
Perl version 5.14.2 documentation - perlmroapi

Page 1http://perldoc.perl.org

NAME
perlmroapi - Perl method resolution plugin interface

DESCRIPTION
As of Perl 5.10.1 there is a new interface for plugging and using method
 resolution orders other than
the default (linear depth first search).
 The C3 method resolution order added in 5.10.0 has been
re-implemented as
 a plugin, without changing its Perl-space interface.

Each plugin should register itself with Perl_mro_register by providing
 the following structure

 struct mro_alg {
 AV *(*resolve)(pTHX_ HV *stash, U32 level);
 const char *name;
 U16 length;
 U16 kflags;
 U32 hash;
 };

resolve

Pointer to the linearisation function, described below.

name

Name of the MRO, either in ISO-8859-1 or UTF-8.

length

Length of the name.

kflags

If the name is given in UTF-8, set this to HVhek_UTF8. The value is passed
 direct as the
parameter kflags to hv_common().

hash

A precomputed hash value for the MRO's name, or 0.

Callbacks
The resolve function is called to generate a linearised ISA for the
 given stash, using this MRO. It is
called with a pointer to the stash, and
 a level of 0. The core always sets level to 0 when it calls your

function - the parameter is provided to allow your implementation to track
 depth if it needs to recurse.

The function should return a reference to an array containing the parent
 classes in order. The names
of the classes should be the result of calling HvENAME() on the stash. In those cases where
HvENAME() returns null, HvNAME() should be used instead.

The caller is responsible for incrementing the reference count of the array
 returned if it wants to keep
the structure. Hence, if you have created a
 temporary value that you keep no pointer to,
sv_2mortal() to ensure that
 it is disposed of correctly. If you have cached your return value, then

return a pointer to it without changing the reference count.

Caching
Computing MROs can be expensive. The implementation provides a cache, in
 which you can store a
single SV *, or anything that can be cast to SV *, such as AV *. To read your private value, use the
macro MRO_GET_PRIVATE_DATA(), passing it the mro_meta structure from the
 stash, and a pointer
to your mro_alg structure:

 meta = HvMROMETA(stash);
 private_sv = MRO_GET_PRIVATE_DATA(meta, &my_mro_alg);

Perl version 5.14.2 documentation - perlmroapi

Page 2http://perldoc.perl.org

To set your private value, call Perl_mro_set_private_data():

 Perl_mro_set_private_data(aTHX_ meta, &c3_alg, private_sv);

The private data cache will take ownership of a reference to private_sv,
 much the same way that
hv_store() takes ownership of a reference to the
 value that you pass it.

Examples
For examples of MRO implementations, see S_mro_get_linear_isa_c3()
 and the BOOT:
section of mro/mro.xs, and S_mro_get_linear_isa_dfs()
 in mro.c

AUTHORS
The implementation of the C3 MRO and switchable MROs within the perl core was
 written by Brandon
L Black. Nicholas Clark created the pluggable interface, refactored Brandon's implementation to work
with it, and wrote this document.

