
Perl version 5.14.2 documentation - perlfaq9

Page 1http://perldoc.perl.org

NAME
perlfaq9 - Networking

DESCRIPTION
This section deals with questions related to networking, the internet,
 and a few on the web.

What is the correct form of response from a CGI script?
(Alan Flavell <flavell+www@a5.ph.gla.ac.uk> answers...)

The Common Gateway Interface (CGI) specifies a software interface between
 a program ("CGI
script") and a web server (HTTPD). It is not specific
 to Perl, and has its own FAQs and tutorials, and
usenet group,
 comp.infosystems.www.authoring.cgi

The CGI specification is outlined in an informational RFC:
 http://www.ietf.org/rfc/rfc3875

These Perl FAQs very selectively cover some CGI issues. However, Perl
 programmers are strongly
advised to use the CGI.pm module, to take care
 of the details for them.

The similarity between CGI response headers (defined in the CGI
 specification) and HTTP response
headers (defined in the HTTP
 specification, RFC2616) is intentional, but can sometimes be confusing.

The CGI specification defines two kinds of script: the "Parsed Header"
 script, and the "Non Parsed
Header" (NPH) script. Check your server
 documentation to see what it supports. "Parsed Header"
scripts are
 simpler in various respects. The CGI specification allows any of the
 usual newline
representations in the CGI response (it's the server's
 job to create an accurate HTTP response based
on it). So "\n" written in
 text mode is technically correct, and recommended. NPH scripts are more

tricky: they must put out a complete and accurate set of HTTP
 transaction response headers; the
HTTP specification calls for records
 to be terminated with carriage-return and line-feed; i.e., ASCII
\015\012
 written in binary mode.

Using CGI.pm gives excellent platform independence, including EBCDIC
 systems. CGI.pm selects
an appropriate newline representation
 ($CGI::CRLF) and sets binmode as appropriate.

My CGI script runs from the command line but not the browser. (500 Server Error)
(contributed by brian d foy)

There are many things that might be wrong with your CGI program, and only
 some of them might be
related to Perl. Try going through the troubleshooting
 guide on Perlmonks:

	 http://www.perlmonks.org/?node_id=380424

How can I get better error messages from a CGI program?
Use the CGI::Carp module. It replaces warn and die, plus the
 normal Carp module's carp,
croak, and confess functions with
 more verbose and safer versions. It still sends them to the
normal
 server error log.

	 use CGI::Carp;
	 warn "This is a complaint";
	 die "But this one is serious";

The following use of CGI::Carp also redirects errors to a file of your choice,
 placed in a BEGIN block
to catch compile-time warnings as well:

	 BEGIN {
		 use CGI::Carp qw(carpout);
		 open(LOG, ">>/var/local/cgi-logs/mycgi-log")
			 or die "Unable to append to mycgi-log: $!\n";
		 carpout(*LOG);

Perl version 5.14.2 documentation - perlfaq9

Page 2http://perldoc.perl.org

	 }

You can even arrange for fatal errors to go back to the client browser,
 which is nice for your own
debugging, but might confuse the end user.

	 use CGI::Carp qw(fatalsToBrowser);
	 die "Bad error here";

Even if the error happens before you get the HTTP header out, the module
 will try to take care of this
to avoid the dreaded server 500 errors.
 Normal warnings still go out to the server error log (or
wherever
 you've sent them with carpout) with the application name and date
 stamp prepended.

How do I remove HTML from a string?
The most correct way (albeit not the fastest) is to use HTML::Parser
 from CPAN. Another mostly
correct
 way is to use HTML::FormatText which not only removes HTML but also
 attempts to do a
little simple formatting of the resulting plain text.

Many folks attempt a simple-minded regular expression approach, like s/<.*?>//g, but that fails in
many cases because the tags
 may continue over line breaks, they may contain quoted
angle-brackets,
 or HTML comments may be present. Plus, folks forget to convert
 entities--like <
for example.

Here's one "simple-minded" approach, that works for most files:

	 #!/usr/bin/perl -p0777
	 s/<(?:[^>'"]*|(['"]).*?\g1)*>//gs

If you want a more complete solution, see the 3-stage striphtml
 program in

http://www.cpan.org/authors/Tom_Christiansen/scripts/striphtml.gz
 .

Here are some tricky cases that you should think about when picking
 a solution:

	 B">

	 <IMG SRC = "foo.gif"
	 ALT = "A > B">

	 <!-- <A comment> -->

	 <script>if (a<b && a>c)</script>

	 <# Just data #>

	 <![INCLUDE CDATA [>>>>>>>>>>>>]]>

If HTML comments include other tags, those solutions would also break
 on text like this:

	 <!-- This section commented out.
		 You can't see me!
	 -->

How do I extract URLs?
You can easily extract all sorts of URLs from HTML with HTML::SimpleLinkExtor which handles
anchors, images, objects,
 frames, and many other tags that can contain a URL. If you need
 anything
more complex, you can create your own subclass of HTML::LinkExtor or HTML::Parser. You

Perl version 5.14.2 documentation - perlfaq9

Page 3http://perldoc.perl.org

might even use HTML::SimpleLinkExtor as an example for something specifically
 suited to your
needs.

You can use URI::Find to extract URLs from an arbitrary text document.

Less complete solutions involving regular expressions can save
 you a lot of processing time if you
know that the input is simple. One
 solution from Tom Christiansen runs 100 times faster than most

module-based approaches but only extracts URLs from anchors where the first
 attribute is HREF and
there are no other attributes.

	 #!/usr/bin/perl -n00
	 # qxurl - tchrist@perl.com
	 print "$2\n" while m{
		 < \s*
		 A \s+ HREF \s* = \s* (["']) (.*?) \g1
		 \s* >
	 }gsix;

How do I download a file from the user's machine? How do I open a file on another machine?
In this case, download means to use the file upload feature of HTML
 forms. You allow the web surfer
to specify a file to send to your web
 server. To you it looks like a download, and to the user it looks

like an upload. No matter what you call it, you do it with what's
 known as multipart/form-data
encoding. The CGI.pm module (which
 comes with Perl as part of the Standard Library) supports this
in the start_multipart_form() method, which isn't the same as the startform()
 method.

See the section in the CGI.pm documentation on file uploads for code
 examples and details.

How do I make an HTML pop-up menu with Perl?
(contributed by brian d foy)

The CGI.pm module (which comes with Perl) has functions to create
 the HTML form widgets. See the
CGI.pm documentation for more
 examples.

	 use CGI qw/:standard/;
	 print header,
		 start_html('Favorite Animals'),

		 start_form,
			 "What's your favorite animal? ",
		 popup_menu(
			 -name => 'animal',
			 -values => [qw(Llama Alpaca Camel Ram)]
),
		 submit,

		 end_form,
		 end_html;

How do I fetch an HTML file?
(contributed by brian d foy)

Use the libwww-perl distribution. The LWP::Simple module can fetch web
 resources and give their
content back to you as a string:

	 use LWP::Simple qw(get);

Perl version 5.14.2 documentation - perlfaq9

Page 4http://perldoc.perl.org

	 my $html = get("http://www.example.com/index.html");

It can also store the resource directly in a file:

	 use LWP::Simple qw(getstore);

	 getstore("http://www.example.com/index.html", "foo.html");

If you need to do something more complicated, you can use LWP::UserAgent module to create your
own user-agent (e.g. browser)
 to get the job done. If you want to simulate an interactive web
 browser,
you can use the WWW::Mechanize module.

How do I automate an HTML form submission?
If you are doing something complex, such as moving through many pages
 and forms or a web site,
you can use WWW::Mechanize. See its
 documentation for all the details.

If you're submitting values using the GET method, create a URL and encode
 the form using the
query_form method:

	 use LWP::Simple;
	 use URI::URL;

	 my $url = url('http://www.perl.com/cgi-bin/cpan_mod');
	 $url->query_form(module => 'DB_File', readme => 1);
	 $content = get($url);

If you're using the POST method, create your own user agent and encode
 the content appropriately.

	 use HTTP::Request::Common qw(POST);
	 use LWP::UserAgent;

	 $ua = LWP::UserAgent->new();
	 my $req = POST 'http://www.perl.com/cgi-bin/cpan_mod',
				 [module => 'DB_File', readme => 1];
	 $content = $ua->request($req)->as_string;

How do I decode or create those %-encodings on the web?
(contributed by brian d foy)

Those % encodings handle reserved characters in URIs, as described
 in RFC 2396, Section 2. This
encoding replaces the reserved character
 with the hexadecimal representation of the character's
number from
 the US-ASCII table. For instance, a colon, :, becomes %3A.

In CGI scripts, you don't have to worry about decoding URIs if you are
 using CGI.pm. You shouldn't
have to process the URI yourself,
 either on the way in or the way out.

If you have to encode a string yourself, remember that you should
 never try to encode an
already-composed URI. You need to escape the
 components separately then put them together. To
encode a string, you
 can use the URI::Escape module. The uri_escape function
 returns the
escaped string:

	 my $original = "Colon : Hash # Percent %";

	 my $escaped = uri_escape($original);

Perl version 5.14.2 documentation - perlfaq9

Page 5http://perldoc.perl.org

	 print "$escaped\n"; # 'Colon%20%3A%20Hash%20%23%20Percent%20%25'

To decode the string, use the uri_unescape function:

	 my $unescaped = uri_unescape($escaped);

	 print $unescaped; # back to original

If you wanted to do it yourself, you simply need to replace the
 reserved characters with their
encodings. A global substitution
 is one way to do it:

	 # encode
	 $string =~ s/([^^A-Za-z0-9\-_.!~*'()])/ sprintf "%%%0x", ord $1 /eg;

	 #decode
	 $string =~ s/%([A-Fa-f\d]{2})/chr hex $1/eg;

How do I redirect to another page?
Specify the complete URL of the destination (even if it is on the same
 server). This is one of the two
different kinds of CGI "Location:"
 responses which are defined in the CGI specification for a Parsed
Headers
 script. The other kind (an absolute URLpath) is resolved internally to
 the server without any
HTTP redirection. The CGI specifications do not
 allow relative URLs in either case.

Use of CGI.pm is strongly recommended. This example shows redirection
 with a complete URL. This
redirection is handled by the web browser.

	 use CGI qw/:standard/;

	 my $url = 'http://www.cpan.org/';
	 print redirect($url);

This example shows a redirection with an absolute URLpath. This
 redirection is handled by the local
web server.

	 my $url = '/CPAN/index.html';
	 print redirect($url);

But if coded directly, it could be as follows (the final "\n" is
 shown separately, for clarity), using either a
complete URL or
 an absolute URLpath.

	 print "Location: $url\n"; # CGI response header
	 print "\n"; # end of headers

How do I put a password on my web pages?
To enable authentication for your web server, you need to configure
 your web server. The
configuration is different for different sorts
 of web servers--apache does it differently from iPlanet
which does
 it differently from IIS. Check your web server documentation for
 the details for your
particular server.

How do I edit my .htpasswd and .htgroup files with Perl?
The HTTPD::UserAdmin and HTTPD::GroupAdmin modules provide a
 consistent OO interface to
these files, regardless of how they're
 stored. Databases may be text, dbm, Berkeley DB or any
database with
 a DBI compatible driver. HTTPD::UserAdmin supports files used by the
 "Basic" and
"Digest" authentication schemes. Here's an example:

Perl version 5.14.2 documentation - perlfaq9

Page 6http://perldoc.perl.org

	 use HTTPD::UserAdmin ();
	 HTTPD::UserAdmin
	 ->new(DB => "/foo/.htpasswd")
	 ->add($username => $password);

How do I make sure users can't enter values into a form that cause my CGI script to do bad
things?

(contributed by brian d foy)

You can't prevent people from sending your script bad data. Even if
 you add some client-side checks,
people may disable them or bypass
 them completely. For instance, someone might use a module
such as LWP to access your CGI program. If you want to prevent data that
 try to use SQL injection or
other sorts of attacks (and you should
 want to), you have to not trust any data that enter your
program.

The perlsec documentation has general advice about data security.
 If you are using the DBI module,
use placeholder to fill in data.
 If you are running external programs with system or exec, use
 the list
forms. There are many other precautions that you should take,
 too many to list here, and most of
them fall under the category of not
 using any data that you don't intend to use. Trust no one.

How do I parse a mail header?
For a quick-and-dirty solution, try this solution derived
 from "split" in perlfunc:

	 $/ = '';
	 $header = <MSG>;
	 $header =~ s/\n\s+/ /g;	 # merge continuation lines
	 %head = (UNIX_FROM_LINE, split /^([-\w]+):\s*/m, $header);

That solution doesn't do well if, for example, you're trying to
 maintain all the Received lines. A more
complete approach is to use
 the Mail::Header module from CPAN (part of the MailTools
package).

How do I decode a CGI form?
(contributed by brian d foy)

Use the CGI.pm module that comes with Perl. It's quick,
 it's easy, and it actually does quite a bit of
work to
 ensure things happen correctly. It handles GET, POST, and
 HEAD requests, multipart forms,
multivalued fields, query
 string and message body combinations, and many other things
 you probably
don't want to think about.

It doesn't get much easier: the CGI.pm module automatically
 parses the input and makes each value
available through the param() function.

	 use CGI qw(:standard);

	 my $total = param('price') + param('shipping');

	 my @items = param('item'); # multiple values, same field name

If you want an object-oriented approach, CGI.pm can do that too.

	 use CGI;

	 my $cgi = CGI->new();

	 my $total = $cgi->param('price') + $cgi->param('shipping');

Perl version 5.14.2 documentation - perlfaq9

Page 7http://perldoc.perl.org

	 my @items = $cgi->param('item');

You might also try CGI::Minimal which is a lightweight version
 of the same thing. Other CGI::*
modules on CPAN might work better
 for you, too.

Many people try to write their own decoder (or copy one from
 another program) and then run into one
of the many "gotchas"
 of the task. It's much easier and less hassle to use CGI.pm.

How do I check a valid mail address?
(partly contributed by Aaron Sherman)

This isn't as simple a question as it sounds. There are two parts:

a) How do I verify that an email address is correctly formatted?

b) How do I verify that an email address targets a valid recipient?

Without sending mail to the address and seeing whether there's a human
 on the other end to answer
you, you cannot fully answer part b, but
 either the Email::Valid or the RFC::RFC822::Address
module will do
 both part a and part b as far as you can in real-time.

If you want to just check part a to see that the address is valid
 according to the mail header standard
with a simple regular expression,
 you can have problems, because there are deliverable addresses
that
 aren't RFC-2822 (the latest mail header standard) compliant, and
 addresses that aren't
deliverable which, are compliant. However, the
 following will match valid RFC-2822 addresses that do
not have comments,
 folding whitespace, or any other obsolete or non-essential elements.
 This just
matches the address itself:

	 my $atom = qr{[a-zA-Z0-9_!#\$\%&'*+/=?\^`{}~|\-]+};
	 my $dot_atom = qr{$atom(?:\.$atom)*};
	 my $quoted = qr{"(?:\\[^\r\n]|[^\\"])*"};
	 my $local = qr{(?:$dot_atom|$quoted)};
	 my $quotedpair = qr{\\[\x00-\x09\x0B-\x0c\x0e-\x7e]};
	 my $domain_lit = qr{\[(?:$quotedpair|[\x21-\x5a\x5e-\x7e])*\]};
 	 my $domain = qr{(?:$dot_atom|$domain_lit)};
	 my $addr_spec = qr{$local\@$domain};

Just match an address against /^${addr_spec}$/ to see if it follows
 the RFC2822 specification.
However, because it is impossible to be
 sure that such a correctly formed address is actually the
correct way
 to reach a particular person or even has a mailbox associated with it,
 you must be very
careful about how you use this.

Our best advice for verifying a person's mail address is to have them
 enter their address twice, just as
you normally do to change a
 password. This usually weeds out typos. If both versions match, send

mail to that address with a personal message. If you get the message
 back and they've followed your
directions, you can be reasonably
 assured that it's real.

A related strategy that's less open to forgery is to give them a PIN
 (personal ID number). Record the
address and PIN (best that it be a
 random one) for later processing. In the mail you send, ask them to
include the PIN in their reply. But if it bounces, or the message is
 included via a "vacation" script, it'll
be there anyway. So it's
 best to ask them to mail back a slight alteration of the PIN, such as
 with the
characters reversed, one added or subtracted to each digit, etc.

How do I decode a MIME/BASE64 string?
The MIME-Base64 package (available from CPAN) handles this as well as
 the MIME/QP encoding.
Decoding BASE64 becomes as simple as:

	 use MIME::Base64;
	 $decoded = decode_base64($encoded);

Perl version 5.14.2 documentation - perlfaq9

Page 8http://perldoc.perl.org

The MIME-Tools package (available from CPAN) supports extraction with
 decoding of BASE64
encoded attachments and content directly from email
 messages.

If the string to decode is short (less than 84 bytes long)
 a more direct approach is to use the
unpack() function's "u"
 format after minor transliterations:

	 tr#A-Za-z0-9+/##cd; # remove non-base64 chars
	 tr#A-Za-z0-9+/# -_#; # convert to uuencoded format
	 $len = pack("c", 32 + 0.75*length); # compute length byte
	 print unpack("u", $len . $_); # uudecode and print

How do I return the user's mail address?
On systems that support getpwuid, the $< variable, and the Sys::Hostname module (which is part
of the standard perl distribution),
 you can probably try using something like this:

	 use Sys::Hostname;
	 $address = sprintf('%s@%s', scalar getpwuid($<), hostname);

Company policies on mail address can mean that this generates addresses
 that the company's mail
system will not accept, so you should ask for
 users' mail addresses when this matters. Furthermore,
not all systems
 on which Perl runs are so forthcoming with this information as is Unix.

The Mail::Util module from CPAN (part of the MailTools package) provides a mailaddress()
function that tries to guess the mail address of the user.
 It makes a more intelligent guess than the
code above, using information
 given when the module was installed, but it could still be incorrect.

Again, the best way is often just to ask the user.

How do I send mail?
Use the sendmail program directly:

	 open(SENDMAIL, "|/usr/lib/sendmail -oi -t -odq")
		 or die "Can't fork for sendmail: $!\n";
	 print SENDMAIL <<"EOF";
	 From: User Originating Mail <me\@host>
	 To: Final Destination <you\@otherhost>
	 Subject: A relevant subject line

	 Body of the message goes here after the blank line
	 in as many lines as you like.
	 EOF
	 close(SENDMAIL) or warn "sendmail didn't close nicely";

The -oi option prevents sendmail from interpreting a line consisting
 of a single dot as "end of
message". The -t option says to use the
 headers to decide who to send the message to, and -odq
says to put
 the message into the queue. This last option means your message won't
 be immediately
delivered, so leave it out if you want immediate
 delivery.

Alternate, less convenient approaches include calling mail (sometimes
 called mailx) directly or
simply opening up port 25 have having an
 intimate conversation between just you and the remote
SMTP daemon,
 probably sendmail.

Or you might be able use the CPAN module Mail::Mailer:

	 use Mail::Mailer;

	 $mailer = Mail::Mailer->new();
	 $mailer->open({ From => $from_address,

Perl version 5.14.2 documentation - perlfaq9

Page 9http://perldoc.perl.org

					 To => $to_address,
					 Subject => $subject,
				 })
		 or die "Can't open: $!\n";
	 print $mailer $body;
	 $mailer->close();

The Mail::Internet module uses Net::SMTP which is less Unix-centric than Mail::Mailer,
but less reliable. Avoid raw SMTP commands. There
 are many reasons to use a mail transport agent
like sendmail. These
 include queuing, MX records, and security.

How do I use MIME to make an attachment to a mail message?
This answer is extracted directly from the MIME::Lite documentation.
 Create a multipart message
(i.e., one with attachments).

	 use MIME::Lite;

	 ### Create a new multipart message:
	 $msg = MIME::Lite->new(
				 From =>'me@myhost.com',
				 To =>'you@yourhost.com',
				 Cc =>'some@other.com, some@more.com',
				 Subject =>'A message with 2 parts...',
				 Type =>'multipart/mixed'
);

	 ### Add parts (each "attach" has same arguments as "new"):
	 $msg->attach(Type =>'TEXT',
				 Data =>"Here's the GIF file you wanted"
);
	 $msg->attach(Type =>'image/gif',
				 Path =>'aaa000123.gif',
				 Filename =>'logo.gif'
);

	 $text = $msg->as_string;

MIME::Lite also includes a method for sending these things.

	 $msg->send;

This defaults to using sendmail but can be customized to use
 SMTP via Net::SMTP.

How do I read mail?
While you could use the Mail::Folder module from CPAN (part of the MailFolder package) or
the Mail::Internet module from CPAN (part
 of the MailTools package), often a module is
overkill. Here's a
 mail sorter.

	 #!/usr/bin/perl

	 my(@msgs, @sub);
	 my $msgno = -1;
	 $/ = ''; # paragraph reads
	 while (<>) {
		 if (/^From /m) {

Perl version 5.14.2 documentation - perlfaq9

Page 10http://perldoc.perl.org

			 /^Subject:\s*(?:Re:\s*)*(.*)/mi;
			 $sub[++$msgno] = lc($1) || '';
		 }
		 $msgs[$msgno] .= $_;
	 }
	 for my $i (sort { $sub[$a] cmp $sub[$b] || $a <=> $b } (0 .. $#msgs)) {
		 print $msgs[$i];
	 }

Or more succinctly,

	 #!/usr/bin/perl -n00
	 # bysub2 - awkish sort-by-subject
	 BEGIN { $msgno = -1 }
	 $sub[++$msgno] = (/^Subject:\s*(?:Re:\s*)*(.*)/mi)[0] if /^From/m;
	 $msg[$msgno] .= $_;
	 END { print @msg[sort { $sub[$a] cmp $sub[$b] || $a <=> $b } (0 .. $#msg)
] }

How do I find out my hostname, domainname, or IP address?
(contributed by brian d foy)

The Net::Domain module, which is part of the standard distribution starting
 in perl5.7.3, can get you
the fully qualified domain name (FQDN), the host
 name, or the domain name.

	 use Net::Domain qw(hostname hostfqdn hostdomain);

	 my $host = hostfqdn();

The Sys::Hostname module, included in the standard distribution since
 perl5.6, can also get the
hostname.

	 use Sys::Hostname;

	 $host = hostname();

To get the IP address, you can use the gethostbyname built-in function
 to turn the name into a
number. To turn that number into the dotted octet
 form (a.b.c.d) that most people expect, use the
inet_ntoa function
 from the Socket module, which also comes with perl.

	 use Socket;

	 my $address = inet_ntoa(
		 scalar gethostbyname($host || 'localhost')
);

How do I fetch a news article or the active newsgroups?
Use the Net::NNTP or News::NNTPClient modules, both available from CPAN.
 This can make
tasks like fetching the newsgroup list as simple as

	 perl -MNews::NNTPClient
	 -e 'print News::NNTPClient->new->list("newsgroups")'

Perl version 5.14.2 documentation - perlfaq9

Page 11http://perldoc.perl.org

How do I fetch/put an FTP file?
(contributed by brian d foy)

The LWP family of modules (available on CPAN as the libwww-perl distribution)
 can work with FTP just
like it can with many other protocols. LWP::Simple
 makes it quite easy to fetch a file:

	 use LWP::Simple;

	 my $data = get('ftp://some.ftp.site/some/file.txt');

If you want more direct or low-level control of the FTP process, you can use
 the Net::FTP module (in
the Standard Library since Perl 5.8). It's
 documentation has examples showing you just how to do
that.

How can I do RPC in Perl?
(contributed by brian d foy)

Use one of the RPC modules you can find on CPAN (

http://search.cpan.org/search?query=RPC&mode=all).

AUTHOR AND COPYRIGHT
Copyright (c) 1997-2010 Tom Christiansen, Nathan Torkington, and
 other authors as noted. All rights
reserved.

This documentation is free; you can redistribute it and/or modify it
 under the same terms as Perl itself.

Irrespective of its distribution, all code examples in this file
 are hereby placed into the public domain.
You are permitted and
 encouraged to use this code in your own programs for fun
 or for profit as you
see fit. A simple comment in the code giving
 credit would be courteous but is not required.

