
Perl version 5.14.2 documentation - perlfaq8

Page 1http://perldoc.perl.org

NAME
perlfaq8 - System Interaction

DESCRIPTION
This section of the Perl FAQ covers questions involving operating
 system interaction. Topics include
interprocess communication (IPC),
 control over the user-interface (keyboard, screen and pointing

devices), and most anything else not related to data manipulation.

Read the FAQs and documentation specific to the port of perl to your
 operating system (eg, perlvms,
perlplan9, ...). These should
 contain more detailed information on the vagaries of your perl.

How do I find out which operating system I'm running under?
The $^O variable ($OSNAME if you use English) contains an
 indication of the name of the operating
system (not its release
 number) that your perl binary was built for.

How come exec() doesn't return?
(contributed by brian d foy)

The exec function's job is to turn your process into another
 command and never to return. If that's not
what you want to do, don't
 use exec. :)

If you want to run an external command and still keep your Perl process
 going, look at a piped open,
fork, or system.

How do I do fancy stuff with the keyboard/screen/mouse?
How you access/control keyboards, screens, and pointing devices
 ("mice") is system-dependent. Try
the following modules:

Keyboard

	 Term::Cap Standard perl distribution
	 Term::ReadKey CPAN
	 Term::ReadLine::Gnu CPAN
	 Term::ReadLine::Perl CPAN
	 Term::Screen CPAN

Screen

	 Term::Cap Standard perl distribution
	 Curses CPAN
	 Term::ANSIColor CPAN

Mouse

	 Tk CPAN

Some of these specific cases are shown as examples in other answers
 in this section of the perlfaq.

How do I print something out in color?
In general, you don't, because you don't know whether
 the recipient has a color-aware display device.
If you
 know that they have an ANSI terminal that understands
 color, you can use the
Term::ANSIColor module from CPAN:

	 use Term::ANSIColor;
	 print color("red"), "Stop!\n", color("reset");
	 print color("green"), "Go!\n", color("reset");

Or like this:

Perl version 5.14.2 documentation - perlfaq8

Page 2http://perldoc.perl.org

	 use Term::ANSIColor qw(:constants);
	 print RED, "Stop!\n", RESET;
	 print GREEN, "Go!\n", RESET;

How do I read just one key without waiting for a return key?
Controlling input buffering is a remarkably system-dependent matter.
 On many systems, you can just
use the stty command as shown in "getc" in perlfunc, but as you see, that's already getting you into

portability snags.

	 open(TTY, "+</dev/tty") or die "no tty: $!";
	 system "stty cbreak </dev/tty >/dev/tty 2>&1";
	 $key = getc(TTY);		 # perhaps this works
	 # OR ELSE
	 sysread(TTY, $key, 1);	 # probably this does
	 system "stty -cbreak </dev/tty >/dev/tty 2>&1";

The Term::ReadKey module from CPAN offers an easy-to-use interface that
 should be more
efficient than shelling out to stty for each key.
 It even includes limited support for Windows.

	 use Term::ReadKey;
	 ReadMode('cbreak');
	 $key = ReadKey(0);
	 ReadMode('normal');

However, using the code requires that you have a working C compiler
 and can use it to build and
install a CPAN module. Here's a solution
 using the standard POSIX module, which is already on your
system
 (assuming your system supports POSIX).

	 use HotKey;
	 $key = readkey();

And here's the HotKey module, which hides the somewhat mystifying calls
 to manipulate the POSIX
termios structures.

	 # HotKey.pm
	 package HotKey;

	 @ISA = qw(Exporter);
	 @EXPORT = qw(cbreak cooked readkey);

	 use strict;
	 use POSIX qw(:termios_h);
	 my ($term, $oterm, $echo, $noecho, $fd_stdin);

	 $fd_stdin = fileno(STDIN);
	 $term = POSIX::Termios->new();
	 $term->getattr($fd_stdin);
	 $oterm = $term->getlflag();

	 $echo = ECHO | ECHOK | ICANON;
	 $noecho = $oterm & ~$echo;

	 sub cbreak {
		 $term->setlflag($noecho); # ok, so i don't want echo either

Perl version 5.14.2 documentation - perlfaq8

Page 3http://perldoc.perl.org

		 $term->setcc(VTIME, 1);
		 $term->setattr($fd_stdin, TCSANOW);
	 }

	 sub cooked {
		 $term->setlflag($oterm);
		 $term->setcc(VTIME, 0);
		 $term->setattr($fd_stdin, TCSANOW);
	 }

	 sub readkey {
		 my $key = '';
		 cbreak();
		 sysread(STDIN, $key, 1);
		 cooked();
		 return $key;
	 }

	 END { cooked() }

	 1;

How do I check whether input is ready on the keyboard?
The easiest way to do this is to read a key in nonblocking mode with the Term::ReadKey module
from CPAN, passing it an argument of -1 to indicate
 not to block:

	 use Term::ReadKey;

	 ReadMode('cbreak');

	 if (defined ($char = ReadKey(-1))) {
		 # input was waiting and it was $char
	 } else {
		 # no input was waiting
	 }

	 ReadMode('normal'); # restore normal tty settings

How do I clear the screen?
(contributed by brian d foy)

To clear the screen, you just have to print the special sequence
 that tells the terminal to clear the
screen. Once you have that
 sequence, output it when you want to clear the screen.

You can use the Term::ANSIScreen module to get the special
 sequence. Import the cls function
(or the :screen tag):

	 use Term::ANSIScreen qw(cls);
	 my $clear_screen = cls();

	 print $clear_screen;

The Term::Cap module can also get the special sequence if you want
 to deal with the low-level

Perl version 5.14.2 documentation - perlfaq8

Page 4http://perldoc.perl.org

details of terminal control. The Tputs
 method returns the string for the given capability:

	 use Term::Cap;

	 $terminal = Term::Cap->Tgetent({ OSPEED => 9600 });
	 $clear_string = $terminal->Tputs('cl');

	 print $clear_screen;

On Windows, you can use the Win32::Console module. After creating
 an object for the output
filehandle you want to affect, call the Cls method:

	 Win32::Console;

	 $OUT = Win32::Console->new(STD_OUTPUT_HANDLE);
	 my $clear_string = $OUT->Cls;

	 print $clear_screen;

If you have a command-line program that does the job, you can call
 it in backticks to capture whatever
it outputs so you can use it
 later:

	 $clear_string = `clear`;

	 print $clear_string;

How do I get the screen size?
If you have Term::ReadKey module installed from CPAN,
 you can use it to fetch the width and
height in characters
 and in pixels:

	 use Term::ReadKey;
	 ($wchar, $hchar, $wpixels, $hpixels) = GetTerminalSize();

This is more portable than the raw ioctl, but not as
 illustrative:

	 require 'sys/ioctl.ph';
	 die "no TIOCGWINSZ " unless defined &TIOCGWINSZ;
	 open(TTY, "+</dev/tty") or die "No tty: $!";
	 unless (ioctl(TTY, &TIOCGWINSZ, $winsize='')) {
		 die sprintf "$0: ioctl TIOCGWINSZ (%08x: $!)\n", &TIOCGWINSZ;
	 }
	 ($row, $col, $xpixel, $ypixel) = unpack('S4', $winsize);
	 print "(row,col) = ($row,$col)";
	 print " (xpixel,ypixel) = ($xpixel,$ypixel)" if $xpixel || $ypixel;
	 print "\n";

How do I ask the user for a password?
(This question has nothing to do with the web. See a different
 FAQ for that.)

There's an example of this in "crypt" in perlfunc). First, you put the
 terminal into "no echo" mode, then
just read the password normally.
 You may do this with an old-style ioctl() function, POSIX terminal
control (see POSIX or its documentation the Camel Book), or a call
 to the stty program, with varying
degrees of portability.

Perl version 5.14.2 documentation - perlfaq8

Page 5http://perldoc.perl.org

You can also do this for most systems using the Term::ReadKey module
 from CPAN, which is
easier to use and in theory more portable.

	 use Term::ReadKey;

	 ReadMode('noecho');
	 $password = ReadLine(0);

How do I read and write the serial port?
This depends on which operating system your program is running on. In
 the case of Unix, the serial
ports will be accessible through files in
 /dev; on other systems, device names will doubtless differ.

Several problem areas common to all device interaction are the
 following:

lockfiles

Your system may use lockfiles to control multiple access. Make sure
 you follow the correct
protocol. Unpredictable behavior can result
 from multiple processes reading from one device.

open mode

If you expect to use both read and write operations on the device,
 you'll have to open it for
update (see "open" in perlfunc for
 details). You may wish to open it without running the risk of

blocking by using sysopen() and O_RDWR|O_NDELAY|O_NOCTTY from the Fcntl module
(part of the standard perl distribution). See "sysopen" in perlfunc for more on this approach.

end of line

Some devices will be expecting a "\r" at the end of each line rather
 than a "\n". In some ports
of perl, "\r" and "\n" are different from
 their usual (Unix) ASCII values of "\015" and "\012". You
may have to
 give the numeric values you want directly, using octal ("\015"), hex
 ("0x0D"), or
as a control-character specification ("\cM").

	 print DEV "atv1\012";	 # wrong, for some devices
	 print DEV "atv1\015";	 # right, for some devices

Even though with normal text files a "\n" will do the trick, there is
 still no unified scheme for
terminating a line that is portable
 between Unix, DOS/Win, and Macintosh, except to terminate
ALL line
 ends with "\015\012", and strip what you don't need from the output.
 This applies
especially to socket I/O and autoflushing, discussed
 next.

flushing output

If you expect characters to get to your device when you print() them,
 you'll want to
autoflush that filehandle. You can use select()
 and the $| variable to control autoflushing
(see "$|" in perlvar
 and "select" in perlfunc, or perlfaq5, "How do I flush/unbuffer an
 output
filehandle? Why must I do this?"):

	 $oldh = select(DEV);
	 $| = 1;
	 select($oldh);

You'll also see code that does this without a temporary variable, as in

	 select((select(DEV), $| = 1)[0]);

Or if you don't mind pulling in a few thousand lines
 of code just because you're afraid of a little
$| variable:

	 use IO::Handle;
	 DEV->autoflush(1);

As mentioned in the previous item, this still doesn't work when using
 socket I/O between Unix

Perl version 5.14.2 documentation - perlfaq8

Page 6http://perldoc.perl.org

and Macintosh. You'll need to hard code your
 line terminators, in that case.

non-blocking input

If you are doing a blocking read() or sysread(), you'll have to
 arrange for an alarm handler
to provide a timeout (see "alarm" in perlfunc). If you have a non-blocking open, you'll likely

have a non-blocking read, which means you may have to use a 4-arg select() to determine
whether I/O is ready on that device (see "select" in perlfunc.

While trying to read from his caller-id box, the notorious Jamie
 Zawinski <jwz@netscape.com>,
after much gnashing of teeth and
 fighting with sysread, sysopen, POSIX's tcgetattr business,

and various other functions that go bump in the night, finally came up
 with this:

	 sub open_modem {
		 use IPC::Open2;
		 my $stty = `/bin/stty -g`;
		 open2(*MODEM_IN, *MODEM_OUT, "cu -l$modem_device -s2400 2>&1");
		 # starting cu hoses /dev/tty's stty settings, even when it has
		 # been opened on a pipe...
		 system("/bin/stty $stty");
		 $_ = <MODEM_IN>;
		 chomp;
		 if (!m/^Connected/) {
			 print STDERR "$0: cu printed `$_' instead of `Connected'\n";
		 }
	 }

How do I decode encrypted password files?
You spend lots and lots of money on dedicated hardware, but this is
 bound to get you talked about.

Seriously, you can't if they are Unix password files--the Unix
 password system employs one-way
encryption. It's more like hashing
 than encryption. The best you can do is check whether something
else
 hashes to the same string. You can't turn a hash back into the
 original string. Programs like
Crack can forcibly (and intelligently)
 try to guess passwords, but don't (can't) guarantee quick
success.

If you're worried about users selecting bad passwords, you should
 proactively check when they try to
change their password (by modifying
 passwd(1), for example).

How do I start a process in the background?
(contributed by brian d foy)

There's not a single way to run code in the background so you don't
 have to wait for it to finish before
your program moves on to other
 tasks. Process management depends on your particular operating
system,
 and many of the techniques are in perlipc.

Several CPAN modules may be able to help, including IPC::Open2 or IPC::Open3, IPC::Run,
Parallel::Jobs, Parallel::ForkManager, POE, Proc::Background, and Win32::Process
. There are many other modules you might use, so
 check those namespaces for other options too.

If you are on a Unix-like system, you might be able to get away with a
 system call where you put an &
on the end of the command:

	 system("cmd &")

You can also try using fork, as described in perlfunc (although
 this is the same thing that many of
the modules will do for you).

STDIN, STDOUT, and STDERR are shared

Perl version 5.14.2 documentation - perlfaq8

Page 7http://perldoc.perl.org

Both the main process and the backgrounded one (the "child" process)
 share the same
STDIN, STDOUT and STDERR filehandles. If both try to
 access them at once, strange things
can happen. You may want to close
 or reopen these for the child. You can get around this with
opening a pipe (see "open" in perlfunc) but on some systems this
 means that the child
process cannot outlive the parent.

Signals

You'll have to catch the SIGCHLD signal, and possibly SIGPIPE too.
 SIGCHLD is sent when
the backgrounded process finishes. SIGPIPE is
 sent when you write to a filehandle whose
child process has closed (an
 untrapped SIGPIPE can cause your program to silently die). This
is
 not an issue with system("cmd&").

Zombies

You have to be prepared to "reap" the child process when it finishes.

	 $SIG{CHLD} = sub { wait };

	 $SIG{CHLD} = 'IGNORE';

You can also use a double fork. You immediately wait() for your
 first child, and the init
daemon will wait() for your grandchild once
 it exits.

	 unless ($pid = fork) {
	 unless (fork) {
		 exec "what you really wanna do";
		 die "exec failed!";
	 }
	 exit 0;
	 }
	 waitpid($pid, 0);

See "Signals" in perlipc for other examples of code to do this.
 Zombies are not an issue with
system("prog &").

How do I trap control characters/signals?
You don't actually "trap" a control character. Instead, that character
 generates a signal which is sent
to your terminal's currently
 foregrounded process group, which you then trap in your process.
 Signals
are documented in "Signals" in perlipc and the
 section on "Signals" in the Camel.

You can set the values of the %SIG hash to be the functions you want
 to handle the signal. After perl
catches the signal, it looks in %SIG
 for a key with the same name as the signal, then calls the
subroutine
 value for that key.

	 # as an anonymous subroutine

	 $SIG{INT} = sub { syswrite(STDERR, "ouch\n", 5) };

	 # or a reference to a function

	 $SIG{INT} = \&ouch;

	 # or the name of the function as a string

	 $SIG{INT} = "ouch";

Perl versions before 5.8 had in its C source code signal handlers which
 would catch the signal and

Perl version 5.14.2 documentation - perlfaq8

Page 8http://perldoc.perl.org

possibly run a Perl function that you had set
 in %SIG. This violated the rules of signal handling at that
level
 causing perl to dump core. Since version 5.8.0, perl looks at %SIG after the signal has been
caught, rather than while it is being caught.
 Previous versions of this answer were incorrect.

How do I modify the shadow password file on a Unix system?
If perl was installed correctly and your shadow library was written
 properly, the getpw*() functions
described in perlfunc should in
 theory provide (read-only) access to entries in the shadow password

file. To change the file, make a new shadow password file (the format
 varies from system to
system--see passwd for specifics) and use pwd_mkdb(8) to install it (see pwd_mkdb for more
details).

How do I set the time and date?
Assuming you're running under sufficient permissions, you should be
 able to set the system-wide date
and time by running the date(1)
 program. (There is no way to set the time and date on a
per-process
 basis.) This mechanism will work for Unix, MS-DOS, Windows, and NT;
 the VMS
equivalent is set time.

However, if all you want to do is change your time zone, you can
 probably get away with setting an
environment variable:

	 $ENV{TZ} = "MST7MDT";		 # Unixish
	 $ENV{'SYS$TIMEZONE_DIFFERENTIAL'}="-5" # vms
	 system "trn comp.lang.perl.misc";

How can I sleep() or alarm() for under a second?
If you want finer granularity than the 1 second that the sleep()
 function provides, the easiest way is
to use the select() function as
 documented in "select" in perlfunc. Try the Time::HiRes and
 the
BSD::Itimer modules (available from CPAN, and starting from
 Perl 5.8 Time::HiRes is part of the
standard distribution).

How can I measure time under a second?
(contributed by brian d foy)

The Time::HiRes module (part of the standard distribution as of
 Perl 5.8) measures time with the
gettimeofday() system call, which
 returns the time in microseconds since the epoch. If you can't
install Time::HiRes for older Perls and you are on a Unixish system, you
 may be able to call
gettimeofday(2) directly. See "syscall" in perlfunc.

How can I do an atexit() or setjmp()/longjmp()? (Exception handling)
You can use the END block to simulate atexit(). Each package's END block is called when the
program or thread ends. See the perlmod
 manpage for more details about END blocks.

For example, you can use this to make sure your filter program managed
 to finish its output without
filling up the disk:

	 END {
		 close(STDOUT) || die "stdout close failed: $!";
	 }

The END block isn't called when untrapped signals kill the program,
 though, so if you use END blocks
you should also use

	 use sigtrap qw(die normal-signals);

Perl's exception-handling mechanism is its eval() operator. You
 can use eval() as setjmp and
die() as longjmp. For
 details of this, see the section on signals, especially the time-out
 handler for
a blocking flock() in "Signals" in perlipc or the
 section on "Signals" in Programming Perl.

Perl version 5.14.2 documentation - perlfaq8

Page 9http://perldoc.perl.org

If exception handling is all you're interested in, use one of the
 many CPAN modules that handle
exceptions, such as Try::Tiny.

If you want the atexit() syntax (and an rmexit() as well), try the AtExit module available from
CPAN.

Why doesn't my sockets program work under System V (Solaris)? What does the error
message "Protocol not supported" mean?

Some Sys-V based systems, notably Solaris 2.X, redefined some of the
 standard socket constants.
Since these were constant across all
 architectures, they were often hardwired into perl code. The
proper
 way to deal with this is to "use Socket" to get the correct values.

Note that even though SunOS and Solaris are binary compatible, these
 values are different. Go
figure.

How can I call my system's unique C functions from Perl?
In most cases, you write an external module to do it--see the answer
 to "Where can I learn about
linking C with Perl? [h2xs, xsubpp]".
 However, if the function is a system call, and your system
supports syscall(), you can use the syscall function (documented in perlfunc).

Remember to check the modules that came with your distribution, and
 CPAN as well--someone may
already have written a module to do it. On
 Windows, try Win32::API. On Macs, try Mac::Carbon. If
no module
 has an interface to the C function, you can inline a bit of C in your
 Perl source with
Inline::C.

Where do I get the include files to do ioctl() or syscall()?
Historically, these would be generated by the h2ph tool, part of the
 standard perl distribution. This
program converts cpp(1) directives
 in C header files to files containing subroutine definitions, like
&SYS_getitimer, which you can use as arguments to your functions.
 It doesn't work perfectly, but it
usually gets most of the job done.
 Simple files like errno.h, syscall.h, and socket.h were fine,
 but the
hard ones like ioctl.h nearly always need to be hand-edited.
 Here's how to install the *.ph files:

	 1. become super-user
	 2. cd /usr/include
	 3. h2ph *.h */*.h

If your system supports dynamic loading, for reasons of portability and
 sanity you probably ought to
use h2xs (also part of the standard perl
 distribution). This tool converts C header files to Perl
extensions.
 See perlxstut for how to get started with h2xs.

If your system doesn't support dynamic loading, you still probably
 ought to use h2xs. See perlxstut
and ExtUtils::MakeMaker for
 more information (in brief, just use make perl instead of a plain make to
rebuild perl with a new static extension).

Why do setuid perl scripts complain about kernel problems?
Some operating systems have bugs in the kernel that make setuid
 scripts inherently insecure. Perl
gives you a number of options
 (described in perlsec) to work around such systems.

How can I open a pipe both to and from a command?
The IPC::Open2 module (part of the standard perl distribution) is
 an easy-to-use approach that
internally uses pipe(), fork(), and exec() to do the job. Make sure you read the deadlock
warnings in
 its documentation, though (see IPC::Open2). See "Bidirectional Communication with
Another Process" in perlipc and "Bidirectional Communication with Yourself" in perlipc

You may also use the IPC::Open3 module (part of the standard perl
 distribution), but be warned that
it has a different order of
 arguments from IPC::Open2 (see IPC::Open3).

Perl version 5.14.2 documentation - perlfaq8

Page 10http://perldoc.perl.org

Why can't I get the output of a command with system()?
You're confusing the purpose of system() and backticks (``). system()
 runs a command and
returns exit status information (as a 16 bit value:
 the low 7 bits are the signal the process died from, if
any, and
 the high 8 bits are the actual exit value). Backticks (``) run a
 command and return what it
sent to STDOUT.

	 $exit_status = system("mail-users");
	 $output_string = `ls`;

How can I capture STDERR from an external command?
There are three basic ways of running external commands:

	 system $cmd;		 # using system()
	 $output = `$cmd`;		 # using backticks (``)
	 open (PIPE, "cmd |");	 # using open()

With system(), both STDOUT and STDERR will go the same place as the
 script's STDOUT and
STDERR, unless the system() command redirects them.
 Backticks and open() read only the
STDOUT of your command.

You can also use the open3() function from IPC::Open3. Benjamin
 Goldberg provides some
sample code:

To capture a program's STDOUT, but discard its STDERR:

	 use IPC::Open3;
	 use File::Spec;
	 use Symbol qw(gensym);
	 open(NULL, ">", File::Spec->devnull);
	 my $pid = open3(gensym, *PH, ">&NULL", "cmd");
	 while(<PH>) { }
	 waitpid($pid, 0);

To capture a program's STDERR, but discard its STDOUT:

	 use IPC::Open3;
	 use File::Spec;
	 use Symbol qw(gensym);
	 open(NULL, ">", File::Spec->devnull);
	 my $pid = open3(gensym, ">&NULL", *PH, "cmd");
	 while(<PH>) { }
	 waitpid($pid, 0);

To capture a program's STDERR, and let its STDOUT go to our own STDERR:

	 use IPC::Open3;
	 use Symbol qw(gensym);
	 my $pid = open3(gensym, ">&STDERR", *PH, "cmd");
	 while(<PH>) { }
	 waitpid($pid, 0);

To read both a command's STDOUT and its STDERR separately, you can
 redirect them to temp files,
let the command run, then read the temp
 files:

	 use IPC::Open3;
	 use Symbol qw(gensym);

Perl version 5.14.2 documentation - perlfaq8

Page 11http://perldoc.perl.org

	 use IO::File;
	 local *CATCHOUT = IO::File->new_tmpfile;
	 local *CATCHERR = IO::File->new_tmpfile;
	 my $pid = open3(gensym, ">&CATCHOUT", ">&CATCHERR", "cmd");
	 waitpid($pid, 0);
	 seek $_, 0, 0 for *CATCHOUT, *CATCHERR;
	 while(<CATCHOUT>) {}
	 while(<CATCHERR>) {}

But there's no real need for both to be tempfiles... the following
 should work just as well, without
deadlocking:

	 use IPC::Open3;
	 use Symbol qw(gensym);
	 use IO::File;
	 local *CATCHERR = IO::File->new_tmpfile;
	 my $pid = open3(gensym, *CATCHOUT, ">&CATCHERR", "cmd");
	 while(<CATCHOUT>) {}
	 waitpid($pid, 0);
	 seek CATCHERR, 0, 0;
	 while(<CATCHERR>) {}

And it'll be faster, too, since we can begin processing the program's
 stdout immediately, rather than
waiting for the program to finish.

With any of these, you can change file descriptors before the call:

	 open(STDOUT, ">logfile");
	 system("ls");

or you can use Bourne shell file-descriptor redirection:

	 $output = `$cmd 2>some_file`;
	 open (PIPE, "cmd 2>some_file |");

You can also use file-descriptor redirection to make STDERR a
 duplicate of STDOUT:

	 $output = `$cmd 2>&1`;
	 open (PIPE, "cmd 2>&1 |");

Note that you cannot simply open STDERR to be a dup of STDOUT
 in your Perl program and avoid
calling the shell to do the redirection.
 This doesn't work:

	 open(STDERR, ">&STDOUT");
	 $alloutput = `cmd args`; # stderr still escapes

This fails because the open() makes STDERR go to where STDOUT was
 going at the time of the
open(). The backticks then make STDOUT go to
 a string, but don't change STDERR (which still
goes to the old
 STDOUT).

Note that you must use Bourne shell (sh(1)) redirection syntax in
 backticks, not csh(1)! Details on
why Perl's system() and backtick
 and pipe opens all use the Bourne shell are in the
versus/csh.whynot article in the "Far More Than You Ever Wanted To
 Know" collection in
http://www.cpan.org/misc/olddoc/FMTEYEWTK.tgz . To
 capture a command's STDERR and STDOUT
together:

	 $output = `cmd 2>&1`; # either with backticks

Perl version 5.14.2 documentation - perlfaq8

Page 12http://perldoc.perl.org

	 $pid = open(PH, "cmd 2>&1 |"); # or with an open pipe
	 while (<PH>) { } # plus a read

To capture a command's STDOUT but discard its STDERR:

	 $output = `cmd 2>/dev/null`; # either with backticks
	 $pid = open(PH, "cmd 2>/dev/null |"); # or with an open pipe
	 while (<PH>) { } # plus a read

To capture a command's STDERR but discard its STDOUT:

	 $output = `cmd 2>&1 1>/dev/null`; # either with backticks
	 $pid = open(PH, "cmd 2>&1 1>/dev/null |"); # or with an open pipe
	 while (<PH>) { } # plus a read

To exchange a command's STDOUT and STDERR in order to capture the STDERR
 but leave its
STDOUT to come out our old STDERR:

	 $output = `cmd 3>&1 1>&2 2>&3 3>&-`; # either with backticks
	 $pid = open(PH, "cmd 3>&1 1>&2 2>&3 3>&-|");# or with an open pipe
	 while (<PH>) { } # plus a read

To read both a command's STDOUT and its STDERR separately, it's easiest
 to redirect them
separately to files, and then read from those files
 when the program is done:

	 system("program args 1>program.stdout 2>program.stderr");

Ordering is important in all these examples. That's because the shell
 processes file descriptor
redirections in strictly left to right order.

	 system("prog args 1>tmpfile 2>&1");
	 system("prog args 2>&1 1>tmpfile");

The first command sends both standard out and standard error to the
 temporary file. The second
command sends only the old standard output
 there, and the old standard error shows up on the old
standard out.

Why doesn't open() return an error when a pipe open fails?
If the second argument to a piped open() contains shell
 metacharacters, perl fork()s, then
exec()s a shell to decode the
 metacharacters and eventually run the desired program. If the
program
 couldn't be run, it's the shell that gets the message, not Perl. All
 your Perl program can find
out is whether the shell itself could be
 successfully started. You can still capture the shell's STDERR
and
 check it for error messages. See How can I capture STDERR from an external command?
elsewhere in this document, or use the IPC::Open3 module.

If there are no shell metacharacters in the argument of open(), Perl
 runs the command directly,
without using the shell, and can correctly
 report whether the command started.

What's wrong with using backticks in a void context?
Strictly speaking, nothing. Stylistically speaking, it's not a good
 way to write maintainable code. Perl
has several operators for
 running external commands. Backticks are one; they collect the output
 from
the command for use in your program. The system function is
 another; it doesn't do this.

Writing backticks in your program sends a clear message to the readers
 of your code that you wanted
to collect the output of the command.
 Why send a clear message that isn't true?

Consider this line:

Perl version 5.14.2 documentation - perlfaq8

Page 13http://perldoc.perl.org

	 `cat /etc/termcap`;

You forgot to check $? to see whether the program even ran
 correctly. Even if you wrote

	 print `cat /etc/termcap`;

this code could and probably should be written as

	 system("cat /etc/termcap") == 0
	 or die "cat program failed!";

which will echo the cat command's output as it is generated, instead
 of waiting until the program has
completed to print it out. It also
 checks the return value.

system also provides direct control over whether shell wildcard
 processing may take place, whereas
backticks do not.

How can I call backticks without shell processing?
This is a bit tricky. You can't simply write the command
 like this:

	 @ok = `grep @opts '$search_string' @filenames`;

As of Perl 5.8.0, you can use open() with multiple arguments.
 Just like the list forms of system()
and exec(), no shell
 escapes happen.

	 open(GREP, "-|", 'grep', @opts, $search_string, @filenames);
	 chomp(@ok = <GREP>);
	 close GREP;

You can also:

	 my @ok = ();
	 if (open(GREP, "-|")) {
		 while (<GREP>) {
			 chomp;
			 push(@ok, $_);
		 }
		 close GREP;
	 } else {
		 exec 'grep', @opts, $search_string, @filenames;
	 }

Just as with system(), no shell escapes happen when you exec() a
 list. Further examples of this
can be found in "Safe Pipe Opens" in perlipc.

Note that if you're using Windows, no solution to this vexing issue is
 even possible. Even though Perl
emulates fork(), you'll still be
 stuck, because Windows does not have an argc/argv-style API.

Why can't my script read from STDIN after I gave it EOF (^D on Unix, ^Z on MS-DOS)?
This happens only if your perl is compiled to use stdio instead of
 perlio, which is the default. Some
(maybe all?) stdios set error and
 eof flags that you may need to clear. The POSIX module defines
clearerr() that you can use. That is the technically correct way to
 do it. Here are some less
reliable workarounds:

1 Try keeping around the seekpointer and go there, like this:

	 $where = tell(LOG);

Perl version 5.14.2 documentation - perlfaq8

Page 14http://perldoc.perl.org

	 seek(LOG, $where, 0);

2 If that doesn't work, try seeking to a different part of the file and
 then back.

3 If that doesn't work, try seeking to a different part of
 the file, reading something, and then
seeking back.

4 If that doesn't work, give up on your stdio package and use sysread.

How can I convert my shell script to perl?
Learn Perl and rewrite it. Seriously, there's no simple converter.
 Things that are awkward to do in the
shell are easy to do in Perl, and
 this very awkwardness is what would make a shell->perl converter

nigh-on impossible to write. By rewriting it, you'll think about what
 you're really trying to do, and
hopefully will escape the shell's
 pipeline datastream paradigm, which while convenient for some
matters,
 causes many inefficiencies.

Can I use perl to run a telnet or ftp session?
Try the Net::FTP, TCP::Client, and Net::Telnet modules
 (available from CPAN).

http://www.cpan.org/scripts/netstuff/telnet.emul.shar will also help
 for emulating the telnet protocol,
but Net::Telnet is quite
 probably easier to use.

If all you want to do is pretend to be telnet but don't need
 the initial telnet handshaking, then the
standard dual-process
 approach will suffice:

	 use IO::Socket; # new in 5.004
	 $handle = IO::Socket::INET->new('www.perl.com:80')
	 or die "can't connect to port 80 on www.perl.com: $!";
	 $handle->autoflush(1);
	 if (fork()) { # XXX: undef means failure
	 select($handle);
	 print while <STDIN>; # everything from stdin to socket
	 } else {
	 print while <$handle>; # everything from socket to stdout
	 }
	 close $handle;
	 exit;

How can I write expect in Perl?
Once upon a time, there was a library called chat2.pl (part of the
 standard perl distribution), which
never really got finished. If you
 find it somewhere, don't use it. These days, your best bet is to
 look at
the Expect module available from CPAN, which also requires two
 other modules from CPAN,
IO::Pty and IO::Stty.

Is there a way to hide perl's command line from programs such as "ps"?
First of all note that if you're doing this for security reasons (to
 avoid people seeing passwords, for
example) then you should rewrite
 your program so that critical information is never given as an

argument. Hiding the arguments won't make your program completely
 secure.

To actually alter the visible command line, you can assign to the
 variable $0 as documented in perlvar
. This won't work on all
 operating systems, though. Daemon programs like sendmail place their
 state
there, as in:

	 $0 = "orcus [accepting connections]";

Perl version 5.14.2 documentation - perlfaq8

Page 15http://perldoc.perl.org

I {changed directory, modified my environment} in a perl script. How come the change
disappeared when I exited the script? How do I get my changes to be visible?

Unix

In the strictest sense, it can't be done--the script executes as a
 different process from the shell
it was started from. Changes to a
 process are not reflected in its parent--only in any children

created after the change. There is shell magic that may allow you to
 fake it by eval()ing the
script's output in your shell; check out the
 comp.unix.questions FAQ for details.

How do I close a process's filehandle without waiting for it to complete?
Assuming your system supports such things, just send an appropriate signal
 to the process (see "kill"
in perlfunc). It's common to first send a TERM
 signal, wait a little bit, and then send a KILL signal to
finish it off.

How do I fork a daemon process?
If by daemon process you mean one that's detached (disassociated from
 its tty), then the following
process is reported to work on most
 Unixish systems. Non-Unix users should check their
Your_OS::Process
 module for other solutions.

Open /dev/tty and use the TIOCNOTTY ioctl on it. See tty
 for details. Or better yet, you can
just use the POSIX::setsid()
 function, so you don't have to worry about process groups.

Change directory to /

Reopen STDIN, STDOUT, and STDERR so they're not connected to the old
 tty.

Background yourself like this:

	 fork && exit;

The Proc::Daemon module, available from CPAN, provides a function to
 perform these actions for
you.

How do I find out if I'm running interactively or not?
(contributed by brian d foy)

This is a difficult question to answer, and the best answer is
 only a guess.

What do you really want to know? If you merely want to know if one of
 your filehandles is connected
to a terminal, you can try the -t
 file test:

	 if(-t STDOUT) {
		 print "I'm connected to a terminal!\n";
		 }

However, you might be out of luck if you expect that means there is a
 real person on the other side.
With the Expect module, another
 program can pretend to be a person. The program might even
come close
 to passing the Turing test.

The IO::Interactive module does the best it can to give you an
 answer. Its is_interactive
function returns an output filehandle;
 that filehandle points to standard output if the module thinks the

session is interactive. Otherwise, the filehandle is a null handle
 that simply discards the output:

	 use IO::Interactive;

	 print { is_interactive } "I might go to standard output!\n";

This still doesn't guarantee that a real person is answering your
 prompts or reading your output.

Perl version 5.14.2 documentation - perlfaq8

Page 16http://perldoc.perl.org

If you want to know how to handle automated testing for your
 distribution, you can check the
environment. The CPAN
 Testers, for instance, set the value of AUTOMATED_TESTING:

	 unless($ENV{AUTOMATED_TESTING}) {
		 print "Hello interactive tester!\n";
		 }

How do I timeout a slow event?
Use the alarm() function, probably in conjunction with a signal
 handler, as documented in "Signals"
in perlipc and the section on
 "Signals" in the Camel. You may instead use the more flexible
Sys::AlarmCall module available from CPAN.

The alarm() function is not implemented on all versions of Windows.
 Check the documentation for
your specific version of Perl.

How do I set CPU limits?
(contributed by Xho)

Use the BSD::Resource module from CPAN. As an example:

	 use BSD::Resource;
	 setrlimit(RLIMIT_CPU,10,20) or die $!;

This sets the soft and hard limits to 10 and 20 seconds, respectively.
 After 10 seconds of time spent
running on the CPU (not "wall" time),
 the process will be sent a signal (XCPU on some systems)
which, if not
 trapped, will cause the process to terminate. If that signal is
 trapped, then after 10 more
seconds (20 seconds in total) the process
 will be killed with a non-trappable signal.

See the BSD::Resource and your systems documentation for the gory
 details.

How do I avoid zombies on a Unix system?
Use the reaper code from "Signals" in perlipc to call wait() when a
 SIGCHLD is received, or else
use the double-fork technique described
 in "How do I start a process in the background?" in perlfaq8.

How do I use an SQL database?
The DBI module provides an abstract interface to most database
 servers and types, including Oracle,
DB2, Sybase, mysql, Postgresql,
 ODBC, and flat files. The DBI module accesses each database type
through a database driver, or DBD. You can see a complete list of
 available drivers on CPAN:
http://www.cpan.org/modules/by-module/DBD/ .
 You can read more about DBI on http://dbi.perl.org .

Other modules provide more specific access: Win32::ODBC, Alzabo, iodbc, and others found on
CPAN Search: http://search.cpan.org .

How do I make a system() exit on control-C?
You can't. You need to imitate the system() call (see perlipc for
 sample code) and then have a
signal handler for the INT signal that
 passes the signal on to the subprocess. Or you can check for it:

	 $rc = system($cmd);
	 if ($rc & 127) { die "signal death" }

How do I open a file without blocking?
If you're lucky enough to be using a system that supports
 non-blocking reads (most Unixish systems
do), you need only to use the O_NDELAY or O_NONBLOCK flag from the Fcntl module in conjunction
with sysopen():

	 use Fcntl;
	 sysopen(FH, "/foo/somefile", O_WRONLY|O_NDELAY|O_CREAT, 0644)

Perl version 5.14.2 documentation - perlfaq8

Page 17http://perldoc.perl.org

		 or die "can't open /foo/somefile: $!":

How do I tell the difference between errors from the shell and perl?
(answer contributed by brian d foy)

When you run a Perl script, something else is running the script for you,
 and that something else may
output error messages. The script might
 emit its own warnings and error messages. Most of the time
you cannot
 tell who said what.

You probably cannot fix the thing that runs perl, but you can change how
 perl outputs its warnings by
defining a custom warning and die functions.

Consider this script, which has an error you may not notice immediately.

	 #!/usr/locl/bin/perl

	 print "Hello World\n";

I get an error when I run this from my shell (which happens to be
 bash). That may look like perl forgot
it has a print() function,
 but my shebang line is not the path to perl, so the shell runs the
 script, and
I get the error.

	 $./test
	 ./test: line 3: print: command not found

A quick and dirty fix involves a little bit of code, but this may be all
 you need to figure out the problem.

	 #!/usr/bin/perl -w

	 BEGIN {
	 $SIG{__WARN__} = sub{ print STDERR "Perl: ", @_; };
	 $SIG{__DIE__} = sub{ print STDERR "Perl: ", @_; exit 1};
	 }

	 $a = 1 + undef;
	 $x / 0;
	 __END__

The perl message comes out with "Perl" in front. The BEGIN block
 works at compile time so all of the
compilation errors and warnings
 get the "Perl:" prefix too.

	 Perl: Useless use of division (/) in void context at ./test line 9.
	 Perl: Name "main::a" used only once: possible typo at ./test line 8.
	 Perl: Name "main::x" used only once: possible typo at ./test line 9.
	 Perl: Use of uninitialized value in addition (+) at ./test line 8.
	 Perl: Use of uninitialized value in division (/) at ./test line 9.
	 Perl: Illegal division by zero at ./test line 9.
	 Perl: Illegal division by zero at -e line 3.

If I don't see that "Perl:", it's not from perl.

You could also just know all the perl errors, and although there are
 some people who may know all of
them, you probably don't. However, they
 all should be in the perldiag manpage. If you don't find the
error in
 there, it probably isn't a perl error.

Looking up every message is not the easiest way, so let perl to do it
 for you. Use the diagnostics

Perl version 5.14.2 documentation - perlfaq8

Page 18http://perldoc.perl.org

pragma with turns perl's normal messages
 into longer discussions on the topic.

	 use diagnostics;

If you don't get a paragraph or two of expanded discussion, it
 might not be perl's message.

How do I install a module from CPAN?
(contributed by brian d foy)

The easiest way is to have a module also named CPAN do it for you by using
 the cpan command
that comes with Perl. You can give it a list of modules
 to install:

	 $ cpan IO::Interactive Getopt::Whatever

If you prefer CPANPLUS, it's just as easy:

	 $ cpanp i IO::Interactive Getopt::Whatever

If you want to install a distribution from the current directory, you can
 tell CPAN.pm to install . (the full
stop):

	 $ cpan .

See the documentation for either of those commands to see what else
 you can do.

If you want to try to install a distribution by yourself, resolving
 all dependencies on your own, you
follow one of two possible build
 paths.

For distributions that use Makefile.PL:

	 $ perl Makefile.PL
	 $ make test install

For distributions that use Build.PL:

	 $ perl Build.PL
	 $./Build test
	 $./Build install

Some distributions may need to link to libraries or other third-party
 code and their build and
installation sequences may be more complicated.
 Check any README or INSTALL files that you may
find.

What's the difference between require and use?
(contributed by brian d foy)

Perl runs require statement at run-time. Once Perl loads, compiles,
 and runs the file, it doesn't do
anything else. The use statement
 is the same as a require run at compile-time, but Perl also calls
the import method for the loaded package. These two are the same:

	 use MODULE qw(import list);

	 BEGIN {
		 require MODULE;
		 MODULE->import(import list);
		 }

Perl version 5.14.2 documentation - perlfaq8

Page 19http://perldoc.perl.org

However, you can suppress the import by using an explicit, empty
 import list. Both of these still
happen at compile-time:

	 use MODULE ();

	 BEGIN {
		 require MODULE;
		 }

Since use will also call the import method, the actual value
 for MODULE must be a bareword. That
is, use cannot load files
 by name, although require can:

	 require "$ENV{HOME}/lib/Foo.pm"; # no @INC searching!

See the entry for use in perlfunc for more details.

How do I keep my own module/library directory?
When you build modules, tell Perl where to install the modules.

If you want to install modules for your own use, the easiest way might
 be local::lib, which you
can download from CPAN. It sets various
 installation settings for you, and uses those same settings
within
 your programs.

If you want more flexibility, you need to configure your CPAN client
 for your particular situation.

For Makefile.PL-based distributions, use the INSTALL_BASE option
 when generating Makefiles:

	 perl Makefile.PL INSTALL_BASE=/mydir/perl

You can set this in your CPAN.pm configuration so modules
 automatically install in your private library
directory when you use
 the CPAN.pm shell:

	 % cpan
	 cpan> o conf makepl_arg INSTALL_BASE=/mydir/perl
	 cpan> o conf commit

For Build.PL-based distributions, use the --install_base option:

	 perl Build.PL --install_base /mydir/perl

You can configure CPAN.pm to automatically use this option too:

	 % cpan
	 cpan> o conf mbuild_arg "--install_base /mydir/perl"
	 cpan> o conf commit

INSTALL_BASE tells these tools to put your modules into /mydir/perl/lib/perl5. See How do I add a
directory to my include path (@INC) at runtime? for details on how to run your newly
 installed
modules.

There is one caveat with INSTALL_BASE, though, since it acts
 differently from the PREFIX and LIB
settings that older versions of ExtUtils::MakeMaker advocated. INSTALL_BASE does not
support
 installing modules for multiple versions of Perl or different
 architectures under the same
directory. You should consider whether you
 really want that and, if you do, use the older PREFIX and
LIB
 settings. See the ExtUtils::Makemaker documentation for more details.

Perl version 5.14.2 documentation - perlfaq8

Page 20http://perldoc.perl.org

How do I add the directory my program lives in to the module/library search path?
(contributed by brian d foy)

If you know the directory already, you can add it to @INC as you would
 for any other directory. You
might <use lib> if you know the directory
 at compile time:

	 use lib $directory;

The trick in this task is to find the directory. Before your script does
 anything else (such as a chdir),
you can get the current working
 directory with the Cwd module, which comes with Perl:

	 BEGIN {
		 use Cwd;
		 our $directory = cwd;
		 }

	 use lib $directory;

You can do a similar thing with the value of $0, which holds the
 script name. That might hold a
relative path, but rel2abs can turn
 it into an absolute path. Once you have the

	 BEGIN {
		 use File::Spec::Functions qw(rel2abs);
		 use File::Basename qw(dirname);

		 my $path = rel2abs($0);
		 our $directory = dirname($path);
		 }

	 use lib $directory;

The FindBin module, which comes with Perl, might work. It finds the
 directory of the currently
running script and puts it in $Bin, which
 you can then use to construct the right library path:

	 use FindBin qw($Bin);

You can also use local::lib to do much of the same thing. Install
 modules using local::lib's
settings then use the module in your
 program:

	 use local::lib; # sets up a local lib at ~/perl5

See the local::lib documentation for more details.

How do I add a directory to my include path (@INC) at runtime?
Here are the suggested ways of modifying your include path, including
 environment variables,
run-time switches, and in-code statements:

the PERLLIB environment variable

	 $ export PERLLIB=/path/to/my/dir
	 $ perl program.pl

the PERL5LIB environment variable

	 $ export PERL5LIB=/path/to/my/dir
	 $ perl program.pl

Perl version 5.14.2 documentation - perlfaq8

Page 21http://perldoc.perl.org

the perl -Idir command line flag

	 $ perl -I/path/to/my/dir program.pl

the lib pragma:

	 use lib "$ENV{HOME}/myown_perllib";

the local::lib module:

	 use local::lib;

	 use local::lib "~/myown_perllib";

The last is particularly useful because it knows about machine-dependent
 architectures. The lib.pm
pragmatic module was first
 included with the 5.002 release of Perl.

What is socket.ph and where do I get it?
It's a Perl 4 style file defining values for system networking
 constants. Sometimes it is built using
h2ph when Perl is installed,
 but other times it is not. Modern programs use Socket; instead.

AUTHOR AND COPYRIGHT
Copyright (c) 1997-2010 Tom Christiansen, Nathan Torkington, and
 other authors as noted. All rights
reserved.

This documentation is free; you can redistribute it and/or modify it
 under the same terms as Perl itself.

Irrespective of its distribution, all code examples in this file
 are hereby placed into the public domain.
You are permitted and
 encouraged to use this code in your own programs for fun
 or for profit as you
see fit. A simple comment in the code giving
 credit would be courteous but is not required.

