
Perl version 5.14.2 documentation - perltodo

Page 1http://perldoc.perl.org

NAME
perltodo - Perl TO-DO List

DESCRIPTION
This is a list of wishes for Perl. The most up to date version of this file
 is at
http://perl5.git.perl.org/perl.git/blob_plain/HEAD:/pod/perltodo.pod

The tasks we think are smaller or easier are listed first. Anyone is welcome
 to work on any of these,
but it's a good idea to first contact perl5-porters@perl.org to avoid duplication of effort, and to learn
from
 any previous attempts. By all means contact a pumpking privately first if you
 prefer.

Whilst patches to make the list shorter are most welcome, ideas to add to
 the list are also
encouraged. Check the perl5-porters archives for past
 ideas, and any discussion about them. One set
of archives may be found at http://www.xray.mpe.mpg.de/mailing-lists/perl5-porters/

What can we offer you in return? Fame, fortune, and everlasting glory? Maybe
 not, but if your patch is
incorporated, then we'll add your name to the AUTHORS file, which ships in the official distribution.
How many other
 programming languages offer you 1 line of immortality?

Tasks that only need Perl knowledge
Migrate t/ from custom TAP generation

Many tests below t/ still generate TAP by "hand", rather than using library
 functions. As explained in
"TESTING" in perlhack, tests in t/ are
 written in a particular way to test that more complex
constructions actually
 work before using them routinely. Hence they don't use Test::More, but

instead there is an intentionally simpler library, t/test.pl. However,
 quite a few tests in t/ have not been
refactored to use it. Refactoring
 any of these tests, one at a time, is a useful thing TODO.

The subdirectories base, cmd and comp, that contain the most
 basic tests, should be excluded from
this task.

Automate perldelta generation
The perldelta file accompanying each release summaries the major changes.
 It's mostly manually
generated currently, but some of that could be
 automated with a bit of perl, specifically the generation
of

Modules and Pragmata

New Documentation

New Tests

See Porting/how_to_write_a_perldelta.pod for details.

Remove duplication of test setup.
Schwern notes, that there's duplication of code - lots and lots of tests have
 some variation on the big
block of $Is_Foo checks. We can safely put this
 into a file, change it to build an %Is hash and
require it. Maybe just put
 it into test.pl. Throw in the handy tainting subroutines.

POD -> HTML conversion in the core still sucks
Which is crazy given just how simple POD purports to be, and how simple HTML
 can be. It's not
actually as simple as it sounds, particularly with the
 flexibility POD allows for =item, but it would be
good to improve the
 visual appeal of the HTML generated, and to avoid it having any validation
 errors.
See also make HTML install work, as the layout of installation tree
 is needed to improve the
cross-linking.

The addition of Pod::Simple and its related modules may make this task
 easier to complete.

Perl version 5.14.2 documentation - perltodo

Page 2http://perldoc.perl.org

Make ExtUtils::ParseXS use strict;
lib/ExtUtils/ParseXS.pm contains this line

 # use strict; # One of these days...

Simply uncomment it, and fix all the resulting issues :-)

The more practical approach, to break the task down into manageable chunks, is
 to work your way
though the code from bottom to top, or if necessary adding
 extra { ... } blocks, and turning on
strict within them.

Make Schwern poorer
We should have tests for everything. When all the core's modules are tested,
 Schwern has promised
to donate to $500 to TPF. We may need volunteers to
 hold him upside down and shake vigorously in
order to actually extract the
 cash.

Improve the coverage of the core tests
Use Devel::Cover to ascertain the core modules' test coverage, then add
 tests that are currently
missing.

test B
A full test suite for the B module would be nice.

A decent benchmark
perlbench seems impervious to any recent changes made to the perl core. It
 would be useful to
have a reasonable general benchmarking suite that roughly
 represented what current perl programs
do, and measurably reported whether
 tweaks to the core improve, degrade or don't really affect
performance, to
 guide people attempting to optimise the guts of perl. Gisle would welcome
 new tests
for perlbench.

fix tainting bugs
Fix the bugs revealed by running the test suite with the -t switch (via make test.taintwarn).

Dual life everything
As part of the "dists" plan, anything that doesn't belong in the smallest perl
 distribution needs to be
dual lifed. Anything else can be too. Figure out what
 changes would be needed to package that
module and its tests up for CPAN, and
 do so. Test it with older perl releases, and fix the problems you
find.

To make a minimal perl distribution, it's useful to look at t/lib/commonsense.t.

POSIX memory footprint
Ilya observed that use POSIX; eats memory like there's no tomorrow, and at
 various times worked to
cut it down. There is probably still fat to cut out -
 for example POSIX passes Exporter some very
memory hungry data structures.

embed.pl/makedef.pl
There is a script embed.pl that generates several header files to prefix
 all of Perl's symbols in a
consistent way, to provide some semblance of
 namespace support in C. Functions are declared in
embed.fnc, variables
 in interpvar.h. Quite a few of the functions and variables
 are conditionally
declared there, using #ifdef. However, embed.pl
 doesn't understand the C macros, so the rules
about which symbols are present
 when is duplicated in makedef.pl. Writing things twice is bad, m'kay.
It would be good to teach embed.pl to understand the conditional
 compilation, and hence remove
the duplication, and the mistakes it has caused.

Perl version 5.14.2 documentation - perltodo

Page 3http://perldoc.perl.org

use strict; and AutoLoad
Currently if you write

 package Whack;
 use AutoLoader 'AUTOLOAD';
 use strict;
 1;
 __END__
 sub bloop {
 print join (' ', No, strict, here), "!\n";
 }

then use strict; isn't in force within the autoloaded subroutines. It would
 be more consistent (and
less surprising) to arrange for all lexical pragmas
 in force at the __END__ block to be in force within
each autoloaded subroutine.

There's a similar problem with SelfLoader.

profile installman
The installman script is slow. All it is doing text processing, which we're
 told is something Perl is good
at. So it would be nice to know what it is doing
 that is taking so much CPU, and where possible
address it.

enable lexical enabling/disabling of individual warnings
Currently, warnings can only be enabled or disabled by category. There
 are times when it would be
useful to quash a single warning, not a
 whole category.

Tasks that need a little sysadmin-type knowledge
Or if you prefer, tasks that you would learn from, and broaden your skills
 base...

make HTML install work
There is an installhtml target in the Makefile. It's marked as
 "experimental". It would be good to
get this tested, make it work reliably, and
 remove the "experimental" tag. This would include

1 Checking that cross linking between various parts of the documentation works.
 In particular
that links work between the modules (files with POD in lib/)
 and the core documentation (files
in pod/)

2 Work out how to split perlfunc into chunks, preferably one per function
 group, preferably
with general case code that could be used elsewhere.
 Challenges here are correctly
identifying the groups of functions that go
 together, and making the right named external
cross-links point to the right
 page. Things to be aware of are -X, groups such as getpwnam to
endservent, two or more =items giving the different parameter lists, such
 as

 =item substr EXPR,OFFSET,LENGTH,REPLACEMENT
 =item substr EXPR,OFFSET,LENGTH
 =item substr EXPR,OFFSET

and different parameter lists having different meanings. (eg select)

compressed man pages
Be able to install them. This would probably need a configure test to see how
 the system does
compressed man pages (same directory/different directory?
 same filename/different filename), as well
as tweaking the installman script
 to compress as necessary.

Perl version 5.14.2 documentation - perltodo

Page 4http://perldoc.perl.org

Add a code coverage target to the Makefile
Make it easy for anyone to run Devel::Cover on the core's tests. The steps
 to do this manually are
roughly

do a normal Configure, but include Devel::Cover as a module to install
 (see INSTALL for
how to do this)

 make perl

 cd t; HARNESS_PERL_SWITCHES=-MDevel::Cover ./perl -I../lib
harness

Process the resulting Devel::Cover database

This just give you the coverage of the .pms. To also get the C level
 coverage you need to

Additionally tell Configure to use the appropriate C compiler flags for gcov

 make perl.gcov

(instead of make perl)

After running the tests run gcov to generate all the .gcov files.
 (Including down in the
subdirectories of ext/

(From the top level perl directory) run gcov2perl on all the .gcov files
 to get their stats into
the cover_db directory.

Then process the Devel::Cover database

It would be good to add a single switch to Configure to specify that you
 wanted to perform perl level
coverage, and another to specify C level
 coverage, and have Configure and the Makefile do all the
right things
 automatically.

Make Config.pm cope with differences between built and installed perl
Quite often vendors ship a perl binary compiled with their (pay-for)
 compilers. People install a free
compiler, such as gcc. To work out how to
 build extensions, Perl interrogates %Config, so in this
situation %Config describes compilers that aren't there, and extension building
 fails. This forces
people into choosing between re-compiling perl themselves
 using the compiler they have, or only
using modules that the vendor ships.

It would be good to find a way teach Config.pm about the installation setup,
 possibly involving
probing at install time or later, so that the %Config in
 a binary distribution better describes the
installed machine, when the
 installed machine differs from the build machine in some significant way.

linker specification files
Some platforms mandate that you provide a list of a shared library's external
 symbols to the linker, so
the core already has the infrastructure in place to
 do this for generating shared perl libraries. My
understanding is that the
 GNU toolchain can accept an optional linker specification file, and restrict

visibility just to symbols declared in that file. It would be good to extend makedef.pl to support this
format, and to provide a means within Configure to enable it. This would allow Unix users to test
that the
 export list is correct, and to build a perl that does not pollute the global
 namespace with
private symbols, and will fail in the same way as msvc or mingw builds or when using
PERL_DL_NONLAZY=1.

Cross-compile support
Currently Configure understands -Dusecrosscompile option. This option
 arranges for building
miniperl for TARGET machine, so this miniperl is
 assumed then to be copied to TARGET

Perl version 5.14.2 documentation - perltodo

Page 5http://perldoc.perl.org

machine and used as a replacement of full perl executable.

This could be done little differently. Namely miniperl should be built for
 HOST and then full perl
with extensions should be compiled for TARGET.
 This, however, might require extra trickery for
%Config: we have one config
 first for HOST and then another for TARGET. Tools like MakeMaker will
be
 mightily confused. Having around two different types of executables and
 libraries (HOST and
TARGET) makes life interesting for Makefiles and
 shell (and Perl) scripts. There is $Config{run},
normally empty, which
 can be used as an execution wrapper. Also note that in some

cross-compilation/execution environments the HOST and the TARGET do
 not see the same
filesystem(s), the $Config{run} may need to do some
 file/directory copying back and forth.

roffitall
Make pod/roffitall be updated by pod/buildtoc.

Split "linker" from "compiler"
Right now, Configure probes for two commands, and sets two variables:

* cc (in cc.U)

This variable holds the name of a command to execute a C compiler which
 can resolve
multiple global references that happen to have the same
 name. Usual values are cc and gcc.

Fervent ANSI compilers may be called c89. AIX has xlc.

* ld (in dlsrc.U)

This variable indicates the program to be used to link
 libraries for dynamic loading. On some
systems, it is ld.
 On ELF systems, it should be $cc. Mostly, we'll try to respect
 the hint file
setting.

There is an implicit historical assumption from around Perl5.000alpha
 something, that $cc is also the
correct command for linking object files
 together to make an executable. This may be true on Unix,
but it's not true
 on other platforms, and there are a maze of work arounds in other places (such
 as
Makefile.SH) to cope with this.

Ideally, we should create a new variable to hold the name of the executable
 linker program, probe for
it in Configure, and centralise all the special
 case logic there or in hints files.

A small bikeshed issue remains - what to call it, given that $ld is already
 taken (arguably for the
wrong thing now, but on SunOS 4.1 it is the command
 for creating dynamically-loadable modules)
and $link could be confused with
 the Unix command line executable of the same name, which does
something
 completely different. Andy Dougherty makes the counter argument "In parrot, I
 tried to call
the command used to link object files and libraries into an
 executable link, since that's what my
vaguely-remembered DOS and VMS
 experience suggested. I don't think any real confusion has
ensued, so it's
 probably a reasonable name for perl5 to use."

"Alas, I've always worried that introducing it would make things worse, since now the module building
utilities would have to look for $Config{link} and institute a fall-back plan if it weren't found."

Although I can see that as confusing, given that $Config{d_link} is true
 when (hard) links are
available.

Configure Windows using PowerShell
Currently, Windows uses hard-coded config files based to build the
 config.h for compiling Perl.
Makefiles are also hard-coded and need to be hand edited prior to building Perl. While this makes it
easy to create a perl.exe that works across multiple Windows versions, being able to accurately

configure a perl.exe for a specific Windows versions and VS C++ would be
 a nice enhancement. With
PowerShell available on Windows XP and up, this may now be possible. Step 1 might be to
investigate whether this is possible
 and use this to clean up our current makefile situation. Step 2
would be to see if there would be a way to use our existing metaconfig units to configure a
 Windows
Perl or whether we go in a separate direction and make it so. Of course, we all know what step 3 is.

Perl version 5.14.2 documentation - perltodo

Page 6http://perldoc.perl.org

decouple -g and -DDEBUGGING
Currently Configure automatically adds -DDEBUGGING to the C compiler
 flags if it spots -g in the
optimiser flags. The pre-processor directive DEBUGGING enables perl's command line -D options, but
in the process
 makes perl slower. It would be good to disentangle this logic, so that
 C-level debugging
with -g and Perl level debugging with -D can easily
 be enabled independently.

Tasks that need a little C knowledge
These tasks would need a little C knowledge, but don't need any specific
 background or experience
with XS, or how the Perl interpreter works

Weed out needless PERL_UNUSED_ARG
The C code uses the macro PERL_UNUSED_ARG to stop compilers warning about
 unused arguments.
Often the arguments can't be removed, as there is an
 external constraint that determines the
prototype of the function, so this
 approach is valid. However, there are some cases where
PERL_UNUSED_ARG
 could be removed. Specifically

The prototypes of (nearly all) static functions can be changed

Unused arguments generated by short cut macros are wasteful - the short cut
 macro used can
be changed.

Modernize the order of directories in @INC
The way @INC is laid out by default, one cannot upgrade core (dual-life)
 modules without overwriting
files. This causes problems for binary
 package builders. One possible proposal is laid out in this

message: http://www.xray.mpe.mpg.de/mailing-lists/perl5-porters/2002-04/msg02380.html

-Duse32bit*
Natively 64-bit systems need neither -Duse64bitint nor -Duse64bitall.
 On these systems, it might be
the default compilation mode, and there
 is currently no guarantee that passing no use64bitall option to
the
 Configure process will build a 32bit perl. Implementing -Duse32bit*
 options would be nice for perl
5.14.

Profile Perl - am I hot or not?
The Perl source code is stable enough that it makes sense to profile it,
 identify and optimise the
hotspots. It would be good to measure the
 performance of the Perl interpreter using free tools such as
cachegrind,
 gprof, and dtrace, and work to reduce the bottlenecks they reveal.

As part of this, the idea of pp_hot.c is that it contains the hot ops,
 the ops that are most commonly
used. The idea is that by grouping them, their
 object code will be adjacent in the executable, so they
have a greater chance
 of already being in the CPU cache (or swapped in) due to being near another
op
 already in use.

Except that it's not clear if these really are the most commonly used ops. So
 as part of exercising your
skills with coverage and profiling tools you might
 want to determine what ops really are the most
commonly used. And in turn
 suggest evictions and promotions to achieve a better pp_hot.c.

One piece of Perl code that might make a good testbed is installman.

Allocate OPs from arenas
Currently all new OP structures are individually malloc()ed and free()d.
 All malloc implementations
have space overheads, and are now as fast as
 custom allocates so it would both use less memory
and less CPU to allocate
 the various OP structures from arenas. The SV arena code can probably be

re-used for this.

Note that Configuring perl with -Accflags=-DPL_OP_SLAB_ALLOC will use
 Perl_Slab_alloc() to
pack optrees into a contiguous block, which is
 probably superior to the use of OP arenas, esp. from a
cache locality
 standpoint. See Profile Perl - am I hot or not?.

Perl version 5.14.2 documentation - perltodo

Page 7http://perldoc.perl.org

Improve win32/wince.c
Currently, numerous functions look virtually, if not completely,
 identical in both win32/wince.c and
win32/win32.c files, which can't
 be good.

Use secure CRT functions when building with VC8 on Win32
Visual C++ 2005 (VC++ 8.x) deprecated a number of CRT functions on the basis
 that they were
"unsafe" and introduced differently named secure versions of
 them as replacements, e.g. instead of
writing

 FILE* f = fopen(__FILE__, "r");

one should now write

 FILE* f;
 errno_t err = fopen_s(&f, __FILE__, "r");

Currently, the warnings about these deprecations have been disabled by adding

-D_CRT_SECURE_NO_DEPRECATE to the CFLAGS. It would be nice to remove that
 warning
suppressant and actually make use of the new secure CRT functions.

There is also a similar issue with POSIX CRT function names like fileno having
 been deprecated in
favour of ISO C++ conformant names like _fileno. These
 warnings are also currently suppressed by
adding -D_CRT_NONSTDC_NO_DEPRECATE. It
 might be nice to do as Microsoft suggest here too,
although, unlike the secure
 functions issue, there is presumably little or no benefit in this case.

Fix POSIX::access() and chdir() on Win32
These functions currently take no account of DACLs and therefore do not behave
 correctly in
situations where access is restricted by DACLs (as opposed to the
 read-only attribute).

Furthermore, POSIX::access() behaves differently for directories having the
 read-only attribute set
depending on what CRT library is being used. For
 example, the _access() function in the VC6 and
VC7 CRTs (wrongly) claim that
 such directories are not writable, whereas in fact all directories are
writable
 unless access is denied by DACLs. (In the case of directories, the read-only
 attribute actually
only means that the directory cannot be deleted.) This CRT
 bug is fixed in the VC8 and VC9 CRTs
(but, of course, the directory may still
 not actually be writable if access is indeed denied by DACLs).

For the chdir() issue, see ActiveState bug #74552:
http://bugs.activestate.com/show_bug.cgi?id=74552

Therefore, DACLs should be checked both for consistency across CRTs and for
 the correct answer.

(Note that perl's -w operator should not be modified to check DACLs. It has
 been written so that it
reflects the state of the read-only attribute, even
 for directories (whatever CRT is being used), for
symmetry with chmod().)

strcat(), strcpy(), strncat(), strncpy(), sprintf(), vsprintf()
Maybe create a utility that checks after each libperl.a creation that
 none of the above (nor sprintf(),
vsprintf(), or *SHUDDER* gets())
 ever creep back to libperl.a.

 nm libperl.a | ./miniperl -alne '$o = $F[0] if /:$/; print "$o $F[1]" if
$F[0] eq "U" && $F[1] =~ /^(?:strn?c(?:at|py)|v?sprintf|gets)$/'

Note, of course, that this will only tell whether your platform
 is using those naughty interfaces.

-D_FORTIFY_SOURCE=2, -fstack-protector
Recent glibcs support -D_FORTIFY_SOURCE=2 and recent gcc
 (4.1 onwards?) supports
-fstack-protector, both of which give
 protection against various kinds of buffer overflow

Perl version 5.14.2 documentation - perltodo

Page 8http://perldoc.perl.org

problems.
 These should probably be used for compiling Perl whenever available,
 Configure and/or
hints files should be adjusted to probe for the
 availability of these features and enable them as
appropriate.

Arenas for GPs? For MAGIC?
struct gp and struct magic are both currently allocated by malloc.
 It might be a speed or
memory saving to change to using arenas. Or it might
 not. It would need some suitable benchmarking
first. In particular, GPs
 can probably be changed with minimal compatibility impact (probably nothing

outside of the core, or even outside of gv.c allocates them), but they
 probably aren't
allocated/deallocated often enough for a speed saving. Whereas MAGIC is allocated/deallocated more
often, but in turn, is also something
 more externally visible, so changing the rules here may bite
external code.

Shared arenas
Several SV body structs are now the same size, notably PVMG and PVGV, PVAV and
 PVHV, and
PVCV and PVFM. It should be possible to allocate and return same
 sized bodies from the same
actual arena, rather than maintaining one arena for
 each. This could save 4-6K per thread, of memory
no longer tied up in the
 not-yet-allocated part of an arena.

Tasks that need a knowledge of XS
These tasks would need C knowledge, and roughly the level of knowledge of
 the perl API that comes
from writing modules that use XS to interface to
 C.

Write an XS cookbook
Create pod/perlxscookbook.pod with short, task-focused 'recipes' in XS that
 demonstrate common
tasks and good practices. (Some of these might be
 extracted from perlguts.) The target audience
should be XS novices, who need
 more examples than perlguts but something less overwhelming than
perlapi.
 Recipes should provide "one pretty good way to do it" instead of TIMTOWTDI.

Rather than focusing on interfacing Perl to C libraries, such a cookbook
 should probably focus on how
to optimize Perl routines by re-writing them
 in XS. This will likely be more motivating to those who
mostly work in
 Perl but are looking to take the next step into XS.

Deconstructing and explaining some simpler XS modules could be one way to
 bootstrap a cookbook.
(List::Util? Class::XSAccessor? Tree::Ternary_XS?)
 Another option could be deconstructing the
implementation of some simpler
 functions in op.c.

Allow XSUBs to inline themselves as OPs
For a simple XSUB, often the subroutine dispatch takes more time than the
 XSUB itself. The
tokeniser already has the ability to inline constant
 subroutines - it would be good to provide a way to
inline other subroutines.

Specifically, simplest approach looks to be to allow an XSUB to provide an
 alternative implementation
of itself as a custom OP. A new flag bit in CvFLAGS() would signal to the peephole optimiser to take
an optree
 such as this:

 b <@> leave[1 ref] vKP/REFC ->(end)
 1 <0> enter ->2
 2 <;> nextstate(main 1 -e:1) v:{ ->3
 a <2> sassign vKS/2 ->b
 8 <1> entersub[t2] sKS/TARG,1 ->9
 - <1> ex-list sK ->8
 3 <0> pushmark s ->4
 4 <$> const(IV 1) sM ->5
 6 <1> rv2av[t1] lKM/1 ->7
 5 <$> gv(*a) s ->6
 - <1> ex-rv2cv sK ->-

Perl version 5.14.2 documentation - perltodo

Page 9http://perldoc.perl.org

 7 <$> gv(*x) s/EARLYCV ->8
 - <1> ex-rv2sv sKRM*/1 ->a
 9 <$> gvsv(*b) s ->a

perform the symbol table lookup of rv2cv and gv(*x), locate the
 pointer to the custom OP that
provides the direct implementation, and re-
 write the optree something like:

 b <@> leave[1 ref] vKP/REFC ->(end)
 1 <0> enter ->2
 2 <;> nextstate(main 1 -e:1) v:{ ->3
 a <2> sassign vKS/2 ->b
 7 <1> custom_x -> 8
 - <1> ex-list sK ->7
 3 <0> pushmark s ->4
 4 <$> const(IV 1) sM ->5
 6 <1> rv2av[t1] lKM/1 ->7
 5 <$> gv(*a) s ->6
 - <1> ex-rv2cv sK ->-
 - <$> ex-gv(*x) s/EARLYCV ->7
 - <1> ex-rv2sv sKRM*/1 ->a
 8 <$> gvsv(*b) s ->a

i.e. the gv(*) OP has been nulled and spliced out of the execution
 path, and the entersub OP has
been replaced by the custom op.

This approach should provide a measurable speed up to simple XSUBs inside
 tight loops. Initially one
would have to write the OP alternative
 implementation by hand, but it's likely that this should be
reasonably
 straightforward for the type of XSUB that would benefit the most. Longer
 term, once the
run-time implementation is proven, it should be possible to
 progressively update ExtUtils::ParseXS to
generate OP implementations for
 some XSUBs.

Remove the use of SVs as temporaries in dump.c
dump.c contains debugging routines to dump out the contains of perl data
 structures, such as SVs, AV
s and HVs. Currently, the dumping code uses SVs for its temporary buffers, which was a logical initial

implementation choice, as they provide ready made memory handling.

However, they also lead to a lot of confusion when it happens that what you're
 trying to debug is seen
by the code in dump.c, correctly or incorrectly, as
 a temporary scalar it can use for a temporary buffer.
It's also not possible
 to dump scalars before the interpreter is properly set up, such as during
 ithreads
cloning. It would be good to progressively replace the use of scalars
 as string accumulation buffers
with something much simpler, directly allocated
 by malloc. The dump.c code is (or should be) only
producing 7 bit
 US-ASCII, so output character sets are not an issue.

Producing and proving an internal simple buffer allocation would make it easier
 to re-write the
internals of the PerlIO subsystem to avoid using SVs for its buffers, use of which can cause problems
similar to those of dump.c,
 at similar times.

safely supporting POSIX SA_SIGINFO
Some years ago Jarkko supplied patches to provide support for the POSIX
 SA_SIGINFO feature in
Perl, passing the extra data to the Perl signal handler.

Unfortunately, it only works with "unsafe" signals, because under safe
 signals, by the time Perl gets to
run the signal handler, the extra
 information has been lost. Moreover, it's not easy to store it
somewhere,
 as you can't call mutexs, or do anything else fancy, from inside a signal
 handler.

So it strikes me that we could provide safe SA_SIGINFO support

1 Provide global variables for two file descriptors

Perl version 5.14.2 documentation - perltodo

Page 10http://perldoc.perl.org

2 When the first request is made via sigaction for SA_SIGINFO, create a
 pipe, store the
reader in one, the writer in the other

3 In the "safe" signal handler (Perl_csighandler()/S_raise_signal()), if
 the
siginfo_t pointer non-NULL, and the writer file handle is open,

1 serialise signal number, struct siginfo_t (or at least the parts we care

about) into a small auto char buff

2 write() that (non-blocking) to the writer fd

1 if it writes 100%, flag the signal in a counter of "signals
on the pipe" akin
 to the current per-signal-number
counts

2 if it writes 0%, assume the pipe is full. Flag the data as
lost?

3 if it writes partially, croak a panic, as your OS is broken.

4 in the regular PERL_ASYNC_CHECK() processing, if there are "signals on
 the pipe", read the
data out, deserialise, build the Perl structures on
 the stack (code in Perl_sighandler(),
the "unsafe" handler), and call as
 usual.

I think that this gets us decent SA_SIGINFO support, without the current risk
 of running Perl code
inside the signal handler context. (With all the dangers
 of things like malloc corruption that that
currently offers us)

For more information see the thread starting with this message:
http://www.xray.mpe.mpg.de/mailing-lists/perl5-porters/2008-03/msg00305.html

autovivification
Make all autovivification consistent w.r.t LVALUE/RVALUE and strict/no strict;

This task is incremental - even a little bit of work on it will help.

Unicode in Filenames
chdir, chmod, chown, chroot, exec, glob, link, lstat, mkdir, open,
 opendir, qx, readdir, readlink,
rename, rmdir, stat, symlink, sysopen,
 system, truncate, unlink, utime, -X. All these could potentially
accept
 Unicode filenames either as input or output (and in the case of system
 and qx Unicode in
general, as input or output to/from the shell).
 Whether a filesystem - an operating system pair
understands Unicode in
 filenames varies.

Known combinations that have some level of understanding include
 Microsoft NTFS, Apple HFS+ (In
Mac OS 9 and X) and Apple UFS (in Mac
 OS X), NFS v4 is rumored to be Unicode, and of course
Plan 9. How to
 create Unicode filenames, what forms of Unicode are accepted and used
 (UCS-2,
UTF-16, UTF-8), what (if any) is the normalization form used,
 and so on, varies. Finding the right level
of interfacing to Perl
 requires some thought. Remember that an OS does not implicate a
 filesystem.

(The Windows -C command flag "wide API support" has been at least
 temporarily retired in 5.8.1, and
the -C has been repurposed, see perlrun.)

Most probably the right way to do this would be this: Virtualize operating system access.

Unicode in %ENV
Currently the %ENV entries are always byte strings.
 See Virtualize operating system access.

Perl version 5.14.2 documentation - perltodo

Page 11http://perldoc.perl.org

Unicode and glob()
Currently glob patterns and filenames returned from File::Glob::glob()
 are always byte strings. See
Virtualize operating system access.

use less 'memory'
Investigate trade offs to switch out perl's choices on memory usage.
 Particularly perl should be able to
give memory back.

This task is incremental - even a little bit of work on it will help.

Re-implement :unique in a way that is actually thread-safe
The old implementation made bad assumptions on several levels. A good 90%
 solution might be just
to make :unique work to share the string buffer
 of SvPVs. That way large constant strings can be
shared between ithreads,
 such as the configuration information in Config.

Make tainting consistent
Tainting would be easier to use if it didn't take documented shortcuts and
 allow taint to "leak"
everywhere within an expression.

readpipe(LIST)
system() accepts a LIST syntax (and a PROGRAM LIST syntax) to avoid
 running a shell. readpipe()
(the function behind qx//) could be similarly
 extended.

Audit the code for destruction ordering assumptions
Change 25773 notes

 /* Need to check SvMAGICAL, as during global destruction it may be that
 AvARYLEN(av) has been freed before av, and hence the SvANY() pointer
 is now part of the linked list of SV heads, rather than pointing to
 the original body. */
 /* FIXME - audit the code for other bugs like this one. */

adding the SvMAGICAL check to

 if (AvARYLEN(av) && SvMAGICAL(AvARYLEN(av))) {
 MAGIC *mg = mg_find (AvARYLEN(av), PERL_MAGIC_arylen);

Go through the core and look for similar assumptions that SVs have particular
 types, as all bets are
off during global destruction.

Extend PerlIO and PerlIO::Scalar
PerlIO::Scalar doesn't know how to truncate(). Implementing this
 would require extending the PerlIO
vtable.

Similarly the PerlIO vtable doesn't know about formats (write()), or
 about stat(), or chmod()/chown(),
utime(), or flock().

(For PerlIO::Scalar it's hard to see what e.g. mode bits or ownership
 would mean.)

PerlIO doesn't do directories or symlinks, either: mkdir(), rmdir(),
 opendir(), closedir(), seekdir(),
rewinddir(), glob(); symlink(),
 readlink().

See also Virtualize operating system access.

-C on the #! line
It should be possible to make -C work correctly if found on the #! line,
 given that all perl command line
options are strict ASCII, and -C changes
 only the interpretation of non-ASCII characters, and not for

Perl version 5.14.2 documentation - perltodo

Page 12http://perldoc.perl.org

the script file
 handle. To make it work needs some investigation of the ordering of function
 calls during
startup, and (by implication) a bit of tweaking of that order.

Organize error messages
Perl's diagnostics (error messages, see perldiag) could use
 reorganizing and formalizing so that each
error message has its
 stable-for-all-eternity unique id, categorized by severity, type, and
 subsystem.
(The error messages would be listed in a datafile outside
 of the Perl source code, and the source
code would only refer to the
 messages by the id.) This clean-up and regularizing should apply
 for all
croak() messages.

This would enable all sorts of things: easier translation/localization
 of the messages (though please
do keep in mind the caveats of Locale::Maketext about too straightforward approaches to
 translation),
filtering by severity, and instead of grepping for a
 particular error message one could look for a stable
error id. (Of
 course, changing the error messages by default would break all the
 existing software
depending on some particular error message...)

This kind of functionality is known as message catalogs. Look for
 inspiration for example in the
catgets() system, possibly even use it
 if available-- but only if available, all platforms will not
 have
catgets().

For the really pure at heart, consider extending this item to cover
 also the warning messages (see
perllexwarn, warnings.pl).

Tasks that need a knowledge of the interpreter
These tasks would need C knowledge, and knowledge of how the interpreter works,
 or a willingness
to learn.

forbid labels with keyword names
Currently goto keyword "computes" the label value:

 $ perl -e 'goto print'
 Can't find label 1 at -e line 1.

It is controversial if the right way to avoid the confusion is to forbid
 labels with keyword names, or if it
would be better to always treat
 bareword expressions after a "goto" as a label and never as a
keyword.

truncate() prototype
The prototype of truncate() is currently $$. It should probably
 be *$ instead. (This is changed in
opcode.pl)

decapsulation of smart match argument
Currently $foo ~~ $object will die with the message "Smart matching a
 non-overloaded object
breaks encapsulation". It would be nice to allow
 to bypass this by using explicitly the syntax $foo ~~
 %$object or $foo ~~ @$object.

error reporting of [$a ; $b]
Using ; inside brackets is a syntax error, and we don't propose to change
 that by giving it any
meaning. However, it's not reported very helpfully:

 $ perl -e '$a = [$b; $c];'
 syntax error at -e line 1, near "$b;"
 syntax error at -e line 1, near "$c]"
 Execution of -e aborted due to compilation errors.

It should be possible to hook into the tokeniser or the lexer, so that when a ; is parsed where it is not
legal as a statement terminator (ie inside {} used as a hashref, [] or ()) it issues an error something

Perl version 5.14.2 documentation - perltodo

Page 13http://perldoc.perl.org

like ';' isn't legal inside an expression - if you need multiple statements use a
 do {...} block. See the
thread starting at http://www.xray.mpe.mpg.de/mailing-lists/perl5-porters/2008-09/msg00573.html

lexicals used only once
This warns:

 $ perl -we '$pie = 42'
 Name "main::pie" used only once: possible typo at -e line 1.

This does not:

 $ perl -we 'my $pie = 42'

Logically all lexicals used only once should warn, if the user asks for
 warnings. An unworked RT ticket
(#5087) has been open for almost seven
 years for this discrepancy.

UTF-8 revamp
The handling of Unicode is unclean in many places. In the regex engine
 there are especially many
problems. The swash data structure could be
 replaced my something better. Inversion lists and maps
are likely
 candidates. The whole Unicode database could be placed in-core for a
 huge speed-up. Only
minimal work was done on the optimizer when utf8
 was added, with the result that the synthetic start
class often will
 fail to narrow down the possible choices when given non-Latin1 input.

Properly Unicode safe tokeniser and pads.
The tokeniser isn't actually very UTF-8 clean. use utf8; is a hack -
 variable names are stored in
stashes as raw bytes, without the utf-8 flag
 set. The pad API only takes a char * pointer, so that's all
bytes too. The
 tokeniser ignores the UTF-8-ness of PL_rsfp, or any SVs returned from
 source filters.
All this could be fixed.

state variable initialization in list context
Currently this is illegal:

 state ($a, $b) = foo();

In Perl 6, state ($a) = foo(); and (state $a) = foo(); have different
 semantics, which is
tricky to implement in Perl 5 as currently they produce
 the same opcode trees. The Perl 6 design is
firm, so it would be good to
 implement the necessary code in Perl 5. There are comments in
Perl_newASSIGNOP() that show the code paths taken by various assignment
 constructions
involving state variables.

Implement $value ~~ 0 .. $range
It would be nice to extend the syntax of the ~~ operator to also
 understand numeric (and maybe
alphanumeric) ranges.

A does() built-in
Like ref(), only useful. It would call the DOES method on objects; it
 would also tell whether something
can be dereferenced as an
 array/hash/etc., or used as a regexp, etc.
http://www.xray.mpe.mpg.de/mailing-lists/perl5-porters/2007-03/msg00481.html

Tied filehandles and write() don't mix
There is no method on tied filehandles to allow them to be called back by
 formats.

Propagate compilation hints to the debugger
Currently a debugger started with -dE on the command-line doesn't see the
 features enabled by -E.
More generally hints ($^H and %^H) aren't
 propagated to the debugger. Probably it would be a good
thing to propagate
 hints from the innermost non-DB:: scope: this would make code eval'ed
 in the

Perl version 5.14.2 documentation - perltodo

Page 14http://perldoc.perl.org

debugger see the features (and strictures, etc.) currently in
 scope.

Attach/detach debugger from running program
The old perltodo notes "With gdb, you can attach the debugger to a running
 program if you pass the
process ID. It would be good to do this with the Perl
 debugger on a running Perl program, although
I'm not sure how it would be
 done." ssh and screen do this with named pipes in /tmp. Maybe we can
too.

LVALUE functions for lists
The old perltodo notes that lvalue functions don't work for list or hash
 slices. This would be good to
fix.

regexp optimiser optional
The regexp optimiser is not optional. It should configurable to be, to allow
 its performance to be
measured, and its bugs to be easily demonstrated.

/w regex modifier
That flag would enable to match whole words, and also to interpolate
 arrays as alternations. With it,
/P/w would be roughly equivalent to:

 do { local $"='|'; /\b(?:P)\b/ }

See http://www.xray.mpe.mpg.de/mailing-lists/perl5-porters/2007-01/msg00400.html
 for the
discussion.

optional optimizer
Make the peephole optimizer optional. Currently it performs two tasks as
 it walks the optree - genuine
peephole optimisations, and necessary fixups of
 ops. It would be good to find an efficient way to
switch out the
 optimisations whilst keeping the fixups.

You WANT *how* many
Currently contexts are void, scalar and list. split has a special mechanism in
 place to pass in the
number of return values wanted. It would be useful to
 have a general mechanism for this, backwards
compatible and little speed hit.
 This would allow proposals such as short circuiting sort to be
implemented
 as a module on CPAN.

lexical aliases
Allow lexical aliases (maybe via the syntax my \$alias = \$foo.

entersub XS vs Perl
At the moment pp_entersub is huge, and has code to deal with entering both
 perl and XS subroutines.
Subroutine implementations rarely change between perl and XS at run time, so investigate using 2
ops to enter subs (one for
 XS, one for perl) and swap between if a sub is redefined.

Self-ties
Self-ties are currently illegal because they caused too many segfaults. Maybe
 the causes of these
could be tracked down and self-ties on all types
 reinstated.

Optimize away @_
The old perltodo notes "Look at the "reification" code in av.c".

Virtualize operating system access
Implement a set of "vtables" that virtualizes operating system access
 (open(), mkdir(), unlink(),
readdir(), getenv(), etc.) At the very
 least these interfaces should take SVs as "name" arguments
instead of
 bare char pointers; probably the most flexible and extensible way
 would be for the
Perl-facing interfaces to accept HVs. The system
 needs to be per-operating-system and

Perl version 5.14.2 documentation - perltodo

Page 15http://perldoc.perl.org

per-file-system
 hookable/filterable, preferably both from XS and Perl level
 ("Files and Filesystems" in
perlport is good reading at this point,
 in fact, all of perlport is.)

This has actually already been implemented (but only for Win32),
 take a look at iperlsys.h and
win32/perlhost.h. While all Win32
 variants go through a set of "vtables" for operating system access,

non-Win32 systems currently go straight for the POSIX/Unix-style
 system/library call. Similar system
as for Win32 should be
 implemented for all platforms. The existing Win32 implementation
 probably
does not need to survive alongside this proposed new
 implementation, the approaches could be
merged.

What would this give us? One often-asked-for feature this would
 enable is using Unicode for
filenames, and other "names" like %ENV,
 usernames, hostnames, and so forth.
 (See "When Unicode
Does Not Happen" in perlunicode.)

But this kind of virtualization would also allow for things like
 virtual filesystems, virtual networks, and
"sandboxes" (though as long
 as dynamic loading of random object code is allowed, not very safe

sandboxes since external code of course know not of Perl's vtables).
 An example of a smaller
"sandbox" is that this feature can be used to
 implement per-thread working directories: Win32 already
does this.

See also Extend PerlIO and PerlIO::Scalar.

Investigate PADTMP hash pessimisation
The peephole optimiser converts constants used for hash key lookups to shared
 hash key scalars.
Under ithreads, something is undoing this work.
 See
http://www.xray.mpe.mpg.de/mailing-lists/perl5-porters/2007-09/msg00793.html

Store the current pad in the OP slab allocator
Currently we leak ops in various cases of parse failure. I suggested that we
 could solve this by always
using the op slab allocator, and walking it to
 free ops. Dave comments that as some ops are already
freed during optree
 creation one would have to mark which ops are freed, and not double free them

when walking the slab. He notes that one problem with this is that for some ops
 you have to know
which pad was current at the time of allocation, which does
 change. I suggested storing a pointer to
the current pad in the memory allocated
 for the slab, and swapping to a new slab each time the pad
changes. Dave thinks
 that this would work.

repack the optree
Repacking the optree after execution order is determined could allow
 removal of NULL ops, and
optimal ordering of OPs with respect to cache-line
 filling. The slab allocator could be reused for this
purpose. I think that
 the best way to do this is to make it an optional step just before the
 completed
optree is attached to anything else, and to use the slab allocator
 unchanged, so that freeing ops is
identical whether or not this step runs.
 Note that the slab allocator allocates ops downwards in
memory, so one would
 have to actually "allocate" the ops in reverse-execution order to get them

contiguous in memory in execution order.

See http://www.nntp.perl.org/group/perl.perl5.porters/2007/12/msg131975.html

Note that running this copy, and then freeing all the old location ops would
 cause their slabs to be
freed, which would eliminate possible memory wastage if
 the previous suggestion is implemented,
and we swap slabs more frequently.

eliminate incorrect line numbers in warnings
This code

 use warnings;
 my $undef;

 if ($undef == 3) {

Perl version 5.14.2 documentation - perltodo

Page 16http://perldoc.perl.org

 } elsif ($undef == 0) {
 }

used to produce this output:

 Use of uninitialized value in numeric eq (==) at wrong.pl line 4.
 Use of uninitialized value in numeric eq (==) at wrong.pl line 4.

where the line of the second warning was misreported - it should be line 5.
 Rafael fixed this - the
problem arose because there was no nextstate OP
 between the execution of the if and the elsif,
hence PL_curcop still
 reports that the currently executing line is line 4. The solution was to inject
 a
nextstate OPs for each elsif, although it turned out that the nextstate
 OP needed to be a nulled OP,
rather than a live nextstate OP, else other line
 numbers became misreported. (Jenga!)

The problem is more general than elsif (although the elsif case is the
 most common and the
most confusing). Ideally this code

 use warnings;
 my $undef;

 my $a = $undef + 1;
 my $b
 = $undef
 + 1;

would produce this output

 Use of uninitialized value $undef in addition (+) at wrong.pl line 4.
 Use of uninitialized value $undef in addition (+) at wrong.pl line 7.

(rather than lines 4 and 5), but this would seem to require every OP to carry
 (at least) line number
information.

What might work is to have an optional line number in memory just before the
 BASEOP structure,
with a flag bit in the op to say whether it's present.
 Initially during compile every OP would carry its
line number. Then add a late
 pass to the optimiser (potentially combined with repack the optree)
which
 looks at the two ops on every edge of the graph of the execution path. If
 the line number
changes, flags the destination OP with this information.
 Once all paths are traced, replace every op
with the flag with a
 nextstate-light op (that just updates PL_curcop), which in turn then passes

control on to the true op. All ops would then be replaced by variants that
 do not store the line number.
(Which, logically, why it would work best in
 conjunction with repack the optree, as that is already
copying/reallocating
 all the OPs)

(Although I should note that we're not certain that doing this for the general
 case is worth it)

optimize tail-calls
Tail-calls present an opportunity for broadly applicable optimization;
 anywhere that return
foo(...) is called, the outer return can
 be replaced by a goto, and foo will return directly to the outer
caller, saving (conservatively) 25% of perl's call&return cost, which
 is relatively higher than in C. The
scheme language is known to do
 this heavily. B::Concise provides good insight into where this

optimization is possible, ie anywhere entersub,leavesub op-sequence
 occurs.

 perl -MO=Concise,-exec,a,b,-main -e 'sub a{ 1 }; sub b {a()}; b(2)'

Bottom line on this is probably a new pp_tailcall function which
 combines the code in pp_entersub,
pp_leavesub. This should probably
 be done 1st in XS, and using B::Generate to patch the new OP

Perl version 5.14.2 documentation - perltodo

Page 17http://perldoc.perl.org

into the
 optrees.

Add 00dddd
It has been proposed that octal constants be specifiable through the syntax 0oddddd, parallel to the
existing construct to specify hex constants 0xddddd

Big projects
Tasks that will get your name mentioned in the description of the "Highlights
 of 5.14"

make ithreads more robust
Generally make ithreads more robust. See also iCOW

This task is incremental - even a little bit of work on it will help, and
 will be greatly appreciated.

One bit would be to determine how to clone directory handles on systems
 without a fchdir function
(in sv.c:Perl_dirp_dup).

Fix Perl_sv_dup, et al so that threads can return objects.

iCOW
Sarathy and Arthur have a proposal for an improved Copy On Write which
 specifically will be able to
COW new ithreads. If this can be implemented
 it would be a good thing.

(?{...}) closures in regexps
Fix (or rewrite) the implementation of the /(?{...})/ closures.

Add class set operations to regexp engine
Apparently these are quite useful. Anyway, Jeffery Friedl wants them.

demerphq has this on his todo list, but right at the bottom.

Tasks for microperl
[Each and every one of these may be obsolete, but they were listed
 in the old Todo.micro file]

make creating uconfig.sh automatic
make creating Makefile.micro automatic
do away with fork/exec/wait?

(system, popen should be enough?)

some of the uconfig.sh really needs to be probed (using cc) in buildtime:
(uConfigure? :-) native datatype widths and endianness come to mind

