
Perl version 5.14.2 documentation - perlintern

Page 1http://perldoc.perl.org

NAME
perlintern - autogenerated documentation of purely internal
 Perl functions

DESCRIPTION
This file is the autogenerated documentation of functions in the
 Perl interpreter that are documented
using Perl's internal documentation
 format but are not marked as part of the Perl API. In other words,
they are not for use in extensions!

Compile-time scope hooks
BhkENTRY

Return an entry from the BHK structure. which is a preprocessor token
 indicating
which entry to return. If the appropriate flag is not set
 this will return NULL. The type of
the return value depends on which
 entry you ask for.

NOTE: this function is experimental and may change or be
 removed without notice.

	 void *	 BhkENTRY(BHK *hk, which)

BhkFLAGS

Return the BHK's flags.

NOTE: this function is experimental and may change or be
 removed without notice.

	 U32	 BhkFLAGS(BHK *hk)

CALL_BLOCK_HOOKS

Call all the registered block hooks for type which. which is a
 preprocessing token; the
type of arg depends on which.

NOTE: this function is experimental and may change or be
 removed without notice.

	 void	 CALL_BLOCK_HOOKS(which, arg)

CV reference counts and CvOUTSIDE
CvWEAKOUTSIDE

Each CV has a pointer, CvOUTSIDE(), to its lexically enclosing
 CV (if any). Because
pointers to anonymous sub prototypes are
 stored in & pad slots, it is a possible to get a
circular reference,
 with the parent pointing to the child and vice-versa. To avoid the

ensuing memory leak, we do not increment the reference count of the CV
 pointed to by
CvOUTSIDE in the one specific instance that the parent
 has a & pad slot pointing back
to us. In this case, we set the CvWEAKOUTSIDE flag in the child. This allows us to
determine under what
 circumstances we should decrement the refcount of the parent
when freeing
 the child.

There is a further complication with non-closure anonymous subs (i.e. those
 that do
not refer to any lexicals outside that sub). In this case, the
 anonymous prototype is
shared rather than being cloned. This has the
 consequence that the parent may be
freed while there are still active
 children, eg

 BEGIN { $a = sub { eval '$x' } }

In this case, the BEGIN is freed immediately after execution since there
 are no active
references to it: the anon sub prototype has CvWEAKOUTSIDE set since it's not a
closure, and $a points to the same
 CV, so it doesn't contribute to BEGIN's refcount
either. When $a is
 executed, the eval '$x' causes the chain of CvOUTSIDEs to be
followed,
 and the freed BEGIN is accessed.

To avoid this, whenever a CV and its associated pad is freed, any & entries in the pad
are explicitly removed from the pad, and if the
 refcount of the pointed-to anon sub is

Perl version 5.14.2 documentation - perlintern

Page 2http://perldoc.perl.org

still positive, then that
 child's CvOUTSIDE is set to point to its grandparent. This will
only
 occur in the single specific case of a non-closure anon prototype
 having one or
more active references (such as $a above).

One other thing to consider is that a CV may be merely undefined
 rather than freed, eg
undef &foo. In this case, its refcount may
 not have reached zero, but we still delete
its pad and its CvROOT etc.
 Since various children may still have their CvOUTSIDE
pointing at this
 undefined CV, we keep its own CvOUTSIDE for the time being, so that

the chain of lexical scopes is unbroken. For example, the following
 should print 123:

 my $x = 123;
 sub tmp { sub { eval '$x' } }
 my $a = tmp();
 undef &tmp;
 print $a->();

	 bool	 CvWEAKOUTSIDE(CV *cv)

Embedding Functions
cv_clone

Clone a CV: make a new CV which points to the same code etc, but which
 has a
newly-created pad built by copying the prototype pad and capturing
 any outer lexicals.

	 CV*	 cv_clone(CV* proto)

cv_dump

dump the contents of a CV

	 void	 cv_dump(const CV *cv, const char *title)

do_dump_pad

Dump the contents of a padlist

	 void	 do_dump_pad(I32 level, PerlIO *file, PADLIST *padlist, int
 full)

intro_my

"Introduce" my variables to visible status.

	 U32	 intro_my()

pad_add_anon

Add an anon code entry to the current compiling pad

	 PADOFFSET	 pad_add_anon(SV* sv, OPCODE op_type)

pad_add_name

Create a new name and associated PADMY SV in the current pad; return the
 offset.
 If
typestash is valid, the name is for a typed lexical; set the
 name's stash to that value.
If ourstash is valid, it's an our lexical, set the name's
 SvOURSTASH to that value

If fake, it means we're cloning an existing entry

NOTE: this function is experimental and may change or be
 removed without notice.

	 PADOFFSET	 pad_add_name(const char *name, const STRLEN len,
const U32 flags, HV *typestash, HV *ourstash)

Perl version 5.14.2 documentation - perlintern

Page 3http://perldoc.perl.org

pad_alloc

Allocate a new my or tmp pad entry. For a my, simply push a null SV onto
 the end of
PL_comppad, but for a tmp, scan the pad from PL_padix upwards
 for a slot which has
no name and no active value.

	 PADOFFSET	 pad_alloc(I32 optype, U32 tmptype)

pad_block_start

Update the pad compilation state variables on entry to a new block

	 void	 pad_block_start(int full)

pad_check_dup

Check for duplicate declarations: report any of:
 * a my in the current scope with the
same name;
 * an our (anywhere in the pad) with the same name and the same stash

as ourstash is_our indicates that the name to check is an 'our' declaration

	 void	 pad_check_dup(SV *name, const U32 flags, const HV
*ourstash)

pad_findlex

Find a named lexical anywhere in a chain of nested pads. Add fake entries
 in the inner
pads if it's found in an outer one.

Returns the offset in the bottom pad of the lex or the fake lex.
 cv is the CV in which to
start the search, and seq is the current cop_seq
 to match against. If warn is true, print
appropriate warnings. The out_*
 vars return values, and so are pointers to where the
returned values
 should be stored. out_capture, if non-null, requests that the innermost

instance of the lexical is captured; out_name_sv is set to the innermost
 matched
namesv or fake namesv; out_flags returns the flags normally
 associated with the IVX
field of a fake namesv.

Note that pad_findlex() is recursive; it recurses up the chain of CVs,
 then comes back
down, adding fake entries as it goes. It has to be this way
 because fake namesvs in
anon protoypes have to store in xlow the index into
 the parent pad.

	 PADOFFSET	 pad_findlex(const char *name, const CV* cv, U32 seq,
int warn, SV** out_capture, SV** out_name_sv, int *out_flags)

pad_fixup_inner_anons

For any anon CVs in the pad, change CvOUTSIDE of that CV from
 old_cv to new_cv if
necessary. Needed when a newly-compiled CV has to be
 moved to a pre-existing CV
struct.

	 void	 pad_fixup_inner_anons(PADLIST *padlist, CV *old_cv, CV
*new_cv)

pad_free

Free the SV at offset po in the current pad.

	 void	 pad_free(PADOFFSET po)

pad_leavemy

Cleanup at end of scope during compilation: set the max seq number for
 lexicals in this
scope and warn of any lexicals that never got introduced.

	 void	 pad_leavemy()

Perl version 5.14.2 documentation - perlintern

Page 4http://perldoc.perl.org

pad_push

Push a new pad frame onto the padlist, unless there's already a pad at
 this depth, in
which case don't bother creating a new one. Then give
 the new pad an @_ in slot
zero.

	 void	 pad_push(PADLIST *padlist, int depth)

pad_reset

Mark all the current temporaries for reuse

	 void	 pad_reset()

pad_setsv

Set the entry at offset po in the current pad to sv.
 Use the macro PAD_SETSV() rather
than calling this function directly.

	 void	 pad_setsv(PADOFFSET po, SV* sv)

pad_swipe

Abandon the tmp in the current pad at offset po and replace with a
 new one.

	 void	 pad_swipe(PADOFFSET po, bool refadjust)

pad_tidy

Tidy up a pad after we've finished compiling it:
 * remove most stuff from the pads of
anonsub prototypes;
 * give it a @_;
 * mark tmps as such.

	 void	 pad_tidy(padtidy_type type)

Functions in file pad.h
CX_CURPAD_SAVE

Save the current pad in the given context block structure.

	 void	 CX_CURPAD_SAVE(struct context)

CX_CURPAD_SV

Access the SV at offset po in the saved current pad in the given
 context block structure
(can be used as an lvalue).

	 SV *	 CX_CURPAD_SV(struct context, PADOFFSET po)

PAD_BASE_SV

Get the value from slot po in the base (DEPTH=1) pad of a padlist

	 SV *	 PAD_BASE_SV(PADLIST padlist, PADOFFSET po)

PAD_CLONE_VARS

Clone the state variables associated with running and compiling pads.

	 void	 PAD_CLONE_VARS(PerlInterpreter *proto_perl, CLONE_PARAMS*
param)

PAD_COMPNAME_FLAGS

Return the flags for the current compiling pad name
 at offset po. Assumes a valid slot
entry.

Perl version 5.14.2 documentation - perlintern

Page 5http://perldoc.perl.org

	 U32	 PAD_COMPNAME_FLAGS(PADOFFSET po)

PAD_COMPNAME_GEN

The generation number of the name at offset po in the current
 compiling pad (lvalue).
Note that SvUVX is hijacked for this purpose.

	 STRLEN	 PAD_COMPNAME_GEN(PADOFFSET po)

PAD_COMPNAME_GEN_set

Sets the generation number of the name at offset po in the current
 ling pad (lvalue) to
gen. Note that SvUV_set is hijacked for this purpose.

	 STRLEN	 PAD_COMPNAME_GEN_set(PADOFFSET po, int gen)

PAD_COMPNAME_OURSTASH

Return the stash associated with an our variable.
 Assumes the slot entry is a valid
our lexical.

	 HV *	 PAD_COMPNAME_OURSTASH(PADOFFSET po)

PAD_COMPNAME_PV

Return the name of the current compiling pad name
 at offset po. Assumes a valid slot
entry.

	 char *	 PAD_COMPNAME_PV(PADOFFSET po)

PAD_COMPNAME_TYPE

Return the type (stash) of the current compiling pad name at offset po. Must be a valid
name. Returns null if not typed.

	 HV *	 PAD_COMPNAME_TYPE(PADOFFSET po)

PAD_DUP

Clone a padlist.

	 void	 PAD_DUP(PADLIST dstpad, PADLIST srcpad, CLONE_PARAMS*
param)

PAD_RESTORE_LOCAL

Restore the old pad saved into the local variable opad by PAD_SAVE_LOCAL()

	 void	 PAD_RESTORE_LOCAL(PAD *opad)

PAD_SAVE_LOCAL

Save the current pad to the local variable opad, then make the
 current pad equal to
npad

	 void	 PAD_SAVE_LOCAL(PAD *opad, PAD *npad)

PAD_SAVE_SETNULLPAD

Save the current pad then set it to null.

	 void	 PAD_SAVE_SETNULLPAD()

PAD_SETSV

Perl version 5.14.2 documentation - perlintern

Page 6http://perldoc.perl.org

Set the slot at offset po in the current pad to sv

	 SV *	 PAD_SETSV(PADOFFSET po, SV* sv)

PAD_SET_CUR

Set the current pad to be pad n in the padlist, saving
 the previous current pad. NB
currently this macro expands to a string too
 long for some compilers, so it's best to
replace it with

 SAVECOMPPAD();
 PAD_SET_CUR_NOSAVE(padlist,n);

	 void	 PAD_SET_CUR(PADLIST padlist, I32 n)

PAD_SET_CUR_NOSAVE

like PAD_SET_CUR, but without the save

	 void	 PAD_SET_CUR_NOSAVE(PADLIST padlist, I32 n)

PAD_SV

Get the value at offset po in the current pad

	 void	 PAD_SV(PADOFFSET po)

PAD_SVl

Lightweight and lvalue version of PAD_SV.
 Get or set the value at offset po in the
current pad.
 Unlike PAD_SV, does not print diagnostics with -DX.
 For internal use only.

	 SV *	 PAD_SVl(PADOFFSET po)

SAVECLEARSV

Clear the pointed to pad value on scope exit. (i.e. the runtime action of 'my')

	 void	 SAVECLEARSV(SV **svp)

SAVECOMPPAD

save PL_comppad and PL_curpad

	 void	 SAVECOMPPAD()

SAVEPADSV

Save a pad slot (used to restore after an iteration)

XXX DAPM it would make more sense to make the arg a PADOFFSET
 void	
SAVEPADSV(PADOFFSET po)

Functions in file pp_ctl.c
docatch

Check for the cases 0 or 3 of cur_env.je_ret, only used inside an eval context.

0 is used as continue inside eval,

3 is used for a die caught by an inner eval - continue inner loop

See cop.h: je_mustcatch, when set at any runlevel to TRUE, means eval ops must

establish a local jmpenv to handle exception traps.

	 OP*	 docatch(OP *o)

Perl version 5.14.2 documentation - perlintern

Page 7http://perldoc.perl.org

GV Functions
gv_try_downgrade

If the typeglob gv can be expressed more succinctly, by having
 something other than
a real GV in its place in the stash, replace it
 with the optimised form. Basic
requirements for this are that gv
 is a real typeglob, is sufficiently ordinary, and is only
referenced
 from its package. This function is meant to be used when a GV has been

looked up in part to see what was there, causing upgrading, but based
 on what was
found it turns out that the real GV isn't required after all.

If gv is a completely empty typeglob, it is deleted from the stash.

If gv is a typeglob containing only a sufficiently-ordinary constant
 sub, the typeglob is
replaced with a scalar-reference placeholder that
 more compactly represents the same
thing.

NOTE: this function is experimental and may change or be
 removed without notice.

	 void	 gv_try_downgrade(GV* gv)

is_gv_magical_sv

Returns TRUE if given the name of a magical GV.

Currently only useful internally when determining if a GV should be
 created even in
rvalue contexts.

flags is not used at present but available for future extension to
 allow selecting
particular classes of magical variable.

Currently assumes that name is NUL terminated (as well as len being valid).
 This
assumption is met by all callers within the perl core, which all pass
 pointers returned
by SvPV.

	 bool	 is_gv_magical_sv(SV *const name_sv, U32 flags)

Hash Manipulation Functions
hv_ename_add

Adds a name to a stash's internal list of effective names. See hv_ename_delete.

This is called when a stash is assigned to a new location in the symbol
 table.

	 void	 hv_ename_add(HV *hv, const char *name, U32 len, U32 flags)

hv_ename_delete

Removes a name from a stash's internal list of effective names. If this is
 the name
returned by HvENAME, then another name in the list will take
 its place (HvENAME will
use it).

This is called when a stash is deleted from the symbol table.

	 void	 hv_ename_delete(HV *hv, const char *name, U32 len, U32
flags)

refcounted_he_chain_2hv

Generates and returns a HV * representing the content of a refcounted_he chain.
flags is currently unused and must be zero.

	 HV *	 refcounted_he_chain_2hv(const struct refcounted_he *c, U32
 flags)

refcounted_he_fetch_pv

Perl version 5.14.2 documentation - perlintern

Page 8http://perldoc.perl.org

Like refcounted_he_fetch_pvn, but takes a nul-terminated string
 instead of a
string/length pair.

	 SV *	 refcounted_he_fetch_pv(const struct refcounted_he *chain,
const char *key, U32 hash, U32 flags)

refcounted_he_fetch_pvn

Search along a refcounted_he chain for an entry with the key specified
 by keypv
and keylen. If flags has the REFCOUNTED_HE_KEY_UTF8
 bit set, the key octets are
interpreted as UTF-8, otherwise they
 are interpreted as Latin-1. hash is a precomputed
hash of the key
 string, or zero if it has not been precomputed. Returns a mortal scalar

representing the value associated with the key, or &PL_sv_placeholder
 if there is
no value associated with the key.

	 SV *	 refcounted_he_fetch_pvn(const struct refcounted_he *chain,
 const char *keypv, STRLEN keylen, U32 hash, U32 flags)

refcounted_he_fetch_pvs

Like refcounted_he_fetch_pvn, but takes a literal string instead of
 a string/length pair,
and no precomputed hash.

	 SV *	 refcounted_he_fetch_pvs(const struct refcounted_he *chain,
 const char *key, U32 flags)

refcounted_he_fetch_sv

Like refcounted_he_fetch_pvn, but takes a Perl scalar instead of a
 string/length pair.

	 SV *	 refcounted_he_fetch_sv(const struct refcounted_he *chain,
SV *key, U32 hash, U32 flags)

refcounted_he_free

Decrements the reference count of a refcounted_he by one. If the
 reference count
reaches zero the structure's memory is freed, which
 (recursively) causes a reduction of
its parent refcounted_he's
 reference count. It is safe to pass a null pointer to this
function:
 no action occurs in this case.

	 void	 refcounted_he_free(struct refcounted_he *he)

refcounted_he_inc

Increment the reference count of a refcounted_he. The pointer to the
refcounted_he is also returned. It is safe to pass a null pointer
 to this function: no
action occurs and a null pointer is returned.

	 struct refcounted_he *	 refcounted_he_inc(struct refcounted_he
*he)

refcounted_he_new_pv

Like refcounted_he_new_pvn, but takes a nul-terminated string instead
 of a
string/length pair.

	 struct refcounted_he *	 refcounted_he_new_pv(struct
refcounted_he *parent, const char *key, U32 hash, SV *value, U32
 flags)

refcounted_he_new_pvn

Creates a new refcounted_he. This consists of a single key/value
 pair and a

Perl version 5.14.2 documentation - perlintern

Page 9http://perldoc.perl.org

reference to an existing refcounted_he chain (which may
 be empty), and thus forms
a longer chain. When using the longer chain,
 the new key/value pair takes precedence
over any entry for the same key
 further along the chain.

The new key is specified by keypv and keylen. If flags has
 the
REFCOUNTED_HE_KEY_UTF8 bit set, the key octets are interpreted
 as UTF-8,
otherwise they are interpreted as Latin-1. hash is
 a precomputed hash of the key
string, or zero if it has not been
 precomputed.

value is the scalar value to store for this key. value is copied
 by this function, which
thus does not take ownership of any reference
 to it, and later changes to the scalar will
not be reflected in the
 value visible in the refcounted_he. Complex types of scalar
will not
 be stored with referential integrity, but will be coerced to strings. value may be
either null or &PL_sv_placeholder to indicate that no
 value is to be associated with
the key; this, as with any non-null value,
 takes precedence over the existence of a
value for the key further along
 the chain.

parent points to the rest of the refcounted_he chain to be
 attached to the new
refcounted_he. This function takes ownership
 of one reference to parent, and
returns one reference to the new refcounted_he.

	 struct refcounted_he *	 refcounted_he_new_pvn(struct
refcounted_he *parent, const char *keypv, STRLEN keylen, U32
hash, SV *value, U32 flags)

refcounted_he_new_pvs

Like refcounted_he_new_pvn, but takes a literal string instead of
 a string/length pair,
and no precomputed hash.

	 struct refcounted_he *	 refcounted_he_new_pvs(struct
refcounted_he *parent, const char *key, SV *value, U32 flags)

refcounted_he_new_sv

Like refcounted_he_new_pvn, but takes a Perl scalar instead of a
 string/length pair.

	 struct refcounted_he *	 refcounted_he_new_sv(struct
refcounted_he *parent, SV *key, U32 hash, SV *value, U32 flags)

IO Functions
start_glob

Function called by do_readline to spawn a glob (or do the glob inside
 perl on VMS).
This code used to be inline, but now perl uses File::Glob
 this glob starter is only
used by miniperl during the build process.
 Moving it away shrinks pp_hot.c; shrinking
pp_hot.c helps speed perl up.

NOTE: this function is experimental and may change or be
 removed without notice.

	 PerlIO*	 start_glob(SV *tmpglob, IO *io)

Magical Functions
magic_clearhint

Triggered by a delete from %^H, records the key to
PL_compiling.cop_hints_hash.

	 int	 magic_clearhint(SV* sv, MAGIC* mg)

magic_clearhints

Triggered by clearing %^H, resets PL_compiling.cop_hints_hash.

Perl version 5.14.2 documentation - perlintern

Page 10http://perldoc.perl.org

	 int	 magic_clearhints(SV* sv, MAGIC* mg)

magic_methcall

Invoke a magic method (like FETCH).

* sv and mg are the tied thingy and the tie magic;
 * meth is the name of the method to
call;
 * argc is the number of args (in addition to $self) to pass to the method;
 the args
themselves are any values following the argc argument.
 * flags:
 G_DISCARD: invoke
method with G_DISCARD flag and don't return a value
 G_UNDEF_FILL: fill the stack
with argc pointers to PL_sv_undef.

Returns the SV (if any) returned by the method, or NULL on failure.

	 SV*	 magic_methcall(SV *sv, const MAGIC *mg, const char *meth,
U32 flags, U32 argc, ...)

magic_sethint

Triggered by a store to %^H, records the key/value pair to
PL_compiling.cop_hints_hash. It is assumed that hints aren't storing
 anything
that would need a deep copy. Maybe we should warn if we find a
 reference.

	 int	 magic_sethint(SV* sv, MAGIC* mg)

mg_localize

Copy some of the magic from an existing SV to new localized version of that
 SV.
Container magic (eg %ENV, $1, tie) gets copied, value magic doesn't (eg
 taint, pos).

If setmagic is false then no set magic will be called on the new (empty) SV.
 This
typically means that assignment will soon follow (e.g. 'local $x = $y'),
 and that will
handle the magic.

	 void	 mg_localize(SV* sv, SV* nsv, bool setmagic)

MRO Functions
mro_get_linear_isa_dfs

Returns the Depth-First Search linearization of @ISA
 the given stash. The return value
is a read-only AV*. level should be 0 (it is used internally in this
 function's recursion).

You are responsible for SvREFCNT_inc() on the
 return value if you plan to store it
anywhere
 semi-permanently (otherwise it might be deleted
 out from under you the next
time the cache is
 invalidated).

	 AV*	 mro_get_linear_isa_dfs(HV* stash, U32 level)

mro_isa_changed_in

Takes the necessary steps (cache invalidations, mostly)
 when the @ISA of the given
package has changed. Invoked
 by the setisa magic, should not need to invoke
directly.

	 void	 mro_isa_changed_in(HV* stash)

mro_package_moved

Call this function to signal to a stash that it has been assigned to
 another spot in the
stash hierarchy. stash is the stash that has been
 assigned. oldstash is the stash it
replaces, if any. gv is the glob
 that is actually being assigned to.

This can also be called with a null first argument to
 indicate that oldstash has been
deleted.

Perl version 5.14.2 documentation - perlintern

Page 11http://perldoc.perl.org

This function invalidates isa caches on the old stash, on all subpackages
 nested inside
it, and on the subclasses of all those, including
 non-existent packages that have
corresponding entries in stash.

It also sets the effective names (HvENAME) on all the stashes as
 appropriate.

If the gv is present and is not in the symbol table, then this function
 simply returns.
This checked will be skipped if flags & 1.

	 void	 mro_package_moved(HV * const stash, HV * const oldstash,
const GV * const gv, U32 flags)

Pad Data Structures
CvPADLIST

CV's can have CvPADLIST(cv) set to point to an AV.

For these purposes "forms" are a kind-of CV, eval""s are too (except they're
 not
callable at will and are always thrown away after the eval"" is done
 executing).
Require'd files are simply evals without any outer lexical
 scope.

XSUBs don't have CvPADLIST set - dXSTARG fetches values from PL_curpad,
 but
that is really the callers pad (a slot of which is allocated by
 every entersub).

The CvPADLIST AV has does not have AvREAL set, so REFCNT of component items

is managed "manual" (mostly in pad.c) rather than normal av.c rules.
 The items in the
AV are not SVs as for a normal AV, but other AVs:

0'th Entry of the CvPADLIST is an AV which represents the "names" or rather
 the
"static type information" for lexicals.

The CvDEPTH'th entry of CvPADLIST AV is an AV which is the stack frame at that

depth of recursion into the CV.
 The 0'th slot of a frame AV is an AV which is @_.
 other
entries are storage for variables and op targets.

During compilation: PL_comppad_name is set to the names AV. PL_comppad is set to
the frame AV for the frame CvDEPTH == 1. PL_curpad is set to the body of the frame
AV (i.e. AvARRAY(PL_comppad)).

During execution, PL_comppad and PL_curpad refer to the live
 frame of the currently
executing sub.

Iterating over the names AV iterates over all possible pad
 items. Pad slots that are
SVs_PADTMP (targets/GVs/constants) end up having
 &PL_sv_undef "names" (see
pad_alloc()).

Only my/our variable (SVs_PADMY/SVs_PADOUR) slots get valid names.
 The rest
are op targets/GVs/constants which are statically allocated
 or resolved at compile time.
These don't have names by which they
 can be looked up from Perl code at run time
through eval"" like
 my/our variables can be. Since they can't be looked up by "name"

but only by their index allocated at compile time (which is usually
 in PL_op->op_targ),
wasting a name SV for them doesn't make sense.

The SVs in the names AV have their PV being the name of the variable.
 xlow+1..xhigh
inclusive in the NV union is a range of cop_seq numbers for
 which the name is valid
(accessed through the macros COP_SEQ_RANGE_LOW and
 _HIGH). During
compilation, these fields may hold the special value
 PERL_PADSEQ_INTRO to
indicate various stages:

 COP_SEQ_RANGE_LOW _HIGH
 ----------------- -----
 PERL_PADSEQ_INTRO 0 variable not yet introduced:
 { my ($x
 valid-seq# PERL_PADSEQ_INTRO variable in scope:
 { my ($x)

Perl version 5.14.2 documentation - perlintern

Page 12http://perldoc.perl.org

 valid-seq# valid-seq# compilation of scope
complete: { my ($x) }

For typed lexicals name SV is SVt_PVMG and SvSTASH
 points at the type. For our
lexicals, the type is also SVt_PVMG, with the
 SvOURSTASH slot pointing at the stash
of the associated global (so that
 duplicate our declarations in the same package can
be detected). SvUVX is
 sometimes hijacked to store the generation number during
compilation.

If SvFAKE is set on the name SV, then that slot in the frame AV is
 a REFCNT'ed
reference to a lexical from "outside". In this case,
 the name SV does not use xlow and
xhigh to store a cop_seq range, since it is
 in scope throughout. Instead xhigh stores
some flags containing info about
 the real lexical (is it declared in an anon, and is it
capable of being
 instantiated multiple times?), and for fake ANONs, xlow contains the
index
 within the parent's pad where the lexical's value is stored, to make
 cloning
quicker.

If the 'name' is '&' the corresponding entry in frame AV
 is a CV representing a possible
closure.
 (SvFAKE and name of '&' is not a meaningful combination currently but could

become so if my sub foo {} is implemented.)

Note that formats are treated as anon subs, and are cloned each time
 write is called (if
necessary).

The flag SVs_PADSTALE is cleared on lexicals each time the my() is executed,
 and
set on scope exit. This allows the 'Variable $x is not available' warning
 to be generated
in evals, such as

 { my $x = 1; sub f { eval '$x'} } f();

For state vars, SVs_PADSTALE is overloaded to mean 'not yet initialised'

	 AV *	 CvPADLIST(CV *cv)

pad_new

Create a new compiling padlist, saving and updating the various global
 vars at the
same time as creating the pad itself. The following flags
 can be OR'ed together:

 padnew_CLONE	 this pad is for a cloned CV
 padnew_SAVE		 save old globals
 padnew_SAVESUB	 also save extra stuff for start of sub

	 PADLIST*	 pad_new(int flags)

Per-Interpreter Variables
PL_DBsingle

When Perl is run in debugging mode, with the -d switch, this SV is a
 boolean which
indicates whether subs are being single-stepped.
 Single-stepping is automatically
turned on after every step. This is the C
 variable which corresponds to Perl's
$DB::single variable. See PL_DBsub.

	 SV *	 PL_DBsingle

PL_DBsub

When Perl is run in debugging mode, with the -d switch, this GV contains
 the SV which
holds the name of the sub being debugged. This is the C
 variable which corresponds
to Perl's $DB::sub variable. See PL_DBsingle.

	 GV *	 PL_DBsub

Perl version 5.14.2 documentation - perlintern

Page 13http://perldoc.perl.org

PL_DBtrace

Trace variable used when Perl is run in debugging mode, with the -d
 switch. This is the
C variable which corresponds to Perl's $DB::trace
 variable. See PL_DBsingle.

	 SV *	 PL_DBtrace

PL_dowarn

The C variable which corresponds to Perl's $^W warning variable.

	 bool	 PL_dowarn

PL_last_in_gv

The GV which was last used for a filehandle input operation. (<FH>)

	 GV*	 PL_last_in_gv

PL_ofsgv

The glob containing the output field separator - *, in Perl space.

	 GV*	 PL_ofsgv

PL_rs

The input record separator - $/ in Perl space.

	 SV*	 PL_rs

Stack Manipulation Macros
djSP

Declare Just SP. This is actually identical to dSP, and declares
 a local copy of perl's
stack pointer, available via the SP macro.
 See SP. (Available for backward source code
compatibility with the
 old (Perl 5.005) thread model.)

		 djSP;

LVRET

True if this op will be the return value of an lvalue subroutine

SV Manipulation Functions
sv_add_arena

Given a chunk of memory, link it to the head of the list of arenas,
 and split it into a list
of free SVs.

	 void	 sv_add_arena(char *const ptr, const U32 size, const U32
flags)

sv_clean_all

Decrement the refcnt of each remaining SV, possibly triggering a
 cleanup. This
function may have to be called multiple times to free
 SVs which are in complex
self-referential hierarchies.

	 I32	 sv_clean_all()

sv_clean_objs

Attempt to destroy all objects not yet freed

	 void	 sv_clean_objs()

Perl version 5.14.2 documentation - perlintern

Page 14http://perldoc.perl.org

sv_free_arenas

Deallocate the memory used by all arenas. Note that all the individual SV
 heads and
bodies within the arenas must already have been freed.

	 void	 sv_free_arenas()

SV-Body Allocation
sv_2num

Return an SV with the numeric value of the source SV, doing any necessary
 reference
or overload conversion. You must use the SvNUM(sv) macro to
 access this function.

NOTE: this function is experimental and may change or be
 removed without notice.

	 SV*	 sv_2num(SV *const sv)

Unicode Support
find_uninit_var

Find the name of the undefined variable (if any) that caused the operator o
 to issue a
"Use of uninitialized value" warning.
 If match is true, only return a name if it's value
matches uninit_sv.
 So roughly speaking, if a unary operator (such as OP_COS)
generates a
 warning, then following the direct child of the op may yield an
 OP_PADSV
or OP_GV that gives the name of the undefined variable. On the
 other hand, with
OP_ADD there are two branches to follow, so we only print
 the variable name if we get
an exact match.

The name is returned as a mortal SV.

Assumes that PL_op is the op that originally triggered the error, and that

PL_comppad/PL_curpad points to the currently executing pad.

NOTE: this function is experimental and may change or be
 removed without notice.

	 SV*	 find_uninit_var(const OP *const obase, const SV *const
uninit_sv, bool top)

report_uninit

Print appropriate "Use of uninitialized variable" warning

	 void	 report_uninit(const SV *uninit_sv)

Undocumented functions
The following functions have been flagged as part of the public API,
 but are currently undocumented.
Use them at your own risk, as the
 interfaces are subject to change.

If you use one of them, you may wish to consider creating and submitting
 documentation for it. If your
patch is accepted, this will indicate that
 the interface is stable (unless it is explicitly marked otherwise).

F0convert

Slab_to_rw

_append_range_to_invlist

_new_invlist

_swash_inversion_hash

_swash_to_invlist

add_alternate

add_cp_to_invlist

add_data

Perl version 5.14.2 documentation - perlintern

Page 15http://perldoc.perl.org

add_range_to_invlist

add_utf16_textfilter

addmad

allocmy

amagic_cmp

amagic_cmp_locale

amagic_i_ncmp

amagic_ncmp

anonymise_cv_maybe

ao

append_madprops

apply

apply_attrs

apply_attrs_my

assert_uft8_cache_coherent

av_reify

bad_type

bind_match

block_end

block_start

boot_core_PerlIO

boot_core_UNIVERSAL

boot_core_mro

bytes_to_uni

cando

check_type_and_open

check_uni

check_utf8_print

checkcomma

checkposixcc

ckwarn_common

cl_and

cl_anything

cl_init

cl_is_anything

cl_or

clear_placeholders

closest_cop

convert

cop_free

cr_textfilter

create_eval_scope

Perl version 5.14.2 documentation - perlintern

Page 16http://perldoc.perl.org

curmad

curse

cv_ckproto_len

cvgv_set

cvstash_set

deb_curcv

deb_stack_all

deb_stack_n

debprof

debug_start_match

del_sv

delete_eval_scope

deprecate_commaless_var_list

destroy_matcher

die_unwind

div128

do_aexec

do_aexec5

do_chomp

do_delete_local

do_eof

do_exec

do_exec3

do_execfree

do_ipcctl

do_ipcget

do_msgrcv

do_msgsnd

do_oddball

do_op_xmldump

do_pmop_xmldump

do_print

do_readline

do_seek

do_semop

do_shmio

do_smartmatch

do_sysseek

do_tell

do_trans

do_trans_complex

do_trans_complex_utf8

Perl version 5.14.2 documentation - perlintern

Page 17http://perldoc.perl.org

do_trans_count

do_trans_count_utf8

do_trans_simple

do_trans_simple_utf8

do_vecget

do_vecset

do_vop

doeval

dofile

dofindlabel

doform

dooneliner

doopen_pm

doparseform

dopoptoeval

dopoptogiven

dopoptolabel

dopoptoloop

dopoptosub_at

dopoptowhen

dump_all_perl

dump_exec_pos

dump_packsubs_perl

dump_sub_perl

dump_sv_child

dump_trie

dump_trie_interim_list

dump_trie_interim_table

dumpuntil

dup_attrlist

emulate_cop_io

exec_failed

expect_number

feature_is_enabled

filter_gets

find_and_forget_pmops

find_array_subscript

find_beginning

find_byclass

find_hash_subscript

find_in_my_stash

find_script

Perl version 5.14.2 documentation - perlintern

Page 18http://perldoc.perl.org

first_symbol

fold_constants

forbid_setid

force_ident

force_list

force_next

force_strict_version

force_version

force_word

forget_pmop

free_tied_hv_pool

gen_constant_list

get_aux_mg

get_db_sub

get_debug_opts

get_hash_seed

get_no_modify

get_num

get_opargs

get_re_arg

getenv_len

glob_2number

glob_assign_glob

glob_assign_ref

grok_bslash_c

grok_bslash_o

group_end

gv_ename

gv_get_super_pkg

gv_init_sv

gv_magicalize_isa

gv_magicalize_overload

hfreeentries

hsplit

hv_auxinit

hv_backreferences_p

hv_delete_common

hv_kill_backrefs

hv_magic_check

hv_notallowed

hv_undef_flags

incline

Perl version 5.14.2 documentation - perlintern

Page 19http://perldoc.perl.org

incpush

incpush_if_exists

incpush_use_sep

ingroup

init_argv_symbols

init_dbargs

init_debugger

init_ids

init_interp

init_main_stash

init_perllib

init_postdump_symbols

init_predump_symbols

intuit_method

intuit_more

invert

invlist_array

invlist_destroy

invlist_extend

invlist_intersection

invlist_len

invlist_max

invlist_set_len

invlist_set_max

invlist_trim

invlist_union

invoke_exception_hook

io_close

is_an_int

is_handle_constructor

is_inplace_av

is_list_assignment

is_utf8_X_L

is_utf8_X_LV

is_utf8_X_LVT

is_utf8_X_LV_LVT_V

is_utf8_X_T

is_utf8_X_V

is_utf8_X_begin

is_utf8_X_extend

is_utf8_X_non_hangul

is_utf8_X_prepend

Perl version 5.14.2 documentation - perlintern

Page 20http://perldoc.perl.org

is_utf8_char_slow

is_utf8_common

isa_lookup

jmaybe

join_exact

keyword

keyword_plugin_standard

list

listkids

localize

looks_like_bool

lop

mad_free

madlex

madparse

magic_clear_all_env

magic_clearenv

magic_clearisa

magic_clearpack

magic_clearsig

magic_existspack

magic_freearylen_p

magic_freeovrld

magic_get

magic_getarylen

magic_getdefelem

magic_getnkeys

magic_getpack

magic_getpos

magic_getsig

magic_getsubstr

magic_gettaint

magic_getuvar

magic_getvec

magic_killbackrefs

magic_len

magic_methcall1

magic_methpack

magic_nextpack

magic_regdata_cnt

magic_regdatum_get

magic_regdatum_set

Perl version 5.14.2 documentation - perlintern

Page 21http://perldoc.perl.org

magic_scalarpack

magic_set

magic_set_all_env

magic_setamagic

magic_setarylen

magic_setcollxfrm

magic_setdbline

magic_setdefelem

magic_setenv

magic_setisa

magic_setmglob

magic_setnkeys

magic_setpack

magic_setpos

magic_setregexp

magic_setsig

magic_setsubstr

magic_settaint

magic_setutf8

magic_setuvar

magic_setvec

magic_sizepack

magic_wipepack

make_matcher

make_trie

make_trie_failtable

malloc_good_size

malloced_size

matcher_matches_sv

measure_struct

mem_collxfrm

mem_log_common

mess_alloc

method_common

missingterm

mod

mode_from_discipline

modkids

more_bodies

more_sv

mro_clean_isarev

mro_gather_and_rename

Perl version 5.14.2 documentation - perlintern

Page 22http://perldoc.perl.org

mro_meta_dup

mro_meta_init

mul128

mulexp10

munge_qwlist_to_paren_list

my_attrs

my_betoh16

my_betoh32

my_betoh64

my_betohi

my_betohl

my_betohs

my_clearenv

my_exit_jump

my_htobe16

my_htobe32

my_htobe64

my_htobei

my_htobel

my_htobes

my_htole16

my_htole32

my_htole64

my_htolei

my_htolel

my_htoles

my_kid

my_letoh16

my_letoh32

my_letoh64

my_letohi

my_letohl

my_letohs

my_lstat_flags

my_stat_flags

my_swabn

my_unexec

need_utf8

newDEFSVOP

newGIVWHENOP

newGP

newMADPROP

Perl version 5.14.2 documentation - perlintern

Page 23http://perldoc.perl.org

newMADsv

newTOKEN

new_constant

new_he

new_logop

new_warnings_bitfield

next_symbol

nextargv

nextchar

no_bareword_allowed

no_fh_allowed

no_op

not_a_number

nuke_stacks

num_overflow

oopsAV

oopsHV

op_clear

op_const_sv

op_getmad

op_getmad_weak

op_refcnt_dec

op_refcnt_inc

op_xmldump

open_script

opt_scalarhv

pack_rec

package

package_version

pad_add_name_sv

pad_compname_type

pad_peg

padlist_dup

parse_body

parse_unicode_opts

parser_free

path_is_absolute

peep

pending_Slabs_to_ro

pidgone

pm_description

pmop_xmldump

Perl version 5.14.2 documentation - perlintern

Page 24http://perldoc.perl.org

pmruntime

pmtrans

populate_isa

prepend_madprops

printbuf

process_special_blocks

ptr_table_find

put_byte

qerror

qsortsvu

re_croak2

readpipe_override

ref_array_or_hash

refcounted_he_value

refkids

refto

reg

reg_check_named_buff_matched

reg_named_buff

reg_named_buff_iter

reg_namedseq

reg_node

reg_numbered_buff_fetch

reg_numbered_buff_length

reg_numbered_buff_store

reg_qr_package

reg_recode

reg_scan_name

reg_skipcomment

reg_temp_copy

reganode

regatom

regbranch

regclass

regcppop

regcppush

regcurly

regdump_extflags

reghop3

reghop4

reghopmaybe3

reginclass

Perl version 5.14.2 documentation - perlintern

Page 25http://perldoc.perl.org

reginsert

regmatch

regpiece

regpposixcc

regprop

regrepeat

regtail

regtail_study

regtry

reguni

regwhite

report_evil_fh

report_wrongway_fh

require_tie_mod

restore_magic

rpeep

rsignal_restore

rsignal_save

run_body

run_user_filter

rxres_free

rxres_restore

rxres_save

same_dirent

save_hek_flags

save_lines

save_magic

save_pushptri32ptr

save_scalar_at

sawparens

scalar

scalar_mod_type

scalarboolean

scalarkids

scalarseq

scalarvoid

scan_commit

scan_const

scan_formline

scan_heredoc

scan_ident

scan_inputsymbol

Perl version 5.14.2 documentation - perlintern

Page 26http://perldoc.perl.org

scan_pat

scan_str

scan_subst

scan_trans

scan_word

search_const

sequence

sequence_num

sequence_tail

set_regclass_bit

set_regclass_bit_fold

share_hek_flags

sighandler

simplify_sort

skipspace

skipspace0

skipspace1

skipspace2

softref2xv

sortcv

sortcv_stacked

sortcv_xsub

space_join_names_mortal

start_force

stdize_locale

store_cop_label

strip_return

study_chunk

sub_crush_depth

sublex_done

sublex_push

sublex_start

sv_2iuv_common

sv_2iuv_non_preserve

sv_add_backref

sv_catxmlpv

sv_catxmlpvn

sv_catxmlsv

sv_compile_2op_is_broken

sv_del_backref

sv_dup_common

sv_dup_inc_multiple

Perl version 5.14.2 documentation - perlintern

Page 27http://perldoc.perl.org

sv_exp_grow

sv_free2

sv_i_ncmp

sv_kill_backrefs

sv_ncmp

sv_pos_b2u_midway

sv_pos_u2b_cached

sv_pos_u2b_forwards

sv_pos_u2b_midway

sv_release_COW

sv_setsv_cow

sv_unglob

sv_xmlpeek

swallow_bom

swash_get

tied_method

to_byte_substr

to_utf8_substr

token_free

token_getmad

tokenize_use

tokeq

tokereport

too_few_arguments

too_many_arguments

try_amagic_bin

try_amagic_un

uiv_2buf

unpack_rec

unreferenced_to_tmp_stack

unshare_hek

unshare_hek_or_pvn

unwind_handler_stack

update_debugger_info

usage

utf16_textfilter

utf8_mg_len_cache_update

utf8_mg_pos_cache_update

utilize

validate_suid

varname

visit

Perl version 5.14.2 documentation - perlintern

Page 28http://perldoc.perl.org

vivify_defelem

vivify_ref

wait4pid

watch

with_queued_errors

write_no_mem

write_to_stderr

xmldump_all

xmldump_all_perl

xmldump_attr

xmldump_eval

xmldump_form

xmldump_indent

xmldump_packsubs

xmldump_packsubs_perl

xmldump_sub

xmldump_sub_perl

xmldump_vindent

xs_apiversion_bootcheck

xs_version_bootcheck

yyerror

yylex

yyparse

yyunlex

yywarn

AUTHORS
The autodocumentation system was originally added to the Perl core by
 Benjamin Stuhl.
Documentation is by whoever was kind enough to
 document their functions.

SEE ALSO
perlguts, perlapi

