
Perl version 5.14.2 documentation - perlmodstyle

Page 1http://perldoc.perl.org

NAME
perlmodstyle - Perl module style guide

INTRODUCTION
This document attempts to describe the Perl Community's "best practice"
 for writing Perl modules. It
extends the recommendations found in perlstyle , which should be considered required reading
 before
reading this document.

While this document is intended to be useful to all module authors, it is
 particularly aimed at authors
who wish to publish their modules on CPAN.

The focus is on elements of style which are visible to the users of a module, rather than those parts
which are only seen by the module's developers. However, many of the guidelines presented in this
document
 can be extrapolated and applied successfully to a module's internals.

This document differs from perlnewmod in that it is a style guide
 rather than a tutorial on creating
CPAN modules. It provides a
 checklist against which modules can be compared to determine whether
they conform to best practice, without necessarily describing in detail
 how to achieve this.

All the advice contained in this document has been gleaned from
 extensive conversations with
experienced CPAN authors and users. Every
 piece of advice given here is the result of previous
mistakes. This
 information is here to help you avoid the same mistakes and the extra
 work that would
inevitably be required to fix them.

The first section of this document provides an itemized checklist; subsequent sections provide a more
detailed discussion of the items on the list. The final section, "Common Pitfalls", describes some of
the most popular mistakes made by CPAN authors.

QUICK CHECKLIST
For more detail on each item in this checklist, see below.

Before you start
Don't re-invent the wheel

Patch, extend or subclass an existing module where possible

Do one thing and do it well

Choose an appropriate name

The API
API should be understandable by the average programmer

Simple methods for simple tasks

Separate functionality from output

Consistent naming of subroutines or methods

Use named parameters (a hash or hashref) when there are more than two
 parameters

Stability
Ensure your module works under use strict and -w

Stable modules should maintain backwards compatibility

Documentation
Write documentation in POD

Document purpose, scope and target applications

Perl version 5.14.2 documentation - perlmodstyle

Page 2http://perldoc.perl.org

Document each publically accessible method or subroutine, including params and return
values

Give examples of use in your documentation

Provide a README file and perhaps also release notes, changelog, etc

Provide links to further information (URL, email)

Release considerations
Specify pre-requisites in Makefile.PL or Build.PL

Specify Perl version requirements with use

Include tests with your module

Choose a sensible and consistent version numbering scheme (X.YY is the common Perl
module numbering scheme)

Increment the version number for every change, no matter how small

Package the module using "make dist"

Choose an appropriate license (GPL/Artistic is a good default)

BEFORE YOU START WRITING A MODULE
Try not to launch headlong into developing your module without spending
 some time thinking first. A
little forethought may save you a vast
 amount of effort later on.

Has it been done before?
You may not even need to write the module. Check whether it's already been done in Perl, and avoid
re-inventing the wheel unless you have a good reason.

Good places to look for pre-existing modules include
 http://search.cpan.org/ and asking on
modules@perl.org

If an existing module almost does what you want, consider writing a
 patch, writing a subclass, or
otherwise extending the existing module
 rather than rewriting it.

Do one thing and do it well
At the risk of stating the obvious, modules are intended to be modular.
 A Perl developer should be
able to use modules to put together the
 building blocks of their application. However, it's important
that the
 blocks are the right shape, and that the developer shouldn't have to use
 a big block when all
they need is a small one.

Your module should have a clearly defined scope which is no longer than
 a single sentence. Can your
module be broken down into a family of
 related modules?

Bad example:

"FooBar.pm provides an implementation of the FOO protocol and the
 related BAR standard."

Good example:

"Foo.pm provides an implementation of the FOO protocol. Bar.pm
 implements the related BAR
protocol."

This means that if a developer only needs a module for the BAR standard,
 they should not be forced
to install libraries for FOO as well.

Perl version 5.14.2 documentation - perlmodstyle

Page 3http://perldoc.perl.org

What's in a name?
Make sure you choose an appropriate name for your module early on. This
 will help people find and
remember your module, and make programming
 with your module more intuitive.

When naming your module, consider the following:

Be descriptive (i.e. accurately describes the purpose of the module).

Be consistent with existing modules.

Reflect the functionality of the module, not the implementation.

Avoid starting a new top-level hierarchy, especially if a suitable
 hierarchy already exists under
which you could place your module.

You should contact modules@perl.org to ask them about your module name
 before publishing your
module. You should also try to ask people who are already familiar with the module's application
domain and the CPAN
 naming system. Authors of similar modules, or modules with similar
 names,
may be a good place to start.

DESIGNING AND WRITING YOUR MODULE
Considerations for module design and coding:

To OO or not to OO?
Your module may be object oriented (OO) or not, or it may have both kinds of interfaces available.
There are pros and cons of each technique, which should be considered when you design your API.

According to Damian Conway, you should consider using OO:

When the system is large or likely to become so

When the data is aggregated in obvious structures that will become objects

When the types of data form a natural hierarchy that can make use of inheritance

When operations on data vary according to data type (making
 polymorphic invocation of
methods feasible)

When it is likely that new data types may be later introduced
 into the system, and will need to
be handled by existing code

When interactions between data are best represented by
 overloaded operators

When the implementation of system components is likely to
 change over time (and hence
should be encapsulated)

When the system design is itself object-oriented

When large amounts of client code will use the software (and
 should be insulated from
changes in its implementation)

When many separate operations will need to be applied to the
 same set of data

Think carefully about whether OO is appropriate for your module.
 Gratuitous object orientation results
in complex APIs which are
 difficult for the average module user to understand or use.

Designing your API
Your interfaces should be understandable by an average Perl programmer. The following guidelines
may help you judge whether your API is
 sufficiently straightforward:

Write simple routines to do simple things.

It's better to have numerous simple routines than a few monolithic ones.
 If your routine

Perl version 5.14.2 documentation - perlmodstyle

Page 4http://perldoc.perl.org

changes its behaviour significantly based on its
 arguments, it's a sign that you should have
two (or more) separate
 routines.

Separate functionality from output.

Return your results in the most generic form possible and allow the user to choose how to use
them. The most generic form possible is usually a
 Perl data structure which can then be used
to generate a text report,
 HTML, XML, a database query, or whatever else your users require.

If your routine iterates through some kind of list (such as a list of
 files, or records in a
database) you may consider providing a callback
 so that users can manipulate each element
of the list in turn.
 File::Find provides an example of this with its find(\&wanted, $dir)
syntax.

Provide sensible shortcuts and defaults.

Don't require every module user to jump through the same hoops to achieve a
 simple result.
You can always include optional parameters or routines for more complex or non-standard
behaviour. If most of your users have to
 type a few almost identical lines of code when they
start using your
 module, it's a sign that you should have made that behaviour a default.

Another good indicator that you should use defaults is if most of your users call your routines
with the same arguments.

Naming conventions

Your naming should be consistent. For instance, it's better to have:

	 display_day();
	 display_week();
	 display_year();

than

	 display_day();
	 week_display();
	 show_year();

This applies equally to method names, parameter names, and anything else
 which is visible to
the user (and most things that aren't!)

Parameter passing

Use named parameters. It's easier to use a hash like this:

 $obj->do_something(
	 name => "wibble",
	 type => "text",
	 size => 1024,
);

... than to have a long list of unnamed parameters like this:

 $obj->do_something("wibble", "text", 1024);

While the list of arguments might work fine for one, two or even three
 arguments, any more
arguments become hard for the module user to
 remember, and hard for the module author to
manage. If you want to add
 a new parameter you will have to add it to the end of the list for

backward compatibility, and this will probably make your list order
 unintuitive. Also, if many
elements may be undefined you may see the
 following unattractive method calls:

 $obj->do_something(undef, undef, undef, undef, undef, undef,
1024);

Provide sensible defaults for parameters which have them. Don't make
 your users specify

Perl version 5.14.2 documentation - perlmodstyle

Page 5http://perldoc.perl.org

parameters which will almost always be the same.

The issue of whether to pass the arguments in a hash or a hashref is
 largely a matter of
personal style.

The use of hash keys starting with a hyphen (-name) or entirely in upper case (NAME) is a relic
of older versions of Perl in which
 ordinary lower case strings were not handled correctly by the
=>
 operator. While some modules retain uppercase or hyphenated argument
 keys for
historical reasons or as a matter of personal style, most new
 modules should use simple lower
case keys. Whatever you choose, be
 consistent!

Strictness and warnings
Your module should run successfully under the strict pragma and should
 run without generating any
warnings. Your module should also handle taint-checking where appropriate, though this can cause
difficulties in
 many cases.

Backwards compatibility
Modules which are "stable" should not break backwards compatibility
 without at least a long transition
phase and a major change in version
 number.

Error handling and messages
When your module encounters an error it should do one or more of:

Return an undefined value.

set $Module::errstr or similar (errstr is a common name used by
 DBI and other popular
modules; if you choose something else, be sure to
 document it clearly).

warn() or carp() a message to STDERR.

croak() only when your module absolutely cannot figure out what to
 do. (croak() is a
better version of die() for use within modules, which reports its errors from the perspective
of the caller. See Carp for details of croak(), carp() and other useful
 routines.)

As an alternative to the above, you may prefer to throw exceptions using the Error module.

Configurable error handling can be very useful to your users. Consider
 offering a choice of levels for
warning and debug messages, an option to
 send messages to a separate file, a way to specify an
error-handling
 routine, or other such features. Be sure to default all these options
 to the commonest
use.

DOCUMENTING YOUR MODULE
POD

Your module should include documentation aimed at Perl developers.
 You should use Perl's "plain old
documentation" (POD) for your general technical documentation, though you may wish to write
additional
 documentation (white papers, tutorials, etc) in some other format. You need to cover the
following subjects:

A synopsis of the common uses of the module

The purpose, scope and target applications of your module

Use of each publically accessible method or subroutine, including
 parameters and return
values

Examples of use

Sources of further information

A contact email address for the author/maintainer

Perl version 5.14.2 documentation - perlmodstyle

Page 6http://perldoc.perl.org

The level of detail in Perl module documentation generally goes from
 less detailed to more detailed.
Your SYNOPSIS section should contain a
 minimal example of use (perhaps as little as one line of
code; skip the
 unusual use cases or anything not needed by most users); the
 DESCRIPTION should
describe your module in broad terms, generally in
 just a few paragraphs; more detail of the module's
routines or methods,
 lengthy code examples, or other in-depth material should be given in
subsequent sections.

Ideally, someone who's slightly familiar with your module should be able
 to refresh their memory
without hitting "page down". As your reader
 continues through the document, they should receive a
progressively
 greater amount of knowledge.

The recommended order of sections in Perl module documentation is:

NAME

SYNOPSIS

DESCRIPTION

One or more sections or subsections giving greater detail of available methods and routines
and any other relevant information.

BUGS/CAVEATS/etc

AUTHOR

SEE ALSO

COPYRIGHT and LICENSE

Keep your documentation near the code it documents ("inline"
 documentation). Include POD for a
given method right above that method's subroutine. This makes it easier to keep the documentation
up
 to date, and avoids having to document each piece of code twice (once in
 POD and once in
comments).

README, INSTALL, release notes, changelogs
Your module should also include a README file describing the module and
 giving pointers to further
information (website, author email).

An INSTALL file should be included, and should contain simple installation instructions. When using
ExtUtils::MakeMaker this will usually be:

perl Makefile.PL

make

make test

make install

When using Module::Build, this will usually be:

perl Build.PL

perl Build

perl Build test

perl Build install

Release notes or changelogs should be produced for each release of your
 software describing
user-visible changes to your module, in terms
 relevant to the user.

Perl version 5.14.2 documentation - perlmodstyle

Page 7http://perldoc.perl.org

RELEASE CONSIDERATIONS
Version numbering

Version numbers should indicate at least major and minor releases, and
 possibly sub-minor releases.
A major release is one in which most of
 the functionality has changed, or in which major new
functionality is
 added. A minor release is one in which a small amount of functionality
 has been added
or changed. Sub-minor version numbers are usually used
 for changes which do not affect
functionality, such as documentation
 patches.

The most common CPAN version numbering scheme looks like this:

 1.00, 1.10, 1.11, 1.20, 1.30, 1.31, 1.32

A correct CPAN version number is a floating point number with at least 2 digits after the decimal. You
can test whether it conforms to CPAN by using

 perl -MExtUtils::MakeMaker -le 'print MM->parse_version(shift)'
'Foo.pm'

If you want to release a 'beta' or 'alpha' version of a module but
 don't want CPAN.pm to list it as most
recent use an '_' after the
 regular version number followed by at least 2 digits, eg. 1.20_01. If
 you do
this, the following idiom is recommended:

 $VERSION = "1.12_01";
 $XS_VERSION = $VERSION; # only needed if you have XS code
 $VERSION = eval $VERSION;

With that trick MakeMaker will only read the first line and thus read
 the underscore, while the perl
interpreter will evaluate the $VERSION
 and convert the string into a number. Later operations that
treat
 $VERSION as a number will then be able to do so without provoking a
 warning about
$VERSION not being a number.

Never release anything (even a one-word documentation patch) without
 incrementing the number.
Even a one-word documentation patch should
 result in a change in version at the sub-minor level.

Pre-requisites
Module authors should carefully consider whether to rely on other
 modules, and which modules to
rely on.

Most importantly, choose modules which are as stable as possible. In
 order of preference:

Core Perl modules

Stable CPAN modules

Unstable CPAN modules

Modules not available from CPAN

Specify version requirements for other Perl modules in the
 pre-requisites in your Makefile.PL or
Build.PL.

Be sure to specify Perl version requirements both in Makefile.PL or
 Build.PL and with require
5.6.1 or similar. See the section on use VERSION of "require" in perlfunc for details.

Testing
All modules should be tested before distribution (using "make disttest"),
 and the tests should also be
available to people installing the modules (using "make test"). For Module::Build you would use the
make test equivalent perl Build test.

Perl version 5.14.2 documentation - perlmodstyle

Page 8http://perldoc.perl.org

The importance of these tests is proportional to the alleged stability of a module. A module which
purports to be stable or which hopes to achieve wide use should adhere to as strict a testing regime
as possible.

Useful modules to help you write tests (with minimum impact on your development process or your
time) include Test::Simple, Carp::Assert and Test::Inline.
 For more sophisticated test suites there are
Test::More and Test::MockObject.

Packaging
Modules should be packaged using one of the standard packaging tools.
 Currently you have the
choice between ExtUtils::MakeMaker and the
 more platform independent Module::Build, allowing
modules to be installed in a
 consistent manner.
 When using ExtUtils::MakeMaker, you can use "make
dist" to create your
 package. Tools exist to help you to build your module in a MakeMaker-friendly

style. These include ExtUtils::ModuleMaker and h2xs. See also perlnewmod.

Licensing
Make sure that your module has a license, and that the full text of it
 is included in the distribution
(unless it's a common one and the terms
 of the license don't require you to include it).

If you don't know what license to use, dual licensing under the GPL
 and Artistic licenses (the same as
Perl itself) is a good idea.
 See perlgpl and perlartistic.

COMMON PITFALLS
Reinventing the wheel

There are certain application spaces which are already very, very well
 served by CPAN. One example
is templating systems, another is date and
 time modules, and there are many more. While it is a rite
of passage to
 write your own version of these things, please consider carefully
 whether the Perl world
really needs you to publish it.

Trying to do too much
Your module will be part of a developer's toolkit. It will not, in
 itself, form the entire toolkit. It's tempting
to add extra features
 until your code is a monolithic system rather than a set of modular
 building
blocks.

Inappropriate documentation
Don't fall into the trap of writing for the wrong audience. Your
 primary audience is a reasonably
experienced developer with at least a moderate understanding of your module's application domain,
who's just downloaded your module and wants to start using it as quickly as possible.

Tutorials, end-user documentation, research papers, FAQs etc are not appropriate in a module's main
documentation. If you really want to write these, include them as sub-documents such as
My::Module::Tutorial or My::Module::FAQ and provide a link in the SEE ALSO section of the

main documentation.

SEE ALSO
perlstyle

General Perl style guide

perlnewmod

How to create a new module

perlpod

POD documentation

podchecker

Verifies your POD's correctness

Perl version 5.14.2 documentation - perlmodstyle

Page 9http://perldoc.perl.org

Packaging Tools

ExtUtils::MakeMaker, Module::Build

Testing tools

Test::Simple, Test::Inline, Carp::Assert, Test::More, Test::MockObject

http://pause.perl.org/

Perl Authors Upload Server. Contains links to information for module
 authors.

Any good book on software engineering

AUTHOR
Kirrily "Skud" Robert <skud@cpan.org>

