
Perl version 5.14.2 documentation - perlfaq4

Page 1http://perldoc.perl.org

NAME
perlfaq4 - Data Manipulation

DESCRIPTION
This section of the FAQ answers questions related to manipulating
 numbers, dates, strings, arrays,
hashes, and miscellaneous data issues.

Data: Numbers
Why am I getting long decimals (eg, 19.9499999999999) instead of the numbers I should be
getting (eg, 19.95)?

For the long explanation, see David Goldberg's "What Every Computer
 Scientist Should Know About
Floating-Point Arithmetic"
 (http://web.cse.msu.edu/~cse320/Documents/FloatingPoint.pdf).

Internally, your computer represents floating-point numbers in binary.
 Digital (as in powers of two)
computers cannot store all numbers
 exactly. Some real numbers lose precision in the process. This is
a
 problem with how computers store numbers and affects all computer
 languages, not just Perl.

perlnumber shows the gory details of number representations and
 conversions.

To limit the number of decimal places in your numbers, you can use the printf or sprintf
function. See "Floating Point Arithmetic" in perlop for more details.

	 printf "%.2f", 10/3;

	 my $number = sprintf "%.2f", 10/3;

Why is int() broken?
Your int() is most probably working just fine. It's the numbers that
 aren't quite what you think.

First, see the answer to "Why am I getting long decimals
 (eg, 19.9499999999999) instead of the
numbers I should be getting
 (eg, 19.95)?".

For example, this

	 print int(0.6/0.2-2), "\n";

will in most computers print 0, not 1, because even such simple
 numbers as 0.6 and 0.2 cannot be
presented exactly by floating-point
 numbers. What you think in the above as 'three' is really more like

2.9999999999999995559.

Why isn't my octal data interpreted correctly?
(contributed by brian d foy)

You're probably trying to convert a string to a number, which Perl only
 converts as a decimal number.
When Perl converts a string to a number, it
 ignores leading spaces and zeroes, then assumes the rest
of the digits
 are in base 10:

	 my $string = '0644';

	 print $string + 0; # prints 644

	 print $string + 44; # prints 688, certainly not octal!

This problem usually involves one of the Perl built-ins that has the
 same name a Unix command that
uses octal numbers as arguments on the
 command line. In this example, chmod on the command line
knows that
 its first argument is octal because that's what it does:

Perl version 5.14.2 documentation - perlfaq4

Page 2http://perldoc.perl.org

	 %prompt> chmod 644 file

If you want to use the same literal digits (644) in Perl, you have to tell
 Perl to treat them as octal
numbers either by prefixing the digits with
 a 0 or using oct:

	 chmod(0644, $file); # right, has leading zero
	 chmod(oct(644), $file); # also correct

The problem comes in when you take your numbers from something that Perl
 thinks is a string, such
as a command line argument in @ARGV:

	 chmod($ARGV[0], $file); # wrong, even if "0644"

	 chmod(oct($ARGV[0]), $file); # correct, treat string as octal

You can always check the value you're using by printing it in octal
 notation to ensure it matches what
you think it should be. Print it
 in octal and decimal format:

	 printf "0%o %d", $number, $number;

Does Perl have a round() function? What about ceil() and floor()? Trig functions?
Remember that int() merely truncates toward 0. For rounding to a
 certain number of digits,
sprintf() or printf() is usually the
 easiest route.

	 printf("%.3f", 3.1415926535); # prints 3.142

The POSIX module (part of the standard Perl distribution)
 implements ceil(), floor(), and a
number of other mathematical
 and trigonometric functions.

	 use POSIX;
	 $ceil = ceil(3.5); # 4
	 $floor = floor(3.5); # 3

In 5.000 to 5.003 perls, trigonometry was done in the Math::Complex
 module. With 5.004, the
Math::Trig module (part of the standard Perl
 distribution) implements the trigonometric functions.
Internally it
 uses the Math::Complex module and some functions can break out from
 the real axis
into the complex plane, for example the inverse sine of
 2.

Rounding in financial applications can have serious implications, and
 the rounding method used
should be specified precisely. In these
 cases, it probably pays not to trust whichever system of
rounding is
 being used by Perl, but instead to implement the rounding function you
 need yourself.

To see why, notice how you'll still have an issue on half-way-point
 alternation:

	 for ($i = 0; $i < 1.01; $i += 0.05) { printf "%.1f ",$i}

	 0.0 0.1 0.1 0.2 0.2 0.2 0.3 0.3 0.4 0.4 0.5 0.5 0.6 0.7 0.7
	 0.8 0.8 0.9 0.9 1.0 1.0

Don't blame Perl. It's the same as in C. IEEE says we have to do
 this. Perl numbers whose absolute
values are integers under 2**31 (on
 32-bit machines) will work pretty much like mathematical integers.
Other numbers are not guaranteed.

Perl version 5.14.2 documentation - perlfaq4

Page 3http://perldoc.perl.org

How do I convert between numeric representations/bases/radixes?
As always with Perl there is more than one way to do it. Below are a
 few examples of approaches to
making common conversions between number
 representations. This is intended to be
representational rather than
 exhaustive.

Some of the examples later in perlfaq4 use the Bit::Vector
 module from CPAN. The reason you
might choose Bit::Vector over the
 perl built-in functions is that it works with numbers of ANY size,

that it is optimized for speed on some operations, and for at least
 some programmers the notation
might be familiar.

How do I convert hexadecimal into decimal

Using perl's built in conversion of 0x notation:

	 $dec = 0xDEADBEEF;

Using the hex function:

	 $dec = hex("DEADBEEF");

Using pack:

	 $dec = unpack("N", pack("H8", substr("0" x 8 . "DEADBEEF", -8)));

Using the CPAN module Bit::Vector:

	 use Bit::Vector;
	 $vec = Bit::Vector->new_Hex(32, "DEADBEEF");
	 $dec = $vec->to_Dec();

How do I convert from decimal to hexadecimal

Using sprintf:

	 $hex = sprintf("%X", 3735928559); # upper case A-F
	 $hex = sprintf("%x", 3735928559); # lower case a-f

Using unpack:

	 $hex = unpack("H*", pack("N", 3735928559));

Using Bit::Vector:

	 use Bit::Vector;
	 $vec = Bit::Vector->new_Dec(32, -559038737);
	 $hex = $vec->to_Hex();

And Bit::Vector supports odd bit counts:

	 use Bit::Vector;
	 $vec = Bit::Vector->new_Dec(33, 3735928559);
	 $vec->Resize(32); # suppress leading 0 if unwanted
	 $hex = $vec->to_Hex();

How do I convert from octal to decimal

Using Perl's built in conversion of numbers with leading zeros:

	 $dec = 033653337357; # note the leading 0!

Using the oct function:

	 $dec = oct("33653337357");

Perl version 5.14.2 documentation - perlfaq4

Page 4http://perldoc.perl.org

Using Bit::Vector:

	 use Bit::Vector;
	 $vec = Bit::Vector->new(32);
	 $vec->Chunk_List_Store(3, split(//, reverse "33653337357"));
	 $dec = $vec->to_Dec();

How do I convert from decimal to octal

Using sprintf:

	 $oct = sprintf("%o", 3735928559);

Using Bit::Vector:

	 use Bit::Vector;
	 $vec = Bit::Vector->new_Dec(32, -559038737);
	 $oct = reverse join('', $vec->Chunk_List_Read(3));

How do I convert from binary to decimal

Perl 5.6 lets you write binary numbers directly with
 the 0b notation:

	 $number = 0b10110110;

Using oct:

	 my $input = "10110110";
	 $decimal = oct("0b$input");

Using pack and ord:

	 $decimal = ord(pack('B8', '10110110'));

Using pack and unpack for larger strings:

	 $int = unpack("N", pack("B32",
	 substr("0" x 32 . "11110101011011011111011101111", -32)));
	 $dec = sprintf("%d", $int);

	 # substr() is used to left-pad a 32-character string with zeros.

Using Bit::Vector:

	 $vec = Bit::Vector->new_Bin(32, "11011110101011011011111011101111");
	 $dec = $vec->to_Dec();

How do I convert from decimal to binary

Using sprintf (perl 5.6+):

	 $bin = sprintf("%b", 3735928559);

Using unpack:

	 $bin = unpack("B*", pack("N", 3735928559));

Using Bit::Vector:

	 use Bit::Vector;
	 $vec = Bit::Vector->new_Dec(32, -559038737);
	 $bin = $vec->to_Bin();

The remaining transformations (e.g. hex -> oct, bin -> hex, etc.)
 are left as an exercise to the

Perl version 5.14.2 documentation - perlfaq4

Page 5http://perldoc.perl.org

inclined reader.

Why doesn't & work the way I want it to?
The behavior of binary arithmetic operators depends on whether they're
 used on numbers or strings.
The operators treat a string as a series
 of bits and work with that (the string "3" is the bit pattern
00110011). The operators work with the binary form of a number
 (the number 3 is treated as the bit
pattern 00000011).

So, saying 11 & 3 performs the "and" operation on numbers (yielding 3). Saying "11" & "3"
performs the "and" operation on strings
 (yielding "1").

Most problems with & and | arise because the programmer thinks
 they have a number but really it's a
string or vice versa. To avoid this,
 stringify the arguments explicitly (using "" or qq()) or convert
them
 to numbers explicitly (using 0+$arg). The rest arise because
 the programmer says:

	 if ("\020\020" & "\101\101") {
		 # ...
		 }

but a string consisting of two null bytes (the result of "\020\020"
 & "\101\101") is not a false
value in Perl. You need:

	 if (("\020\020" & "\101\101") !~ /[^\000]/) {
		 # ...
		 }

How do I multiply matrices?
Use the Math::Matrix or Math::MatrixReal modules (available from CPAN)
 or the PDL
extension (also available from CPAN).

How do I perform an operation on a series of integers?
To call a function on each element in an array, and collect the
 results, use:

	 @results = map { my_func($_) } @array;

For example:

	 @triple = map { 3 * $_ } @single;

To call a function on each element of an array, but ignore the
 results:

	 foreach $iterator (@array) {
		 some_func($iterator);
		 }

To call a function on each integer in a (small) range, you can use:

	 @results = map { some_func($_) } (5 .. 25);

but you should be aware that the .. operator creates a list of
 all integers in the range. This can take a
lot of memory for large
 ranges. Instead use:

	 @results = ();
	 for ($i=5; $i <= 500_005; $i++) {
		 push(@results, some_func($i));
		 }

Perl version 5.14.2 documentation - perlfaq4

Page 6http://perldoc.perl.org

This situation has been fixed in Perl5.005. Use of .. in a for
 loop will iterate over the range, without
creating the entire range.

	 for my $i (5 .. 500_005) {
		 push(@results, some_func($i));
		 }

will not create a list of 500,000 integers.

How can I output Roman numerals?
Get the http://www.cpan.org/modules/by-module/Roman module.

Why aren't my random numbers random?
If you're using a version of Perl before 5.004, you must call srand
 once at the start of your program
to seed the random number generator.

	 BEGIN { srand() if $] < 5.004 }

5.004 and later automatically call srand at the beginning. Don't
 call srand more than once--you
make your numbers less random,
 rather than more.

Computers are good at being predictable and bad at being random
 (despite appearances caused by
bugs in your programs :-). The random article in the "Far More Than You Ever Wanted To Know"

collection in http://www.cpan.org/misc/olddoc/FMTEYEWTK.tgz, courtesy
 of Tom Phoenix, talks more
about this. John von Neumann said, "Anyone
 who attempts to generate random numbers by
deterministic means is, of
 course, living in a state of sin."

If you want numbers that are more random than rand with srand
 provides, you should also check
out the Math::TrulyRandom module from
 CPAN. It uses the imperfections in your system's timer to
generate
 random numbers, but this takes quite a while. If you want a better
 pseudorandom generator
than comes with your operating system, look at
 "Numerical Recipes in C" at http://www.nr.com/.

How do I get a random number between X and Y?
To get a random number between two values, you can use the rand()
 built-in to get a random
number between 0 and 1. From there, you shift
 that into the range that you want.

rand($x) returns a number such that 0 <= rand($x) < $x. Thus
 what you want to have perl
figure out is a random number in the range
 from 0 to the difference between your X and Y.

That is, to get a number between 10 and 15, inclusive, you want a
 random number between 0 and 5
that you can then add to 10.

	 my $number = 10 + int rand(15-10+1); # (10,11,12,13,14, or 15)

Hence you derive the following simple function to abstract
 that. It selects a random integer between
the two given
 integers (inclusive), For example: random_int_between(50,120).

	 sub random_int_between {
		 my($min, $max) = @_;
		 # Assumes that the two arguments are integers themselves!
		 return $min if $min == $max;
		 ($min, $max) = ($max, $min) if $min > $max;
		 return $min + int rand(1 + $max - $min);
		 }

Perl version 5.14.2 documentation - perlfaq4

Page 7http://perldoc.perl.org

Data: Dates
How do I find the day or week of the year?

The day of the year is in the list returned
 by the localtime function. Without an
 argument
localtime uses the current time.

	 my $day_of_year = (localtime)[7];

The POSIX module can also format a date as the day of the year or
 week of the year.

	 use POSIX qw/strftime/;
	 my $day_of_year = strftime "%j", localtime;
	 my $week_of_year = strftime "%W", localtime;

To get the day of year for any date, use POSIX's mktime to get
 a time in epoch seconds for the
argument to localtime.

	 use POSIX qw/mktime strftime/;
	 my $week_of_year = strftime "%W",
		 localtime(mktime(0, 0, 0, 18, 11, 87));

You can also use Time::Piece, which comes with Perl and provides a localtime that returns an
object:

	 use Time::Piece;
	 my $day_of_year = localtime->yday;
	 my $week_of_year = localtime->week;

The Date::Calc module provides two functions to calculate these, too:

	 use Date::Calc;
	 my $day_of_year = Day_of_Year(1987, 12, 18);
	 my $week_of_year = Week_of_Year(1987, 12, 18);

How do I find the current century or millennium?
Use the following simple functions:

	 sub get_century {
		 return int((((localtime(shift || time))[5] + 1999))/100);
		 }

	 sub get_millennium {
		 return 1+int((((localtime(shift || time))[5] + 1899))/1000);
		 }

On some systems, the POSIX module's strftime() function has been
 extended in a non-standard
way to use a %C format, which they
 sometimes claim is the "century". It isn't, because on most such

systems, this is only the first two digits of the four-digit year, and
 thus cannot be used to determine
reliably the current century or
 millennium.

How can I compare two dates and find the difference?
(contributed by brian d foy)

You could just store all your dates as a number and then subtract.
 Life isn't always that simple
though.

Perl version 5.14.2 documentation - perlfaq4

Page 8http://perldoc.perl.org

The Time::Piece module, which comes with Perl, replaces localtime
 with a version that returns
an object. It also overloads the comparison
 operators so you can compare them directly:

	 use Time::Piece;
	 my $date1 = localtime($some_time);
	 my $date2 = localtime($some_other_time);

	 if($date1 < $date2) {
		 print "The date was in the past\n";
		 }

You can also get differences with a subtraction, which returns a Time::Seconds object:

	 my $diff = $date1 - $date2;
	 print "The difference is ", $date_diff->days, " days\n";

If you want to work with formatted dates, the Date::Manip, Date::Calc, or DateTime modules
can help you.

How can I take a string and turn it into epoch seconds?
If it's a regular enough string that it always has the same format,
 you can split it up and pass the parts
to timelocal in the standard Time::Local module. Otherwise, you should look into the
Date::Calc, Date::Parse, and Date::Manip modules from CPAN.

How can I find the Julian Day?
(contributed by brian d foy and Dave Cross)

You can use the Time::Piece module, part of the Standard Library,
 which can convert a date/time
to a Julian Day:

	 $ perl -MTime::Piece -le 'print localtime->julian_day'
	 2455607.7959375

Or the modified Julian Day:

	 $ perl -MTime::Piece -le 'print localtime->mjd'
	 55607.2961226851

Or even the day of the year (which is what some people think of as a
 Julian day):

	 $ perl -MTime::Piece -le 'print localtime->yday'
	 45

You can also do the same things with the DateTime module:

	 $ perl -MDateTime -le'print DateTime->today->jd'
	 2453401.5
	 $ perl -MDateTime -le'print DateTime->today->mjd'
	 53401
	 $ perl -MDateTime -le'print DateTime->today->doy'
	 31

You can use the Time::JulianDay module available on CPAN. Ensure
 that you really want to find
a Julian day, though, as many people have
 different ideas about Julian days (see
http://www.hermetic.ch/cal_stud/jdn.htm for instance):

Perl version 5.14.2 documentation - perlfaq4

Page 9http://perldoc.perl.org

	 $ perl -MTime::JulianDay -le 'print local_julian_day(time)'
	 55608

How do I find yesterday's date?
(contributed by brian d foy)

To do it correctly, you can use one of the Date modules since they
 work with calendars instead of
times. The DateTime module makes it
 simple, and give you the same time of day, only the day
before,
 despite daylight saving time changes:

	 use DateTime;

	 my $yesterday = DateTime->now->subtract(days => 1);

	 print "Yesterday was $yesterday\n";

You can also use the Date::Calc module using its Today_and_Now
 function.

	 use Date::Calc qw(Today_and_Now Add_Delta_DHMS);

	 my @date_time = Add_Delta_DHMS(Today_and_Now(), -1, 0, 0, 0);

	 print "@date_time\n";

Most people try to use the time rather than the calendar to figure out
 dates, but that assumes that
days are twenty-four hours each. For
 most people, there are two days a year when they aren't: the
switch to
 and from summer time throws this off. For example, the rest of the suggestions will be wrong
sometimes:

Starting with Perl 5.10, Time::Piece and Time::Seconds are part
 of the standard distribution, so
you might think that you could do something like this:

	 use Time::Piece;
	 use Time::Seconds;

	 my $yesterday = localtime() - ONE_DAY; # WRONG
	 print "Yesterday was $yesterday\n";

The Time::Piece module exports a new localtime that returns an
 object, and Time::Seconds
exports the ONE_DAY constant that is a
 set number of seconds. This means that it always gives the
time 24
 hours ago, which is not always yesterday. This can cause problems
 around the end of
daylight saving time when there's one day that is 25
 hours long.

You have the same problem with Time::Local, which will give the wrong
 answer for those same
special cases:

	 # contributed by Gunnar Hjalmarsson
	 use Time::Local;
	 my $today = timelocal 0, 0, 12, (localtime)[3..5];
	 my ($d, $m, $y) = (localtime $today-86400)[3..5]; # WRONG
	 printf "Yesterday: %d-%02d-%02d\n", $y+1900, $m+1, $d;

Perl version 5.14.2 documentation - perlfaq4

Page 10http://perldoc.perl.org

Does Perl have a Year 2000 or 2038 problem? Is Perl Y2K compliant?
(contributed by brian d foy)

Perl itself never had a Y2K problem, although that never stopped people
 from creating Y2K problems
on their own. See the documentation for localtime for its proper use.

Starting with Perl 5.12, localtime and gmtime can handle dates past
 03:14:08 January 19, 2038,
when a 32-bit based time would overflow. You
 still might get a warning on a 32-bit perl:

	 % perl5.12 -E 'say scalar localtime(0x9FFF_FFFFFFFF)'
	 Integer overflow in hexadecimal number at -e line 1.
	 Wed Nov 1 19:42:39 5576711

On a 64-bit perl, you can get even larger dates for those really long
 running projects:

	 % perl5.12 -E 'say scalar gmtime(0x9FFF_FFFFFFFF)'
	 Thu Nov 2 00:42:39 5576711

You're still out of luck if you need to keep track of decaying protons
 though.

Data: Strings
How do I validate input?

(contributed by brian d foy)

There are many ways to ensure that values are what you expect or
 want to accept. Besides the
specific examples that we cover in the
 perlfaq, you can also look at the modules with "Assert" and
"Validate"
 in their names, along with other modules such as Regexp::Common.

Some modules have validation for particular types of input, such
 as Business::ISBN,
Business::CreditCard, Email::Valid,
 and Data::Validate::IP.

How do I unescape a string?
It depends just what you mean by "escape". URL escapes are dealt
 with in perlfaq9. Shell escapes
with the backslash (\)
 character are removed with

	 s/\\(.)/$1/g;

This won't expand "\n" or "\t" or any other special escapes.

How do I remove consecutive pairs of characters?
(contributed by brian d foy)

You can use the substitution operator to find pairs of characters (or
 runs of characters) and replace
them with a single instance. In this
 substitution, we find a character in (.). The memory parentheses

store the matched character in the back-reference \g1 and we use
 that to require that the same thing
immediately follow it. We replace
 that part of the string with the character in $1.

	 s/(.)\g1/$1/g;

We can also use the transliteration operator, tr///. In this
 example, the search list side of our
tr/// contains nothing, but
 the c option complements that so it contains everything. The

replacement list also contains nothing, so the transliteration is
 almost a no-op since it won't do any
replacements (or more exactly,
 replace the character with itself). However, the s option squashes

duplicated and consecutive characters in the string so a character
 does not show up next to itself

	 my $str = 'Haarlem'; # in the Netherlands
	 $str =~ tr///cs; # Now Harlem, like in New York

Perl version 5.14.2 documentation - perlfaq4

Page 11http://perldoc.perl.org

How do I expand function calls in a string?
(contributed by brian d foy)

This is documented in perlref, and although it's not the easiest
 thing to read, it does work. In each of
these examples, we call the
 function inside the braces used to dereference a reference. If we
 have
more than one return value, we can construct and dereference an
 anonymous array. In this case, we
call the function in list context.

	 print "The time values are @{ [localtime] }.\n";

If we want to call the function in scalar context, we have to do a bit
 more work. We can really have
any code we like inside the braces, so
 we simply have to end with the scalar reference, although how
you do
 that is up to you, and you can use code inside the braces. Note that
 the use of parens creates
a list context, so we need scalar to
 force the scalar context on the function:

	 print "The time is ${\(scalar localtime)}.\n"

	 print "The time is ${ my $x = localtime; \$x }.\n";

If your function already returns a reference, you don't need to create
 the reference yourself.

	 sub timestamp { my $t = localtime; \$t }

	 print "The time is ${ timestamp() }.\n";

The Interpolation module can also do a lot of magic for you. You can
 specify a variable name, in
this case E, to set up a tied hash that
 does the interpolation for you. It has several other methods to
do this
 as well.

	 use Interpolation E => 'eval';
	 print "The time values are $E{localtime()}.\n";

In most cases, it is probably easier to simply use string concatenation,
 which also forces scalar
context.

	 print "The time is " . localtime() . ".\n";

How do I find matching/nesting anything?
This isn't something that can be done in one regular expression, no
 matter how complicated. To find
something between two single
 characters, a pattern like /x([^x]*)x/ will get the intervening
 bits in
$1. For multiple ones, then something more like /alpha(.*?)omega/ would be needed. But none
of these deals with
 nested patterns. For balanced expressions using (, {, [or < as delimiters, use the
CPAN module Regexp::Common, or see "(??{ code })" in perlre. For other cases, you'll have to write
a
 parser.

If you are serious about writing a parser, there are a number of
 modules or oddities that will make
your life a lot easier. There are
 the CPAN modules Parse::RecDescent, Parse::Yapp, and
Text::Balanced; and the byacc program. Starting from perl 5.8
 the Text::Balanced is part of
the standard distribution.

One simple destructive, inside-out approach that you might try is to
 pull out the smallest nesting parts
one at a time:

	 while (s/BEGIN((?:(?!BEGIN)(?!END).)*)END//gs) {
		 # do something with $1
		 }

Perl version 5.14.2 documentation - perlfaq4

Page 12http://perldoc.perl.org

A more complicated and sneaky approach is to make Perl's regular
 expression engine do it for you.
This is courtesy Dean Inada, and
 rather has the nature of an Obfuscated Perl Contest entry, but it

really does work:

	 # $_ contains the string to parse
	 # BEGIN and END are the opening and closing markers for the
	 # nested text.

	 @(= ('(','');
	 @) = (')','');
	 ($re=$_)=~s/((BEGIN)|(END)|.)/$)[!$3]\Q$1\E$([!$2]/gs;
	 @$ = (eval{/$re/},$@!~/unmatched/i);
	 print join("\n",@$[0..$#$]) if($$[-1]);

How do I reverse a string?
Use reverse() in scalar context, as documented in "reverse" in perlfunc.

	 $reversed = reverse $string;

How do I expand tabs in a string?
You can do it yourself:

	 1 while $string =~ s/\t+/' ' x (length($&) * 8 - length($`) % 8)/e;

Or you can just use the Text::Tabs module (part of the standard Perl
 distribution).

	 use Text::Tabs;
	 @expanded_lines = expand(@lines_with_tabs);

How do I reformat a paragraph?
Use Text::Wrap (part of the standard Perl distribution):

	 use Text::Wrap;
	 print wrap("\t", ' ', @paragraphs);

The paragraphs you give to Text::Wrap should not contain embedded
 newlines. Text::Wrap
doesn't justify the lines (flush-right).

Or use the CPAN module Text::Autoformat. Formatting files can be
 easily done by making a
shell alias, like so:

	 alias fmt="perl -i -MText::Autoformat -n0777 \
		 -e 'print autoformat $_, {all=>1}' $*"

See the documentation for Text::Autoformat to appreciate its many
 capabilities.

How can I access or change N characters of a string?
You can access the first characters of a string with substr().
 To get the first character, for example,
start at position 0
 and grab the string of length 1.

	 $string = "Just another Perl Hacker";
	 $first_char = substr($string, 0, 1); # 'J'

To change part of a string, you can use the optional fourth
 argument which is the replacement string.

Perl version 5.14.2 documentation - perlfaq4

Page 13http://perldoc.perl.org

	 substr($string, 13, 4, "Perl 5.8.0");

You can also use substr() as an lvalue.

	 substr($string, 13, 4) = "Perl 5.8.0";

How do I change the Nth occurrence of something?
You have to keep track of N yourself. For example, let's say you want
 to change the fifth occurrence
of "whoever" or "whomever" into "whosoever" or "whomsoever", case insensitively. These
 all
assume that $_ contains the string to be altered.

	 $count = 0;
	 s{((whom?)ever)}{
	 ++$count == 5 # is it the 5th?
	 ? "${2}soever" # yes, swap
	 : $1 # renege and leave it there
		 }ige;

In the more general case, you can use the /g modifier in a while
 loop, keeping count of matches.

	 $WANT = 3;
	 $count = 0;
	 $_ = "One fish two fish red fish blue fish";
	 while (/(\w+)\s+fish\b/gi) {
		 if (++$count == $WANT) {
			 print "The third fish is a $1 one.\n";
			 }
		 }

That prints out: "The third fish is a red one." You can also use a
 repetition count and
repeated pattern like this:

	 /(?:\w+\s+fish\s+){2}(\w+)\s+fish/i;

How can I count the number of occurrences of a substring within a string?
There are a number of ways, with varying efficiency. If you want a
 count of a certain single character
(X) within a string, you can use the tr/// function like so:

	 $string = "ThisXlineXhasXsomeXx'sXinXit";
	 $count = ($string =~ tr/X//);
	 print "There are $count X characters in the string";

This is fine if you are just looking for a single character. However,
 if you are trying to count multiple
character substrings within a
 larger string, tr/// won't work. What you can do is wrap a while()
 loop
around a global pattern match. For example, let's count negative
 integers:

	 $string = "-9 55 48 -2 23 -76 4 14 -44";
	 while ($string =~ /-\d+/g) { $count++ }
	 print "There are $count negative numbers in the string";

Another version uses a global match in list context, then assigns the
 result to a scalar, producing a
count of the number of matches.

	 $count = () = $string =~ /-\d+/g;

Perl version 5.14.2 documentation - perlfaq4

Page 14http://perldoc.perl.org

How do I capitalize all the words on one line?
(contributed by brian d foy)

Damian Conway's Text::Autoformat handles all of the thinking
 for you.

	 use Text::Autoformat;
	 my $x = "Dr. Strangelove or: How I Learned to Stop ".
	 "Worrying and Love the Bomb";

	 print $x, "\n";
	 for my $style (qw(sentence title highlight)) {
		 print autoformat($x, { case => $style }), "\n";
		 }

How do you want to capitalize those words?

	 FRED AND BARNEY'S LODGE # all uppercase
	 Fred And Barney's Lodge # title case
	 Fred and Barney's Lodge # highlight case

It's not as easy a problem as it looks. How many words do you think
 are in there? Wait for it... wait for
it.... If you answered 5
 you're right. Perl words are groups of \w+, but that's not what
 you want to
capitalize. How is Perl supposed to know not to capitalize
 that s after the apostrophe? You could try a
regular expression:

	 $string =~ s/ (
				 (^\w) #at the beginning of the line
				 | # or
				 (\s\w) #preceded by whitespace
)
				 /\U$1/xg;

	 $string =~ s/([\w']+)/\u\L$1/g;

Now, what if you don't want to capitalize that "and"? Just use Text::Autoformat and get on with the
next problem. :)

How can I split a [character]-delimited string except when inside [character]?
Several modules can handle this sort of parsing--Text::Balanced, Text::CSV, Text::CSV_XS,
and Text::ParseWords, among others.

Take the example case of trying to split a string that is
 comma-separated into its different fields. You
can't use split(/,/)
 because you shouldn't split if the comma is inside quotes. For
 example, take a
data line like this:

	 SAR001,"","Cimetrix, Inc","Bob Smith","CAM",N,8,1,0,7,"Error, Core Dumped"

Due to the restriction of the quotes, this is a fairly complex
 problem. Thankfully, we have Jeffrey
Friedl, author of Mastering Regular Expressions, to handle these for us. He
 suggests (assuming your
string is contained in $text):

	 @new = ();
	 push(@new, $+) while $text =~ m{
		 "([^\"\\]*(?:\\.[^\"\\]*)*)",? # groups the phrase inside the quotes
		 | ([^,]+),?
		 | ,

Perl version 5.14.2 documentation - perlfaq4

Page 15http://perldoc.perl.org

		 }gx;
	 push(@new, undef) if substr($text,-1,1) eq ',';

If you want to represent quotation marks inside a
 quotation-mark-delimited field, escape them with
backslashes (eg, "like \"this\"".

Alternatively, the Text::ParseWords module (part of the standard
 Perl distribution) lets you say:

	 use Text::ParseWords;
	 @new = quotewords(",", 0, $text);

How do I strip blank space from the beginning/end of a string?
(contributed by brian d foy)

A substitution can do this for you. For a single line, you want to
 replace all the leading or trailing
whitespace with nothing. You
 can do that with a pair of substitutions:

	 s/^\s+//;
	 s/\s+$//;

You can also write that as a single substitution, although it turns
 out the combined statement is slower
than the separate ones. That
 might not matter to you, though:

	 s/^\s+|\s+$//g;

In this regular expression, the alternation matches either at the
 beginning or the end of the string
since the anchors have a lower
 precedence than the alternation. With the /g flag, the substitution

makes all possible matches, so it gets both. Remember, the trailing
 newline matches the \s+, and the
$ anchor can match to the
 absolute end of the string, so the newline disappears too. Just add
 the
newline to the output, which has the added benefit of preserving
 "blank" (consisting entirely of
whitespace) lines which the ^\s+
 would remove all by itself:

	 while(<>) {
		 s/^\s+|\s+$//g;
		 print "$_\n";
		 }

For a multi-line string, you can apply the regular expression to each
 logical line in the string by adding
the /m flag (for
 "multi-line"). With the /m flag, the $ matches before an
 embedded newline, so it
doesn't remove it. This pattern still removes
 the newline at the end of the string:

	 $string =~ s/^\s+|\s+$//gm;

Remember that lines consisting entirely of whitespace will disappear,
 since the first part of the
alternation can match the entire string
 and replace it with nothing. If you need to keep embedded
blank lines,
 you have to do a little more work. Instead of matching any whitespace
 (since that includes
a newline), just match the other whitespace:

	 $string =~ s/^[\t\f]+|[\t\f]+$//mg;

How do I pad a string with blanks or pad a number with zeroes?
In the following examples, $pad_len is the length to which you wish
 to pad the string, $text or
$num contains the string to be padded,
 and $pad_char contains the padding character. You can use
a single
 character string constant instead of the $pad_char variable if you
 know what it is in
advance. And in the same way you can use an integer in
 place of $pad_len if you know the pad
length in advance.

Perl version 5.14.2 documentation - perlfaq4

Page 16http://perldoc.perl.org

The simplest method uses the sprintf function. It can pad on the left
 or right with blanks and on the
left with zeroes and it will not
 truncate the result. The pack function can only pad strings on the
 right
with blanks and it will truncate the result to a maximum length of $pad_len.

	 # Left padding a string with blanks (no truncation):
	 $padded = sprintf("%${pad_len}s", $text);
	 $padded = sprintf("%*s", $pad_len, $text); # same thing

	 # Right padding a string with blanks (no truncation):
	 $padded = sprintf("%-${pad_len}s", $text);
	 $padded = sprintf("%-*s", $pad_len, $text); # same thing

	 # Left padding a number with 0 (no truncation):
	 $padded = sprintf("%0${pad_len}d", $num);
	 $padded = sprintf("%0*d", $pad_len, $num); # same thing

	 # Right padding a string with blanks using pack (will truncate):
	 $padded = pack("A$pad_len",$text);

If you need to pad with a character other than blank or zero you can use
 one of the following
methods. They all generate a pad string with the x operator and combine that with $text. These
methods do
 not truncate $text.

Left and right padding with any character, creating a new string:

	 $padded = $pad_char x ($pad_len - length($text)) . $text;
	 $padded = $text . $pad_char x ($pad_len - length($text));

Left and right padding with any character, modifying $text directly:

	 substr($text, 0, 0) = $pad_char x ($pad_len - length($text));
	 $text .= $pad_char x ($pad_len - length($text));

How do I extract selected columns from a string?
(contributed by brian d foy)

If you know the columns that contain the data, you can
 use substr to extract a single column.

	 my $column = substr($line, $start_column, $length);

You can use split if the columns are separated by whitespace or
 some other delimiter, as long as
whitespace or the delimiter cannot
 appear as part of the data.

	 my $line = ' fred barney betty ';
	 my @columns = split /\s+/, $line;
		 # ('', 'fred', 'barney', 'betty');

	 my $line = 'fred||barney||betty';
	 my @columns = split /\|/, $line;
		 # ('fred', '', 'barney', '', 'betty');

If you want to work with comma-separated values, don't do this since
 that format is a bit more
complicated. Use one of the modules that
 handle that format, such as Text::CSV, Text::CSV_XS,
or Text::CSV_PP.

Perl version 5.14.2 documentation - perlfaq4

Page 17http://perldoc.perl.org

If you want to break apart an entire line of fixed columns, you can use unpack with the A (ASCII)
format. By using a number after the format
 specifier, you can denote the column width. See the pack
and unpack
 entries in perlfunc for more details.

	 my @fields = unpack($line, "A8 A8 A8 A16 A4");

Note that spaces in the format argument to unpack do not denote literal
 spaces. If you have space
separated data, you may want split instead.

How do I find the soundex value of a string?
(contributed by brian d foy)

You can use the Text::Soundex module. If you want to do fuzzy or close
 matching, you might also try
the String::Approx, and Text::Metaphone, and Text::DoubleMetaphone modules.

How can I expand variables in text strings?
(contributed by brian d foy)

If you can avoid it, don't, or if you can use a templating system,
 such as Text::Template or
Template Toolkit, do that instead. You
 might even be able to get the job done with sprintf or
printf:

	 my $string = sprintf 'Say hello to %s and %s', $foo, $bar;

However, for the one-off simple case where I don't want to pull out a
 full templating system, I'll use a
string that has two Perl scalar
 variables in it. In this example, I want to expand $foo and $bar
 to their
variable's values:

	 my $foo = 'Fred';
	 my $bar = 'Barney';
	 $string = 'Say hello to $foo and $bar';

One way I can do this involves the substitution operator and a double /e flag. The first /e evaluates
$1 on the replacement side and
 turns it into $foo. The second /e starts with $foo and replaces
 it
with its value. $foo, then, turns into 'Fred', and that's finally
 what's left in the string:

	 $string =~ s/(\$\w+)/$1/eeg; # 'Say hello to Fred and Barney'

The /e will also silently ignore violations of strict, replacing
 undefined variable names with the empty
string. Since I'm using the /e flag (twice even!), I have all of the same security problems I
 have with
eval in its string form. If there's something odd in $foo, perhaps something like @{[system "rm
-rf /"]}, then
 I could get myself in trouble.

To get around the security problem, I could also pull the values from
 a hash instead of evaluating
variable names. Using a single /e, I
 can check the hash to ensure the value exists, and if it doesn't, I

can replace the missing value with a marker, in this case ??? to
 signal that I missed something:

	 my $string = 'This has $foo and $bar';

	 my %Replacements = (
		 foo => 'Fred',
);

	 # $string =~ s/\$(\w+)/$Replacements{$1}/g;
	 $string =~ s/\$(\w+)/
		 exists $Replacements{$1} ? $Replacements{$1} : '???'
		 /eg;

Perl version 5.14.2 documentation - perlfaq4

Page 18http://perldoc.perl.org

	 print $string;

What's wrong with always quoting "$vars"?
The problem is that those double-quotes force
 stringification--coercing numbers and references into
strings--even
 when you don't want them to be strings. Think of it this way:
 double-quote expansion is
used to produce new strings. If you already
 have a string, why do you need more?

If you get used to writing odd things like these:

	 print "$var"; 	 # BAD
	 $new = "$old"; 	 # BAD
	 somefunc("$var");	 # BAD

You'll be in trouble. Those should (in 99.8% of the cases) be
 the simpler and more direct:

	 print $var;
	 $new = $old;
	 somefunc($var);

Otherwise, besides slowing you down, you're going to break code when
 the thing in the scalar is
actually neither a string nor a number, but
 a reference:

	 func(\@array);
	 sub func {
		 my $aref = shift;
		 my $oref = "$aref"; # WRONG
		 }

You can also get into subtle problems on those few operations in Perl
 that actually do care about the
difference between a string and a
 number, such as the magical ++ autoincrement operator or the

syscall() function.

Stringification also destroys arrays.

	 @lines = `command`;
	 print "@lines"; # WRONG - extra blanks
	 print @lines; # right

Why don't my <<HERE documents work?
Here documents are found in perlop. Check for these three things:

There must be no space after the << part.

There (probably) should be a semicolon at the end of the opening token

You can't (easily) have any space in front of the tag.

There needs to be at least a line separator after the end token.

If you want to indent the text in the here document, you
 can do this:

 # all in one
 ($VAR = <<HERE_TARGET) =~ s/^\s+//gm;
 your text
 goes here
 HERE_TARGET

But the HERE_TARGET must still be flush against the margin.
 If you want that indented also, you'll

Perl version 5.14.2 documentation - perlfaq4

Page 19http://perldoc.perl.org

have to quote
 in the indentation.

 ($quote = <<' FINIS') =~ s/^\s+//gm;
 ...we will have peace, when you and all your works have
 perished--and the works of your dark master to whom you
 would deliver us. You are a liar, Saruman, and a corrupter
 of men's hearts. --Theoden in /usr/src/perl/taint.c
 FINIS
 $quote =~ s/\s+--/\n--/;

A nice general-purpose fixer-upper function for indented here documents
 follows. It expects to be
called with a here document as its argument.
 It looks to see whether each line begins with a common
substring, and
 if so, strips that substring off. Otherwise, it takes the amount of leading
 whitespace
found on the first line and removes that much off each
 subsequent line.

 sub fix {
 local $_ = shift;
 my ($white, $leader); # common whitespace and common leading
string
 if (/^\s*(?:([^\w\s]+)(\s*).*\n)(?:\s*\g1\g2?.*\n)+$/) {
 ($white, $leader) = ($2, quotemeta($1));
 } else {
 ($white, $leader) = (/^(\s+)/, '');
 }
 s/^\s*?$leader(?:$white)?//gm;
 return $_;
 }

This works with leading special strings, dynamically determined:

	 $remember_the_main = fix<<' MAIN_INTERPRETER_LOOP';
	 @@@ int
	 @@@ runops() {
	 @@@ SAVEI32(runlevel);
	 @@@ runlevel++;
	 @@@ while (op = (*op->op_ppaddr)());
	 @@@ TAINT_NOT;
	 @@@ return 0;
	 @@@ }
	 MAIN_INTERPRETER_LOOP

Or with a fixed amount of leading whitespace, with remaining
 indentation correctly preserved:

	 $poem = fix<<EVER_ON_AND_ON;
 Now far ahead the Road has gone,
	 And I must follow, if I can,
 Pursuing it with eager feet,
	 Until it joins some larger way
 Where many paths and errands meet.
	 And whither then? I cannot say.
		 --Bilbo in /usr/src/perl/pp_ctl.c
	 EVER_ON_AND_ON

Data: Arrays

Perl version 5.14.2 documentation - perlfaq4

Page 20http://perldoc.perl.org

What is the difference between a list and an array?
(contributed by brian d foy)

A list is a fixed collection of scalars. An array is a variable that
 holds a variable collection of scalars.
An array can supply its collection
 for list operations, so list operations also work on arrays:

	 # slices
	 ('dog', 'cat', 'bird')[2,3];
	 @animals[2,3];

	 # iteration
	 foreach (qw(dog cat bird)) { ... }
	 foreach (@animals) { ... }

	 my @three = grep { length == 3 } qw(dog cat bird);
	 my @three = grep { length == 3 } @animals;

	 # supply an argument list
	 wash_animals(qw(dog cat bird));
	 wash_animals(@animals);

Array operations, which change the scalars, rearranges them, or adds
 or subtracts some scalars, only
work on arrays. These can't work on a
 list, which is fixed. Array operations include shift, unshift,
push, pop, and splice.

An array can also change its length:

	 $#animals = 1; # truncate to two elements
	 $#animals = 10000; # pre-extend to 10,001 elements

You can change an array element, but you can't change a list element:

	 $animals[0] = 'Rottweiler';
	 qw(dog cat bird)[0] = 'Rottweiler'; # syntax error!

	 foreach (@animals) {
		 s/^d/fr/; # works fine
		 }

	 foreach (qw(dog cat bird)) {
		 s/^d/fr/; # Error! Modification of read only value!
		 }

However, if the list element is itself a variable, it appears that you
 can change a list element.
However, the list element is the variable, not
 the data. You're not changing the list element, but
something the list
 element refers to. The list element itself doesn't change: it's still
 the same variable.

You also have to be careful about context. You can assign an array to
 a scalar to get the number of
elements in the array. This only works
 for arrays, though:

	 my $count = @animals; # only works with arrays

If you try to do the same thing with what you think is a list, you
 get a quite different result. Although it
looks like you have a list
 on the righthand side, Perl actually sees a bunch of scalars separated
 by a
comma:

Perl version 5.14.2 documentation - perlfaq4

Page 21http://perldoc.perl.org

	 my $scalar = ('dog', 'cat', 'bird'); # $scalar gets bird

Since you're assigning to a scalar, the righthand side is in scalar
 context. The comma operator (yes,
it's an operator!) in scalar
 context evaluates its lefthand side, throws away the result, and
 evaluates
it's righthand side and returns the result. In effect,
 that list-lookalike assigns to $scalar it's rightmost
value. Many
 people mess this up because they choose a list-lookalike whose
 last element is also the
count they expect:

	 my $scalar = (1, 2, 3); # $scalar gets 3, accidentally

What is the difference between $array[1] and @array[1]?
(contributed by brian d foy)

The difference is the sigil, that special character in front of the
 array name. The $ sigil means "exactly
one item", while the @
 sigil means "zero or more items". The $ gets you a single scalar,
 while the @
gets you a list.

The confusion arises because people incorrectly assume that the sigil
 denotes the variable type.

The $array[1] is a single-element access to the array. It's going
 to return the item in index 1 (or
undef if there is no item there).
 If you intend to get exactly one element from the array, this is the
 form
you should use.

The @array[1] is an array slice, although it has only one index.
 You can pull out multiple elements
simultaneously by specifying
 additional indices as a list, like @array[1,4,3,0].

Using a slice on the lefthand side of the assignment supplies list
 context to the righthand side. This
can lead to unexpected results.
 For instance, if you want to read a single line from a filehandle,

assigning to a scalar value is fine:

	 $array[1] = <STDIN>;

However, in list context, the line input operator returns all of the
 lines as a list. The first line goes into
@array[1] and the rest
 of the lines mysteriously disappear:

	 @array[1] = <STDIN>; # most likely not what you want

Either the use warnings pragma or the -w flag will warn you when
 you use an array slice with a
single index.

How can I remove duplicate elements from a list or array?
(contributed by brian d foy)

Use a hash. When you think the words "unique" or "duplicated", think
 "hash keys".

If you don't care about the order of the elements, you could just
 create the hash then extract the keys.
It's not important how you
 create that hash: just that you use keys to get the unique
 elements.

	 my %hash = map { $_, 1 } @array;
	 # or a hash slice: @hash{ @array } = ();
	 # or a foreach: $hash{$_} = 1 foreach (@array);

	 my @unique = keys %hash;

If you want to use a module, try the uniq function from List::MoreUtils. In list context it returns
the unique elements,
 preserving their order in the list. In scalar context, it returns the
 number of
unique elements.

Perl version 5.14.2 documentation - perlfaq4

Page 22http://perldoc.perl.org

	 use List::MoreUtils qw(uniq);

	 my @unique = uniq(1, 2, 3, 4, 4, 5, 6, 5, 7); # 1,2,3,4,5,6,7
	 my $unique = uniq(1, 2, 3, 4, 4, 5, 6, 5, 7); # 7

You can also go through each element and skip the ones you've seen
 before. Use a hash to keep
track. The first time the loop sees an
 element, that element has no key in %Seen. The next statement
creates the key and immediately uses its value, which is undef, so
 the loop continues to the push
and increments the value for that
 key. The next time the loop sees that same element, its key exists in
the hash and the value for that key is true (since it's not 0 or undef), so the next skips that iteration
and the loop goes to the
 next element.

	 my @unique = ();
	 my %seen = ();

	 foreach my $elem (@array)
		 {
		 next if $seen{ $elem }++;
		 push @unique, $elem;
		 }

You can write this more briefly using a grep, which does the
 same thing.

	 my %seen = ();
	 my @unique = grep { ! $seen{ $_ }++ } @array;

How can I tell whether a certain element is contained in a list or array?
(portions of this answer contributed by Anno Siegel and brian d foy)

Hearing the word "in" is an indication that you probably should have
 used a hash, not a list or array, to
store your data. Hashes are
 designed to answer this question quickly and efficiently. Arrays aren't.

That being said, there are several ways to approach this. In Perl 5.10
 and later, you can use the smart
match operator to check that an item is
 contained in an array or a hash:

	 use 5.010;

	 if($item ~~ @array)
		 {
		 say "The array contains $item"
		 }

	 if($item ~~ %hash)
		 {
		 say "The hash contains $item"
		 }

With earlier versions of Perl, you have to do a bit more work. If you
 are going to make this query many
times over arbitrary string values,
 the fastest way is probably to invert the original array and maintain
a
 hash whose keys are the first array's values:

	 @blues = qw/azure cerulean teal turquoise lapis-lazuli/;
	 %is_blue = ();
	 for (@blues) { $is_blue{$_} = 1 }

Perl version 5.14.2 documentation - perlfaq4

Page 23http://perldoc.perl.org

Now you can check whether $is_blue{$some_color}. It might have
 been a good idea to keep the
blues all in a hash in the first place.

If the values are all small integers, you could use a simple indexed
 array. This kind of an array will
take up less space:

	 @primes = (2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31);
	 @is_tiny_prime = ();
	 for (@primes) { $is_tiny_prime[$_] = 1 }
	 # or simply @istiny_prime[@primes] = (1) x @primes;

Now you check whether $is_tiny_prime[$some_number].

If the values in question are integers instead of strings, you can save
 quite a lot of space by using bit
strings instead:

	 @articles = (1..10, 150..2000, 2017);
	 undef $read;
	 for (@articles) { vec($read,$_,1) = 1 }

Now check whether vec($read,$n,1) is true for some $n.

These methods guarantee fast individual tests but require a re-organization
 of the original list or array.
They only pay off if you have to test
 multiple values against the same array.

If you are testing only once, the standard module List::Util exports
 the function first for this
purpose. It works by stopping once it
 finds the element. It's written in C for speed, and its Perl
equivalent
 looks like this subroutine:

	 sub first (&@) {
		 my $code = shift;
		 foreach (@_) {
			 return $_ if &{$code}();
		 }
		 undef;
	 }

If speed is of little concern, the common idiom uses grep in scalar context
 (which returns the number
of items that passed its condition) to traverse the
 entire list. This does have the benefit of telling you
how many matches it
 found, though.

	 my $is_there = grep $_ eq $whatever, @array;

If you want to actually extract the matching elements, simply use grep in
 list context.

	 my @matches = grep $_ eq $whatever, @array;

How do I compute the difference of two arrays? How do I compute the intersection of two
arrays?

Use a hash. Here's code to do both and more. It assumes that each
 element is unique in a given
array:

	 @union = @intersection = @difference = ();
	 %count = ();
	 foreach $element (@array1, @array2) { $count{$element}++ }
	 foreach $element (keys %count) {
		 push @union, $element;

Perl version 5.14.2 documentation - perlfaq4

Page 24http://perldoc.perl.org

		 push @{ $count{$element} > 1 ? \@intersection : \@difference }, $element;
		 }

Note that this is the symmetric difference, that is, all elements
 in either A or in B but not in both. Think
of it as an xor operation.

How do I test whether two arrays or hashes are equal?
With Perl 5.10 and later, the smart match operator can give you the answer
 with the least amount of
work:

	 use 5.010;

	 if(@array1 ~~ @array2)
		 {
		 say "The arrays are the same";
		 }

	 if(%hash1 ~~ %hash2) # doesn't check values!
		 {
		 say "The hash keys are the same";
		 }

The following code works for single-level arrays. It uses a
 stringwise comparison, and does not
distinguish defined versus
 undefined empty strings. Modify if you have other needs.

	 $are_equal = compare_arrays(\@frogs, \@toads);

	 sub compare_arrays {
		 my ($first, $second) = @_;
		 no warnings; # silence spurious -w undef complaints
		 return 0 unless @$first == @$second;
		 for (my $i = 0; $i < @$first; $i++) {
			 return 0 if $first->[$i] ne $second->[$i];
			 }
		 return 1;
		 }

For multilevel structures, you may wish to use an approach more
 like this one. It uses the CPAN
module FreezeThaw:

	 use FreezeThaw qw(cmpStr);
	 @a = @b = ("this", "that", ["more", "stuff"]);

	 printf "a and b contain %s arrays\n",
		 cmpStr(\@a, \@b) == 0
		 ? "the same"
		 : "different";

This approach also works for comparing hashes. Here we'll demonstrate
 two different answers:

	 use FreezeThaw qw(cmpStr cmpStrHard);

	 %a = %b = ("this" => "that", "extra" => ["more", "stuff"]);
	 $a{EXTRA} = \%b;

Perl version 5.14.2 documentation - perlfaq4

Page 25http://perldoc.perl.org

	 $b{EXTRA} = \%a;

	 printf "a and b contain %s hashes\n",
	 cmpStr(\%a, \%b) == 0 ? "the same" : "different";

	 printf "a and b contain %s hashes\n",
	 cmpStrHard(\%a, \%b) == 0 ? "the same" : "different";

The first reports that both those the hashes contain the same data,
 while the second reports that they
do not. Which you prefer is left as
 an exercise to the reader.

How do I find the first array element for which a condition is true?
To find the first array element which satisfies a condition, you can
 use the first() function in the
List::Util module, which comes
 with Perl 5.8. This example finds the first element that contains

"Perl".

	 use List::Util qw(first);

	 my $element = first { /Perl/ } @array;

If you cannot use List::Util, you can make your own loop to do the
 same thing. Once you find the
element, you stop the loop with last.

	 my $found;
	 foreach (@array) {
		 if(/Perl/) { $found = $_; last }
		 }

If you want the array index, you can iterate through the indices
 and check the array element at each
index until you find one
 that satisfies the condition.

	 my($found, $index) = (undef, -1);
	 for($i = 0; $i < @array; $i++) {
		 if($array[$i] =~ /Perl/) {
			 $found = $array[$i];
			 $index = $i;
			 last;
			 }
		 }

How do I handle linked lists?
(contributed by brian d foy)

Perl's arrays do not have a fixed size, so you don't need linked lists
 if you just want to add or remove
items. You can use array operations
 such as push, pop, shift, unshift, or splice to do
 that.

Sometimes, however, linked lists can be useful in situations where you
 want to "shard" an array so
you have have many small arrays instead of
 a single big array. You can keep arrays longer than
Perl's largest
 array index, lock smaller arrays separately in threaded programs,
 reallocate less
memory, or quickly insert elements in the middle of
 the chain.

Steve Lembark goes through the details in his YAPC::NA 2009 talk "Perly
 Linked Lists" (
http://www.slideshare.net/lembark/perly-linked-lists),
 although you can just use his
LinkedList::Single module.

Perl version 5.14.2 documentation - perlfaq4

Page 26http://perldoc.perl.org

How do I handle circular lists?
(contributed by brian d foy)

If you want to cycle through an array endlessly, you can increment the
 index modulo the number of
elements in the array:

	 my @array = qw(a b c);
	 my $i = 0;

	 while(1) {
		 print $array[$i++ % @array], "\n";
		 last if $i > 20;
		 }

You can also use Tie::Cycle to use a scalar that always has the
 next element of the circular array:

	 use Tie::Cycle;

	 tie my $cycle, 'Tie::Cycle', [qw(FFFFFF 000000 FFFF00)];

	 print $cycle; # FFFFFF
	 print $cycle; # 000000
	 print $cycle; # FFFF00

The Array::Iterator::Circular creates an iterator object for
 circular arrays:

	 use Array::Iterator::Circular;

	 my $color_iterator = Array::Iterator::Circular->new(
		 qw(red green blue orange)
);

	 foreach (1 .. 20) {
		 print $color_iterator->next, "\n";
		 }

How do I shuffle an array randomly?
If you either have Perl 5.8.0 or later installed, or if you have
 Scalar-List-Utils 1.03 or later installed,
you can say:

	 use List::Util 'shuffle';

	 @shuffled = shuffle(@list);

If not, you can use a Fisher-Yates shuffle.

	 sub fisher_yates_shuffle {
		 my $deck = shift; # $deck is a reference to an array
		 return unless @$deck; # must not be empty!

		 my $i = @$deck;
		 while (--$i) {
			 my $j = int rand ($i+1);
			 @$deck[$i,$j] = @$deck[$j,$i];

Perl version 5.14.2 documentation - perlfaq4

Page 27http://perldoc.perl.org

			 }
	 }

	 # shuffle my mpeg collection
	 #
	 my @mpeg = <audio/*/*.mp3>;
	 fisher_yates_shuffle(\@mpeg); # randomize @mpeg in place
	 print @mpeg;

Note that the above implementation shuffles an array in place,
 unlike the List::Util::shuffle()
which takes a list and returns
 a new shuffled list.

You've probably seen shuffling algorithms that work using splice,
 randomly picking another element to
swap the current element with

	 srand;
	 @new = ();
	 @old = 1 .. 10; # just a demo
	 while (@old) {
		 push(@new, splice(@old, rand @old, 1));
		 }

This is bad because splice is already O(N), and since you do it N
 times, you just invented a quadratic
algorithm; that is, O(N**2).
 This does not scale, although Perl is so efficient that you probably
 won't
notice this until you have rather largish arrays.

How do I process/modify each element of an array?
Use for/foreach:

	 for (@lines) {
		 s/foo/bar/;	 # change that word
		 tr/XZ/ZX/;	 # swap those letters
		 }

Here's another; let's compute spherical volumes:

	 for (@volumes = @radii) { # @volumes has changed parts
		 $_ **= 3;
		 $_ *= (4/3) * 3.14159; # this will be constant folded
		 }

which can also be done with map() which is made to transform
 one list into another:

	 @volumes = map {$_ ** 3 * (4/3) * 3.14159} @radii;

If you want to do the same thing to modify the values of the
 hash, you can use the values function.
As of Perl 5.6
 the values are not copied, so if you modify $orbit (in this
 case), you modify the value.

	 for $orbit (values %orbits) {
		 ($orbit **= 3) *= (4/3) * 3.14159;
		 }

Prior to perl 5.6 values returned copies of the values,
 so older perl code often contains constructions
such as @orbits{keys %orbits} instead of values %orbits where
 the hash is to be modified.

Perl version 5.14.2 documentation - perlfaq4

Page 28http://perldoc.perl.org

How do I select a random element from an array?
Use the rand() function (see "rand" in perlfunc):

	 $index = rand @array;
	 $element = $array[$index];

Or, simply:

	 my $element = $array[rand @array];

How do I permute N elements of a list?
Use the List::Permutor module on CPAN. If the list is actually an
 array, try the
Algorithm::Permute module (also on CPAN). It's
 written in XS code and is very efficient:

	 use Algorithm::Permute;

	 my @array = 'a'..'d';
	 my $p_iterator = Algorithm::Permute->new (\@array);

	 while (my @perm = $p_iterator->next) {
	 print "next permutation: (@perm)\n";
		 }

For even faster execution, you could do:

	 use Algorithm::Permute;

	 my @array = 'a'..'d';

	 Algorithm::Permute::permute {
		 print "next permutation: (@array)\n";
		 } @array;

Here's a little program that generates all permutations of all the
 words on each line of input. The
algorithm embodied in the permute() function is discussed in Volume 4 (still unpublished) of
 Knuth's
The Art of Computer Programming and will work on any list:

	 #!/usr/bin/perl -n
	 # Fischer-Krause ordered permutation generator

	 sub permute (&@) {
		 my $code = shift;
		 my @idx = 0..$#_;
		 while ($code->(@_[@idx])) {
			 my $p = $#idx;
			 --$p while $idx[$p-1] > $idx[$p];
			 my $q = $p or return;
			 push @idx, reverse splice @idx, $p;
			 ++$q while $idx[$p-1] > $idx[$q];
			 @idx[$p-1,$q]=@idx[$q,$p-1];
		 }
	 }

	 permute { print "@_\n" } split;

Perl version 5.14.2 documentation - perlfaq4

Page 29http://perldoc.perl.org

The Algorithm::Loops module also provides the NextPermute and NextPermuteNum functions
which efficiently find all unique permutations
 of an array, even if it contains duplicate values,
modifying it in-place:
 if its elements are in reverse-sorted order then the array is reversed,
 making it
sorted, and it returns false; otherwise the next
 permutation is returned.

NextPermute uses string order and NextPermuteNum numeric order, so
 you can enumerate all the
permutations of 0..9 like this:

	 use Algorithm::Loops qw(NextPermuteNum);

 my @list= 0..9;
 do { print "@list\n" } while NextPermuteNum @list;

How do I sort an array by (anything)?
Supply a comparison function to sort() (described in "sort" in perlfunc):

	 @list = sort { $a <=> $b } @list;

The default sort function is cmp, string comparison, which would
 sort (1, 2, 10) into (1, 10, 2).
<=>, used above, is
 the numerical comparison operator.

If you have a complicated function needed to pull out the part you
 want to sort on, then don't do it
inside the sort function. Pull it
 out first, because the sort BLOCK can be called many times for the

same element. Here's an example of how to pull out the first word
 after the first number on each item,
and then sort those words
 case-insensitively.

	 @idx = ();
	 for (@data) {
		 ($item) = /\d+\s*(\S+)/;
		 push @idx, uc($item);
	 }
	 @sorted = @data[sort { $idx[$a] cmp $idx[$b] } 0 .. $#idx];

which could also be written this way, using a trick
 that's come to be known as the Schwartzian
Transform:

	 @sorted = map { $_->[0] }
		 sort { $a->[1] cmp $b->[1] }
		 map { [$_, uc((/\d+\s*(\S+)/)[0])] } @data;

If you need to sort on several fields, the following paradigm is useful.

	 @sorted = sort {
		 field1($a) <=> field1($b) ||
		 field2($a) cmp field2($b) ||
		 field3($a) cmp field3($b)
		 } @data;

This can be conveniently combined with precalculation of keys as given
 above.

See the sort article in the "Far More Than You Ever Wanted
 To Know" collection in
http://www.cpan.org/misc/olddoc/FMTEYEWTK.tgz for
 more about this approach.

See also the question later in perlfaq4 on sorting hashes.

Perl version 5.14.2 documentation - perlfaq4

Page 30http://perldoc.perl.org

How do I manipulate arrays of bits?
Use pack() and unpack(), or else vec() and the bitwise
 operations.

For example, you don't have to store individual bits in an array
 (which would mean that you're wasting
a lot of space). To convert an
 array of bits to a string, use vec() to set the right bits. This
 sets $vec
to have bit N set only if $ints[N] was set:

	 @ints = (...); # array of bits, e.g. (1, 0, 0, 1, 1, 0 ...)
	 $vec = '';
	 foreach(0 .. $#ints) {
		 vec($vec,$_,1) = 1 if $ints[$_];
		 }

The string $vec only takes up as many bits as it needs. For
 instance, if you had 16 entries in @ints,
$vec only needs two
 bytes to store them (not counting the scalar variable overhead).

Here's how, given a vector in $vec, you can get those bits into
 your @ints array:

	 sub bitvec_to_list {
		 my $vec = shift;
		 my @ints;
		 # Find null-byte density then select best algorithm
		 if ($vec =~ tr/\0// / length $vec > 0.95) {
			 use integer;
			 my $i;

			 # This method is faster with mostly null-bytes
			 while($vec =~ /[^\0]/g) {
				 $i = -9 + 8 * pos $vec;
				 push @ints, $i if vec($vec, ++$i, 1);
				 push @ints, $i if vec($vec, ++$i, 1);
				 push @ints, $i if vec($vec, ++$i, 1);
				 push @ints, $i if vec($vec, ++$i, 1);
				 push @ints, $i if vec($vec, ++$i, 1);
				 push @ints, $i if vec($vec, ++$i, 1);
				 push @ints, $i if vec($vec, ++$i, 1);
				 push @ints, $i if vec($vec, ++$i, 1);
				 }
			 }
		 else {
			 # This method is a fast general algorithm
			 use integer;
			 my $bits = unpack "b*", $vec;
			 push @ints, 0 if $bits =~ s/^(\d)// && $1;
			 push @ints, pos $bits while($bits =~ /1/g);
			 }

		 return \@ints;
		 }

This method gets faster the more sparse the bit vector is.
 (Courtesy of Tim Bunce and Winfried
Koenig.)

You can make the while loop a lot shorter with this suggestion
 from Benjamin Goldberg:

	 while($vec =~ /[^\0]+/g) {

Perl version 5.14.2 documentation - perlfaq4

Page 31http://perldoc.perl.org

		 push @ints, grep vec($vec, $_, 1), $-[0] * 8 .. $+[0] * 8;
		 }

Or use the CPAN module Bit::Vector:

	 $vector = Bit::Vector->new($num_of_bits);
	 $vector->Index_List_Store(@ints);
	 @ints = $vector->Index_List_Read();

Bit::Vector provides efficient methods for bit vector, sets of
 small integers and "big int" math.

Here's a more extensive illustration using vec():

	 # vec demo
	 $vector = "\xff\x0f\xef\xfe";
	 print "Ilya's string \\xff\\x0f\\xef\\xfe represents the number ",
	 unpack("N", $vector), "\n";
	 $is_set = vec($vector, 23, 1);
	 print "Its 23rd bit is ", $is_set ? "set" : "clear", ".\n";
	 pvec($vector);

	 set_vec(1,1,1);
	 set_vec(3,1,1);
	 set_vec(23,1,1);

	 set_vec(3,1,3);
	 set_vec(3,2,3);
	 set_vec(3,4,3);
	 set_vec(3,4,7);
	 set_vec(3,8,3);
	 set_vec(3,8,7);

	 set_vec(0,32,17);
	 set_vec(1,32,17);

	 sub set_vec {
		 my ($offset, $width, $value) = @_;
		 my $vector = '';
		 vec($vector, $offset, $width) = $value;
		 print "offset=$offset width=$width value=$value\n";
		 pvec($vector);
		 }

	 sub pvec {
		 my $vector = shift;
		 my $bits = unpack("b*", $vector);
		 my $i = 0;
		 my $BASE = 8;

		 print "vector length in bytes: ", length($vector), "\n";
		 @bytes = unpack("A8" x length($vector), $bits);
		 print "bits are: @bytes\n\n";
		 }

Perl version 5.14.2 documentation - perlfaq4

Page 32http://perldoc.perl.org

Why does defined() return true on empty arrays and hashes?
The short story is that you should probably only use defined on scalars or
 functions, not on
aggregates (arrays and hashes). See "defined" in perlfunc
 in the 5.004 release or later of Perl for
more detail.

Data: Hashes (Associative Arrays)
How do I process an entire hash?

(contributed by brian d foy)

There are a couple of ways that you can process an entire hash. You
 can get a list of keys, then go
through each key, or grab a one
 key-value pair at a time.

To go through all of the keys, use the keys function. This extracts
 all of the keys of the hash and
gives them back to you as a list. You
 can then get the value through the particular key you're
processing:

	 foreach my $key (keys %hash) {
		 my $value = $hash{$key}
		 ...
		 }

Once you have the list of keys, you can process that list before you
 process the hash elements. For
instance, you can sort the keys so you
 can process them in lexical order:

	 foreach my $key (sort keys %hash) {
		 my $value = $hash{$key}
		 ...
		 }

Or, you might want to only process some of the items. If you only want
 to deal with the keys that start
with text:, you can select just
 those using grep:

	 foreach my $key (grep /^text:/, keys %hash) {
		 my $value = $hash{$key}
		 ...
		 }

If the hash is very large, you might not want to create a long list of
 keys. To save some memory, you
can grab one key-value pair at a time using each(), which returns a pair you haven't seen yet:

	 while(my($key, $value) = each(%hash)) {
		 ...
		 }

The each operator returns the pairs in apparently random order, so if
 ordering matters to you, you'll
have to stick with the keys method.

The each() operator can be a bit tricky though. You can't add or
 delete keys of the hash while you're
using it without possibly
 skipping or re-processing some pairs after Perl internally rehashes
 all of the
elements. Additionally, a hash has only one iterator, so if
 you use keys, values, or each on the
same hash, you can reset
 the iterator and mess up your processing. See the each entry in perlfunc
for more details.

How do I merge two hashes?
(contributed by brian d foy)

Before you decide to merge two hashes, you have to decide what to do
 if both hashes contain keys

Perl version 5.14.2 documentation - perlfaq4

Page 33http://perldoc.perl.org

that are the same and if you want to leave
 the original hashes as they were.

If you want to preserve the original hashes, copy one hash (%hash1)
 to a new hash (%new_hash),
then add the keys from the other hash
 (%hash2 to the new hash. Checking that the key already exists
in %new_hash gives you a chance to decide what to do with the
 duplicates:

	 my %new_hash = %hash1; # make a copy; leave %hash1 alone

	 foreach my $key2 (keys %hash2)
		 {
		 if(exists $new_hash{$key2})
			 {
			 warn "Key [$key2] is in both hashes!";
			 # handle the duplicate (perhaps only warning)
			 ...
			 next;
			 }
		 else
			 {
			 $new_hash{$key2} = $hash2{$key2};
			 }
		 }

If you don't want to create a new hash, you can still use this looping
 technique; just change the
%new_hash to %hash1.

	 foreach my $key2 (keys %hash2)
		 {
		 if(exists $hash1{$key2})
			 {
			 warn "Key [$key2] is in both hashes!";
			 # handle the duplicate (perhaps only warning)
			 ...
			 next;
			 }
		 else
			 {
			 $hash1{$key2} = $hash2{$key2};
			 }
		 }

If you don't care that one hash overwrites keys and values from the other, you
 could just use a hash
slice to add one hash to another. In this case, values
 from %hash2 replace values from %hash1 when
they have keys in common:

	 @hash1{ keys %hash2 } = values %hash2;

What happens if I add or remove keys from a hash while iterating over it?
(contributed by brian d foy)

The easy answer is "Don't do that!"

If you iterate through the hash with each(), you can delete the key
 most recently returned without
worrying about it. If you delete or add
 other keys, the iterator may skip or double up on them since
perl
 may rearrange the hash table. See the
 entry for each() in perlfunc.

Perl version 5.14.2 documentation - perlfaq4

Page 34http://perldoc.perl.org

How do I look up a hash element by value?
Create a reverse hash:

	 %by_value = reverse %by_key;
	 $key = $by_value{$value};

That's not particularly efficient. It would be more space-efficient
 to use:

	 while (($key, $value) = each %by_key) {
		 $by_value{$value} = $key;
	 }

If your hash could have repeated values, the methods above will only find
 one of the associated keys.
This may or may not worry you. If it does
 worry you, you can always reverse the hash into a hash of
arrays instead:

	 while (($key, $value) = each %by_key) {
		 push @{$key_list_by_value{$value}}, $key;
		 }

How can I know how many entries are in a hash?
(contributed by brian d foy)

This is very similar to "How do I process an entire hash?", also in perlfaq4, but a bit simpler in the
common cases.

You can use the keys() built-in function in scalar context to find out
 have many entries you have in a
hash:

	 my $key_count = keys %hash; # must be scalar context!

If you want to find out how many entries have a defined value, that's
 a bit different. You have to check
each value. A grep is handy:

	 my $defined_value_count = grep { defined } values %hash;

You can use that same structure to count the entries any way that
 you like. If you want the count of
the keys with vowels in them,
 you just test for that instead:

	 my $vowel_count = grep { /[aeiou]/ } keys %hash;

The grep in scalar context returns the count. If you want the list
 of matching items, just use it in list
context instead:

	 my @defined_values = grep { defined } values %hash;

The keys() function also resets the iterator, which means that you may
 see strange results if you
use this between uses of other hash operators
 such as each().

How do I sort a hash (optionally by value instead of key)?
(contributed by brian d foy)

To sort a hash, start with the keys. In this example, we give the list of
 keys to the sort function which
then compares them ASCIIbetically (which
 might be affected by your locale settings). The output list
has the keys
 in ASCIIbetical order. Once we have the keys, we can go through them to
 create a
report which lists the keys in ASCIIbetical order.

Perl version 5.14.2 documentation - perlfaq4

Page 35http://perldoc.perl.org

	 my @keys = sort { $a cmp $b } keys %hash;

	 foreach my $key (@keys)
		 {
		 printf "%-20s %6d\n", $key, $hash{$key};
		 }

We could get more fancy in the sort() block though. Instead of
 comparing the keys, we can
compute a value with them and use that
 value as the comparison.

For instance, to make our report order case-insensitive, we use
 the \L sequence in a double-quoted
string to make everything
 lowercase. The sort() block then compares the lowercased
 values to
determine in which order to put the keys.

	 my @keys = sort { "\L$a" cmp "\L$b" } keys %hash;

Note: if the computation is expensive or the hash has many elements,
 you may want to look at the
Schwartzian Transform to cache the
 computation results.

If we want to sort by the hash value instead, we use the hash key
 to look it up. We still get out a list of
keys, but this time they
 are ordered by their value.

	 my @keys = sort { $hash{$a} <=> $hash{$b} } keys %hash;

From there we can get more complex. If the hash values are the same,
 we can provide a secondary
sort on the hash key.

	 my @keys = sort {
		 $hash{$a} <=> $hash{$b}
			 or
		 "\L$a" cmp "\L$b"
		 } keys %hash;

How can I always keep my hash sorted?
You can look into using the DB_File module and tie() using the $DB_BTREE hash bindings as
documented in "In Memory Databases" in DB_File. The Tie::IxHash module from CPAN might
also be
 instructive. Although this does keep your hash sorted, you might not
 like the slowdown you
suffer from the tie interface. Are you sure you
 need to do this? :)

What's the difference between "delete" and "undef" with hashes?
Hashes contain pairs of scalars: the first is the key, the
 second is the value. The key will be coerced
to a string,
 although the value can be any kind of scalar: string,
 number, or reference. If a key $key is
present in
 %hash, exists($hash{$key}) will return true. The value
 for a given key can be undef,
in which case $hash{$key} will be undef while exists $hash{$key}
 will return true. This
corresponds to ($key, undef)
 being in the hash.

Pictures help... Here's the %hash table:

	 keys values
	 +------+------+
	 | a | 3 |
	 | x | 7 |
	 | d | 0 |
	 | e | 2 |
	 +------+------+

Perl version 5.14.2 documentation - perlfaq4

Page 36http://perldoc.perl.org

And these conditions hold

	 $hash{'a'} is true
	 $hash{'d'} is false
	 defined $hash{'d'} is true
	 defined $hash{'a'} is true
	 exists $hash{'a'} is true (Perl 5 only)
	 grep ($_ eq 'a', keys %hash) is true

If you now say

	 undef $hash{'a'}

your table now reads:

	 keys values
	 +------+------+
	 | a | undef|
	 | x | 7 |
	 | d | 0 |
	 | e | 2 |
	 +------+------+

and these conditions now hold; changes in caps:

	 $hash{'a'} is FALSE
	 $hash{'d'} is false
	 defined $hash{'d'} is true
	 defined $hash{'a'} is FALSE
	 exists $hash{'a'} is true (Perl 5 only)
	 grep ($_ eq 'a', keys %hash) is true

Notice the last two: you have an undef value, but a defined key!

Now, consider this:

	 delete $hash{'a'}

your table now reads:

	 keys values
	 +------+------+
	 | x | 7 |
	 | d | 0 |
	 | e | 2 |
	 +------+------+

and these conditions now hold; changes in caps:

	 $hash{'a'} is false
	 $hash{'d'} is false
	 defined $hash{'d'} is true
	 defined $hash{'a'} is false
	 exists $hash{'a'} is FALSE (Perl 5 only)
	 grep ($_ eq 'a', keys %hash) is FALSE

Perl version 5.14.2 documentation - perlfaq4

Page 37http://perldoc.perl.org

See, the whole entry is gone!

Why don't my tied hashes make the defined/exists distinction?
This depends on the tied hash's implementation of EXISTS().
 For example, there isn't the concept of
undef with hashes
 that are tied to DBM* files. It also means that exists() and
 defined() do the same
thing with a DBM* file, and what they
 end up doing is not what they do with ordinary hashes.

How do I reset an each() operation part-way through?
(contributed by brian d foy)

You can use the keys or values functions to reset each. To
 simply reset the iterator used by each
without doing anything else,
 use one of them in void context:

	 keys %hash; # resets iterator, nothing else.
	 values %hash; # resets iterator, nothing else.

See the documentation for each in perlfunc.

How can I get the unique keys from two hashes?
First you extract the keys from the hashes into lists, then solve
 the "removing duplicates" problem
described above. For example:

	 %seen = ();
	 for $element (keys(%foo), keys(%bar)) {
		 $seen{$element}++;
		 }
	 @uniq = keys %seen;

Or more succinctly:

	 @uniq = keys %{{%foo,%bar}};

Or if you really want to save space:

	 %seen = ();
	 while (defined ($key = each %foo)) {
		 $seen{$key}++;
	 }
	 while (defined ($key = each %bar)) {
		 $seen{$key}++;
	 }
	 @uniq = keys %seen;

How can I store a multidimensional array in a DBM file?
Either stringify the structure yourself (no fun), or else
 get the MLDBM (which uses Data::Dumper)
module from CPAN and layer
 it on top of either DB_File or GDBM_File. You might also try
DBM::Deep, but
 it can be a bit slow.

How can I make my hash remember the order I put elements into it?
Use the Tie::IxHash from CPAN.

	 use Tie::IxHash;

	 tie my %myhash, 'Tie::IxHash';

	 for (my $i=0; $i<20; $i++) {

Perl version 5.14.2 documentation - perlfaq4

Page 38http://perldoc.perl.org

		 $myhash{$i} = 2*$i;
		 }

	 my @keys = keys %myhash;
	 # @keys = (0,1,2,3,...)

Why does passing a subroutine an undefined element in a hash create it?
(contributed by brian d foy)

Are you using a really old version of Perl?

Normally, accessing a hash key's value for a nonexistent key will not create the key.

	 my %hash = ();
	 my $value = $hash{ 'foo' };
	 print "This won't print\n" if exists $hash{ 'foo' };

Passing $hash{ 'foo' } to a subroutine used to be a special case, though.
 Since you could assign
directly to $_[0], Perl had to be ready to
 make that assignment so it created the hash key ahead of
time:

 my_sub($hash{ 'foo' });
	 print "This will print before 5.004\n" if exists $hash{ 'foo' };

	 sub my_sub {
		 # $_[0] = 'bar'; # create hash key in case you do this
		 1;
		 }

Since Perl 5.004, however, this situation is a special case and Perl
 creates the hash key only when
you make the assignment:

 my_sub($hash{ 'foo' });
	 print "This will print, even after 5.004\n" if exists $hash{ 'foo' };

	 sub my_sub {
		 $_[0] = 'bar';
		 }

However, if you want the old behavior (and think carefully about that
 because it's a weird side effect),
you can pass a hash slice instead.
 Perl 5.004 didn't make this a special case:

	 my_sub(@hash{ qw/foo/ });

How can I make the Perl equivalent of a C structure/C++ class/hash or array of hashes or
arrays?

Usually a hash ref, perhaps like this:

	 $record = {
		 NAME => "Jason",
		 EMPNO => 132,
		 TITLE => "deputy peon",
		 AGE => 23,
		 SALARY => 37_000,
		 PALS => ["Norbert", "Rhys", "Phineas"],

Perl version 5.14.2 documentation - perlfaq4

Page 39http://perldoc.perl.org

	 };

References are documented in perlref and perlreftut.
 Examples of complex data structures are given
in perldsc and perllol. Examples of structures and object-oriented classes are
 in perltoot.

How can I use a reference as a hash key?
(contributed by brian d foy and Ben Morrow)

Hash keys are strings, so you can't really use a reference as the key.
 When you try to do that, perl
turns the reference into its stringified
 form (for instance, HASH(0xDEADBEEF)). From there you can't
get
 back the reference from the stringified form, at least without doing
 some extra work on your own.

Remember that the entry in the hash will still be there even if
 the referenced variable goes out of
scope, and that it is entirely
 possible for Perl to subsequently allocate a different variable at
 the same
address. This will mean a new variable might accidentally
 be associated with the value for an old.

If you have Perl 5.10 or later, and you just want to store a value
 against the reference for lookup later,
you can use the core
 Hash::Util::Fieldhash module. This will also handle renaming the
 keys if you use
multiple threads (which causes all variables to be
 reallocated at new addresses, changing their
stringification), and
 garbage-collecting the entries when the referenced variable goes out
 of scope.

If you actually need to be able to get a real reference back from
 each hash entry, you can use the
Tie::RefHash module, which does the
 required work for you.

How can I check if a key exists in a multilevel hash?
(contributed by brian d foy)

The trick to this problem is avoiding accidental autovivification. If you want to check three keys deep,
you might naÃ¯vely try this:

	 my %hash;
	 if(exists $hash{key1}{key2}{key3}) {
		 ...;
		 }

Even though you started with a completely empty hash, after that call to exists you've created the
structure you needed to check for key3:

	 %hash = (
			 'key1' => {
						 'key2' => {}
						 }
);

That's autovivification. You can get around this in a few ways. The
 easiest way is to just turn it off.
The lexical autovivification
 pragma is available on CPAN. Now you don't add to the hash:

	 {
	 no autovivification;
	 my %hash;
	 if(exists $hash{key1}{key2}{key3}) {
		 ...;
		 }
	 }

The Data::Diver module on CPAN can do it for you too. Its Dive
 subroutine can tell you not only if
the keys exist but also get the
 value:

Perl version 5.14.2 documentation - perlfaq4

Page 40http://perldoc.perl.org

	 use Data::Diver qw(Dive);

 my @exists = Dive(\%hash, qw(key1 key2 key3));
 if(! @exists) {
 ...; # keys do not exist
 	 }
 elsif(! defined $exists[0]) {
 ...; # keys exist but value is undef
 	 }

You can easily do this yourself too by checking each level of the hash
 before you move onto the next
level. This is essentially what Data::Diver does for you:

	 if(check_hash(\%hash, qw(key1 key2 key3))) {
		 ...;
		 }

	 sub check_hash {
	 my($hash, @keys) = @_;

	 return unless @keys;

	 foreach my $key (@keys) {
		 return unless eval { exists $hash->{$key} };
		 $hash = $hash->{$key};
		 }

	 return 1;
	 }

Data: Misc
How do I handle binary data correctly?

Perl is binary-clean, so it can handle binary data just fine.
 On Windows or DOS, however, you have to
use binmode for binary
 files to avoid conversions for line endings. In general, you should
 use
binmode any time you want to work with binary data.

Also see "binmode" in perlfunc or perlopentut.

If you're concerned about 8-bit textual data then see perllocale.
 If you want to deal with multibyte
characters, however, there are
 some gotchas. See the section on Regular Expressions.

How do I determine whether a scalar is a number/whole/integer/float?
Assuming that you don't care about IEEE notations like "NaN" or
 "Infinity", you probably just want to
use a regular expression:

	 use 5.010;

	 given($number) {
		 when(/\D/)
			 { say "\thas nondigits"; continue }
		 when(/^\d+\z/)
			 { say "\tis a whole number"; continue }
		 when(/^-?\d+\z/)
			 { say "\tis an integer"; continue }

Perl version 5.14.2 documentation - perlfaq4

Page 41http://perldoc.perl.org

		 when(/^[+-]?\d+\z/)
			 { say "\tis a +/- integer"; continue }
		 when(/^-?(?:\d+\.?|\.\d)\d*\z/)
			 { say "\tis a real number"; continue }
		 when(/^[+-]?(?=\.?\d)\d*\.?\d*(?:e[+-]?\d+)?\z/i)
			 { say "\tis a C float" }
		 }

There are also some commonly used modules for the task. Scalar::Util (distributed with 5.8) provides
access to perl's
 internal function looks_like_number for determining whether a
 variable looks like
a number. Data::Types exports functions that
 validate data types using both the above and other
regular
 expressions. Thirdly, there is Regexp::Common which has regular
 expressions to match
various types of numbers. Those three modules are
 available from the CPAN.

If you're on a POSIX system, Perl supports the POSIX::strtod
 function for converting strings to
doubles (and also POSIX::strtol
 for longs). Its semantics are somewhat cumbersome, so here's a
getnum wrapper function for more convenient access. This function
 takes a string and returns the
number it found, or undef for input
 that isn't a C float. The is_numeric function is a front end to
getnum if you just want to say, "Is this a float?"

	 sub getnum {
		 use POSIX qw(strtod);
		 my $str = shift;
		 $str =~ s/^\s+//;
		 $str =~ s/\s+$//;
		 $! = 0;
		 my($num, $unparsed) = strtod($str);
		 if (($str eq '') || ($unparsed != 0) || $!) {
				 return undef;
			 }
		 else {
			 return $num;
			 }
		 }

	 sub is_numeric { defined getnum($_[0]) }

Or you could check out the String::Scanf module on the CPAN
 instead.

How do I keep persistent data across program calls?
For some specific applications, you can use one of the DBM modules.
 See AnyDBM_File. More
generically, you should consult the FreezeThaw
 or Storable modules from CPAN. Starting from
Perl 5.8 Storable is part
 of the standard distribution. Here's one example using Storable's store

and retrieve functions:

	 use Storable;
	 store(\%hash, "filename");

	 # later on...
	 $href = retrieve("filename"); # by ref
	 %hash = %{ retrieve("filename") }; # direct to hash

How do I print out or copy a recursive data structure?
The Data::Dumper module on CPAN (or the 5.005 release of Perl) is great
 for printing out data
structures. The Storable module on CPAN (or the
 5.8 release of Perl), provides a function called

Perl version 5.14.2 documentation - perlfaq4

Page 42http://perldoc.perl.org

dclone that recursively
 copies its argument.

	 use Storable qw(dclone);
	 $r2 = dclone($r1);

Where $r1 can be a reference to any kind of data structure you'd like.
 It will be deeply copied.
Because dclone takes and returns references,
 you'd have to add extra punctuation if you had a hash
of arrays that
 you wanted to copy.

	 %newhash = %{ dclone(\%oldhash) };

How do I define methods for every class/object?
(contributed by Ben Morrow)

You can use the UNIVERSAL class (see UNIVERSAL). However, please
 be very careful to consider
the consequences of doing this: adding
 methods to every object is very likely to have unintended

consequences. If possible, it would be better to have all your object
 inherit from some common base
class, or to use an object system like
 Moose that supports roles.

How do I verify a credit card checksum?
Get the Business::CreditCard module from CPAN.

How do I pack arrays of doubles or floats for XS code?
The arrays.h/arrays.c code in the PGPLOT module on CPAN does just this.
 If you're doing a lot of float
or double processing, consider using
 the PDL module from CPAN instead--it makes
number-crunching easy.

See http://search.cpan.org/dist/PGPLOT for the code.

AUTHOR AND COPYRIGHT
Copyright (c) 1997-2010 Tom Christiansen, Nathan Torkington, and
 other authors as noted. All rights
reserved.

This documentation is free; you can redistribute it and/or modify it
 under the same terms as Perl itself.

Irrespective of its distribution, all code examples in this file
 are hereby placed into the public domain.
You are permitted and
 encouraged to use this code in your own programs for fun
 or for profit as you
see fit. A simple comment in the code giving
 credit would be courteous but is not required.

