrap()
 for you on the fly. In fact, if you have a working DynaLoader then there
 is rarely
any need to link in any other extensions statically.

Once you have this code, slap it into the second argument of perl_parse():

 perl_parse(my_perl, xs_init, argc, my_argv, NULL);

Then compile:

 % cc -o interp interp.c `perl -MExtUtils::Embed -e ccopts -e ldopts`

 % interp
 use Socket;
 use SomeDynamicallyLoadedModule;

 print "Now I can use extensions!\n"'

Perl version 5.14.2 documentation - perlembed

Page 18http://perldoc.perl.org

ExtUtils::Embed can also automate writing the xs_init glue code.

 % perl -MExtUtils::Embed -e xsinit -- -o perlxsi.c
 % cc -c perlxsi.c `perl -MExtUtils::Embed -e ccopts`
 % cc -c interp.c `perl -MExtUtils::Embed -e ccopts`
 % cc -o interp perlxsi.o interp.o `perl -MExtUtils::Embed -e ldopts`

Consult perlxs, perlguts, and perlapi for more details.

Hiding Perl_
If you completely hide the short forms of the Perl public API,
 add -DPERL_NO_SHORT_NAMES to
the compilation flags. This means that
 for example instead of writing

 warn("%d bottles of beer on the wall", bottlecount);

you will have to write the explicit full form

 Perl_warn(aTHX_ "%d bottles of beer on the wall", bottlecount);

(See "Background and PERL_IMPLICIT_CONTEXT" in perlguts for the explanation
 of the aTHX_.)
Hiding the short forms is very useful for avoiding
 all sorts of nasty (C preprocessor or otherwise)
conflicts with other
 software packages (Perl defines about 2400 APIs with these short names,
 take or
leave few hundred, so there certainly is room for conflict.)

MORAL
You can sometimes write faster code in C, but
 you can always write code faster in Perl. Because you
can use
 each from the other, combine them as you wish.

AUTHOR
Jon Orwant <orwant@media.mit.edu> and Doug MacEachern
 <dougm@covalent.net>, with small
contributions from Tim Bunce, Tom
 Christiansen, Guy Decoux, Hallvard Furuseth, Dov Grobgeld, and
Ilya
 Zakharevich.

Doug MacEachern has an article on embedding in Volume 1, Issue 4 of
 The Perl Journal (
http://www.tpj.com/). Doug is also the developer of the
 most widely-used Perl embedding: the
mod_perl system
 (perl.apache.org), which embeds Perl in the Apache web server.
 Oracle, Binary
Evolution, ActiveState, and Ben Sugars's nsapi_perl
 have used this model for Oracle, Netscape and
Internet Information
 Server Perl plugins.

COPYRIGHT
Copyright (C) 1995, 1996, 1997, 1998 Doug MacEachern and Jon Orwant. All
 Rights Reserved.

Permission is granted to make and distribute verbatim copies of this
 documentation provided the
copyright notice and this permission notice are
 preserved on all copies.

Permission is granted to copy and distribute modified versions of this
 documentation under the
conditions for verbatim copying, provided also
 that they are marked clearly as modified versions, that
the authors'
 names and title are unchanged (though subtitles and additional
 authors' names may be
added), and that the entire resulting derived
 work is distributed under the terms of a permission notice
identical
 to this one.

Permission is granted to copy and distribute translations of this
 documentation into another language,
under the above conditions for
 modified versions.

