
Perl version 5.14.2 documentation - perltrap

Page 1http://perldoc.perl.org

NAME
perltrap - Perl traps for the unwary

DESCRIPTION
The biggest trap of all is forgetting to use warnings or use the -w
 switch; see perllexwarn and
perlrun. The second biggest trap is not
 making your entire program runnable under use strict.
The third biggest
 trap is not reading the list of changes in this version of Perl; see perldelta.

Awk Traps
Accustomed awk users should take special note of the following:

A Perl program executes only once, not once for each input line. You can
 do an implicit loop
with -n or -p.

The English module, loaded via

 use English;

allows you to refer to special variables (like $/) with names (like
 $RS), as though they were in
awk; see perlvar for details.

Semicolons are required after all simple statements in Perl (except
 at the end of a block).
Newline is not a statement delimiter.

Curly brackets are required on ifs and whiles.

Variables begin with "$", "@" or "%" in Perl.

Arrays index from 0. Likewise string positions in substr() and
 index().

You have to decide whether your array has numeric or string indices.

Hash values do not spring into existence upon mere reference.

You have to decide whether you want to use string or numeric
 comparisons.

Reading an input line does not split it for you. You get to split it
 to an array yourself. And the
split() operator has different
 arguments than awk's.

The current input line is normally in $_, not $0. It generally does
 not have the newline stripped.
($0 is the name of the program
 executed.) See perlvar.

$<digit> does not refer to fields--it refers to substrings matched
 by the last match pattern.

The print() statement does not add field and record separators unless
 you set $, and $\. You
can set $OFS and $ORS if you're using
 the English module.

You must open your files before you print to them.

The range operator is "..", not comma. The comma operator works as in
 C.

The match operator is "=~", not "~". ("~" is the one's complement
 operator, as in C.)

The exponentiation operator is "**", not "^". "^" is the XOR
 operator, as in C. (You know, one
could get the feeling that awk is
 basically incompatible with C.)

The concatenation operator is ".", not the null string. (Using the
 null string would render /pat/
 /pat/ unparsable, because the third slash
 would be interpreted as a division operator--the
tokenizer is in fact
 slightly context sensitive for operators like "/", "?", and ">".
 And in fact, "."
itself can be the beginning of a number.)

The next, exit, and continue keywords work differently.

Perl version 5.14.2 documentation - perltrap

Page 2http://perldoc.perl.org

The following variables work differently:

 Awk	 Perl
 ARGC	 scalar @ARGV (compare with $#ARGV)
 ARGV[0]	 $0
 FILENAME	 $ARGV
 FNR	 $. - something
 FS	 (whatever you like)
 NF	 $#Fld, or some such
 NR	 $.
 OFMT	 $#
 OFS	 $,
 ORS	 $\
 RLENGTH	 length($&)
 RS	 $/
 RSTART	 length($`)
 SUBSEP	 $;

You cannot set $RS to a pattern, only a string.

When in doubt, run the awk construct through a2p and see what it
 gives you.

C/C++ Traps
Cerebral C and C++ programmers should take note of the following:

Curly brackets are required on if's and while's.

You must use elsif rather than else if.

The break and continue keywords from C become in Perl last
 and next, respectively.
Unlike in C, these do not work within a do { } while construct. See "Loop Control" in
perlsyn.

The switch statement is called given/when and only available in
 perl 5.10 or newer. See
"Switch statements" in perlsyn.

Variables begin with "$", "@" or "%" in Perl.

Comments begin with "#", not "/*" or "//". Perl may interpret C/C++
 comments as division
operators, unterminated regular expressions or
 the defined-or operator.

You can't take the address of anything, although a similar operator
 in Perl is the backslash,
which creates a reference.

ARGV must be capitalized. $ARGV[0] is C's argv[1], and argv[0]
 ends up in $0.

System calls such as link(), unlink(), rename(), etc. return nonzero for
 success, not 0.
(system(), however, returns zero for success.)

Signal handlers deal with signal names, not numbers. Use kill -l
 to find their names on
your system.

Sed Traps
Seasoned sed programmers should take note of the following:

A Perl program executes only once, not once for each input line. You can
 do an implicit loop
with -n or -p.

Backreferences in substitutions use "$" rather than "\".

The pattern matching metacharacters "(", ")", and "|" do not have backslashes
 in front.

Perl version 5.14.2 documentation - perltrap

Page 3http://perldoc.perl.org

The range operator is ..., rather than comma.

Shell Traps
Sharp shell programmers should take note of the following:

The backtick operator does variable interpolation without regard to
 the presence of single
quotes in the command.

The backtick operator does no translation of the return value, unlike csh.

Shells (especially csh) do several levels of substitution on each
 command line. Perl does
substitution in only certain constructs
 such as double quotes, backticks, angle brackets, and
search patterns.

Shells interpret scripts a little bit at a time. Perl compiles the
 entire program before executing it
(except for BEGIN blocks, which
 execute at compile time).

The arguments are available via @ARGV, not $1, $2, etc.

The environment is not automatically made available as separate scalar
 variables.

The shell's test uses "=", "!=", "<" etc for string comparisons and "-eq",
 "-ne", "-lt" etc for
numeric comparisons. This is the reverse of Perl, which
 uses eq, ne, lt for string
comparisons, and ==, != < etc
 for numeric comparisons.

Perl Traps
Practicing Perl Programmers should take note of the following:

Remember that many operations behave differently in a list
 context than they do in a scalar
one. See perldata for details.

Avoid barewords if you can, especially all lowercase ones.
 You can't tell by just looking at it
whether a bareword is
 a function or a string. By using quotes on strings and
 parentheses on
function calls, you won't ever get them confused.

You cannot discern from mere inspection which builtins
 are unary operators (like chop() and
chdir())
 and which are list operators (like print() and unlink()).
 (Unless prototyped, user-defined
subroutines can only be list
 operators, never unary ones.) See perlop and perlsub.

People have a hard time remembering that some functions
 default to $_, or @ARGV, or
whatever, but that others which
 you might expect to do not.

The <FH> construct is not the name of the filehandle, it is a readline
 operation on that handle.
The data read is assigned to $_ only if the
 file read is the sole condition in a while loop:

 while (<FH>) { }
 while (defined($_ = <FH>)) { }..
 <FH>; # data discarded!

Remember not to use = when you need =~;
 these two constructs are quite different:

 $x = /foo/;
 $x =~ /foo/;

The do {} construct isn't a real loop that you can use
 loop control on.

Use my() for local variables whenever you can get away with
 it (but see perlform for where
you can't).
 Using local() actually gives a local value to a global
 variable, which leaves you
open to unforeseen side-effects
 of dynamic scoping.

If you localize an exported variable in a module, its exported value will
 not change. The local

Perl version 5.14.2 documentation - perltrap

Page 4http://perldoc.perl.org

name becomes an alias to a new value but the
 external name is still an alias for the original.

Perl4 to Perl5 Traps
Practicing Perl4 Programmers should take note of the following
 Perl4-to-Perl5 specific traps.

They're crudely ordered according to the following list:

Discontinuance, Deprecation, and BugFix traps

Anything that's been fixed as a perl4 bug, removed as a perl4 feature
 or deprecated as a perl4
feature with the intent to encourage usage of
 some other perl5 feature.

Parsing Traps

Traps that appear to stem from the new parser.

Numerical Traps

Traps having to do with numerical or mathematical operators.

General data type traps

Traps involving perl standard data types.

Context Traps - scalar, list contexts

Traps related to context within lists, scalar statements/declarations.

Precedence Traps

Traps related to the precedence of parsing, evaluation, and execution of
 code.

General Regular Expression Traps using s///, etc.

Traps related to the use of pattern matching.

Subroutine, Signal, Sorting Traps

Traps related to the use of signals and signal handlers, general subroutines,
 and sorting,
along with sorting subroutines.

OS Traps

OS-specific traps.

DBM Traps

Traps specific to the use of dbmopen(), and specific dbm implementations.

Unclassified Traps

Everything else.

If you find an example of a conversion trap that is not listed here,
 please submit it to <
perlbug@perl.org> for inclusion.
 Also note that at least some of these can be caught with the use
warnings pragma or the -w switch.

Discontinuance, Deprecation, and BugFix traps
Anything that has been discontinued, deprecated, or fixed as
 a bug from perl4.

* Symbols starting with "_" no longer forced into main

Symbols starting with "_" are no longer forced into package main, except
 for $_ itself (and @_,
etc.).

 package test;
 $_legacy = 1;

 package main;

Perl version 5.14.2 documentation - perltrap

Page 5http://perldoc.perl.org

 print "\$_legacy is ",$_legacy,"\n";

 # perl4 prints: $_legacy is 1
 # perl5 prints: $_legacy is

* Double-colon valid package separator in variable name

Double-colon is now a valid package separator in a variable name. Thus these
 behave
differently in perl4 vs. perl5, because the packages don't exist.

 $a=1;$b=2;$c=3;$var=4;
 print "$a::$b::$c ";
 print "$var::abc::xyz\n";

 # perl4 prints: 1::2::3 4::abc::xyz
 # perl5 prints: 3

Given that :: is now the preferred package delimiter, it is debatable
 whether this should be
classed as a bug or not.
 (The older package delimiter, ' ,is used here)

 $x = 10;
 print "x=${'x}\n";

 # perl4 prints: x=10
 # perl5 prints: Can't find string terminator "'" anywhere before
EOF

You can avoid this problem, and remain compatible with perl4, if you
 always explicitly include
the package name:

 $x = 10;
 print "x=${main'x}\n";

Also see precedence traps, for parsing $:.

* 2nd and 3rd args to splice() are now in scalar context

The second and third arguments of splice() are now evaluated in scalar
 context (as the
Camel says) rather than list context.

 sub sub1{return(0,2) } # return a 2-element list
 sub sub2{ return(1,2,3)} # return a 3-element list
 @a1 = ("a","b","c","d","e");
 @a2 = splice(@a1,&sub1,&sub2);
 print join(' ',@a2),"\n";

 # perl4 prints: a b
 # perl5 prints: c d e

* Can't do goto into a block that is optimized away

You can't do a goto into a block that is optimized away. Darn.

 goto marker1;

 for(1){
 marker1:
 print "Here I is!\n";
 }

 # perl4 prints: Here I is!

Perl version 5.14.2 documentation - perltrap

Page 6http://perldoc.perl.org

 # perl5 errors: Can't "goto" into the middle of a foreach loop

* Can't use whitespace as variable name or quote delimiter

It is no longer syntactically legal to use whitespace as the name
 of a variable, or as a delimiter
for any kind of quote construct.
 Double darn.

 $a = ("foo bar");
 $b = q baz ;
 print "a is $a, b is $b\n";

 # perl4 prints: a is foo bar, b is baz
 # perl5 errors: Bareword found where operator expected

* while/if BLOCK BLOCK gone

The archaic while/if BLOCK BLOCK syntax is no longer supported.

 if { 1 } {
 print "True!";
 }
 else {
 print "False!";
 }

 # perl4 prints: True!
 # perl5 errors: syntax error at test.pl line 1, near "if {"

* ** binds tighter than unary minus

The ** operator now binds more tightly than unary minus.
 It was documented to work this way
before, but didn't.

 print -4**2,"\n";

 # perl4 prints: 16
 # perl5 prints: -16

* foreach changed when iterating over a list

The meaning of foreach{} has changed slightly when it is iterating over a
 list which is not an
array. This used to assign the list to a
 temporary array, but no longer does so (for efficiency).
This means
 that you'll now be iterating over the actual values, not over copies of
 the values.
Modifications to the loop variable can change the original
 values.

 @list = ('ab','abc','bcd','def');
 foreach $var (grep(/ab/,@list)){
 $var = 1;
 }
 print (join(':',@list));

 # perl4 prints: ab:abc:bcd:def
 # perl5 prints: 1:1:bcd:def

To retain Perl4 semantics you need to assign your list
 explicitly to a temporary array and then
iterate over that. For
 example, you might need to change

 foreach $var (grep(/ab/,@list)){

to

Perl version 5.14.2 documentation - perltrap

Page 7http://perldoc.perl.org

 foreach $var (@tmp = grep(/ab/,@list)){

Otherwise changing $var will clobber the values of @list. (This most often
 happens when you
use $_ for the loop variable, and call subroutines in
 the loop that don't properly localize $_.)

* split with no args behavior changed

split with no arguments now behaves like split ' ' (which doesn't
 return an initial null
field if $_ starts with whitespace), it used to
 behave like split /\s+/ (which does).

 $_ = ' hi mom';
 print join(':', split);

 # perl4 prints: :hi:mom
 # perl5 prints: hi:mom

* -e behavior fixed

Perl 4 would ignore any text which was attached to an -e switch,
 always taking the code
snippet from the following arg. Additionally, it
 would silently accept an -e switch without a
following arg. Both of
 these behaviors have been fixed.

 perl -e'print "attached to -e"' 'print "separate arg"'

 # perl4 prints: separate arg
 # perl5 prints: attached to -e

 perl -e

 # perl4 prints:
 # perl5 dies: No code specified for -e.

* push returns number of elements in resulting list

In Perl 4 the return value of push was undocumented, but it was
 actually the last value being
pushed onto the target list. In Perl 5
 the return value of push is documented, but has
changed, it is the
 number of elements in the resulting list.

 @x = ('existing');
 print push(@x, 'first new', 'second new');

 # perl4 prints: second new
 # perl5 prints: 3

* Some error messages differ

Some error messages will be different.

* split() honors subroutine args

In Perl 4, if in list context the delimiters to the first argument of split() were ??, the result
would be placed in @_ as well as
 being returned. Perl 5 has more respect for your subroutine
arguments.

* Bugs removed

Some bugs may have been inadvertently removed. :-)

Parsing Traps
Perl4-to-Perl5 traps from having to do with parsing.

* Space between . and = triggers syntax error

Perl version 5.14.2 documentation - perltrap

Page 8http://perldoc.perl.org

Note the space between . and =

 $string . = "more string";
 print $string;

 # perl4 prints: more string
 # perl5 prints: syntax error at - line 1, near ". ="

* Better parsing in perl 5

Better parsing in perl 5

 sub foo {}
 &foo
 print("hello, world\n");

 # perl4 prints: hello, world
 # perl5 prints: syntax error

* Function parsing

"if it looks like a function, it is a function" rule.

 print
 ($foo == 1) ? "is one\n" : "is zero\n";

 # perl4 prints: is zero
 # perl5 warns: "Useless use of a constant in void context" if
using -w

* String interpolation of $#array differs

String interpolation of the $#array construct differs when braces
 are to used around the
name.

 @a = (1..3);
 print "${#a}";

 # perl4 prints: 2
 # perl5 fails with syntax error

 @a = (1..3);
 print "$#{a}";

 # perl4 prints: {a}
 # perl5 prints: 2

* Perl guesses on map, grep followed by { if it starts BLOCK or hash ref

When perl sees map { (or grep {), it has to guess whether the {
 starts a BLOCK or a hash
reference. If it guesses wrong, it will report
 a syntax error near the } and the missing (or
unexpected) comma.

Use unary + before { on a hash reference, and unary + applied
 to the first thing in a BLOCK
(after {), for perl to guess right all
 the time. (See "map" in perlfunc.)

Numerical Traps
Perl4-to-Perl5 traps having to do with numerical operators,
 operands, or output from same.

* Formatted output and significant digits

Formatted output and significant digits. In general, Perl 5
 tries to be more precise. For

Perl version 5.14.2 documentation - perltrap

Page 9http://perldoc.perl.org

example, on a Solaris Sparc:

 print 7.373504 - 0, "\n";
 printf "%20.18f\n", 7.373504 - 0;

 # Perl4 prints:
 7.3750399999999996141
 7.375039999999999614

 # Perl5 prints:
 7.373504
 7.373503999999999614

Notice how the first result looks better in Perl 5.

Your results may vary, since your floating point formatting routines
 and even floating point
format may be slightly different.

* Auto-increment operator over signed int limit deleted

This specific item has been deleted. It demonstrated how the auto-increment
 operator would
not catch when a number went over the signed int limit. Fixed
 in version 5.003_04. But
always be wary when using large integers.
 If in doubt:

 use Math::BigInt;

* Assignment of return values from numeric equality tests doesn't work

Assignment of return values from numeric equality tests
 does not work in perl5 when the test
evaluates to false (0).
 Logical tests now return a null, instead of 0

 $p = ($test == 1);
 print $p,"\n";

 # perl4 prints: 0
 # perl5 prints:

Also see General Regular Expression Traps using s///, etc.
 for another example of this new
feature...

* Bitwise string ops

When bitwise operators which can operate upon either numbers or
 strings (& | ^ ~) are
given only strings as arguments, perl4 would
 treat the operands as bitstrings so long as the
program contained a call
 to the vec() function. perl5 treats the string operands as
bitstrings.
 (See "Bitwise String Operators" in perlop for more details.)

 $fred = "10";
 $barney = "12";
 $betty = $fred & $barney;
 print "$betty\n";
 # Uncomment the next line to change perl4's behavior
 # ($dummy) = vec("dummy", 0, 0);

 # Perl4 prints:
 8

 # Perl5 prints:
 10

 # If vec() is used anywhere in the program, both print:
 10

Perl version 5.14.2 documentation - perltrap

Page 10http://perldoc.perl.org

General data type traps
Perl4-to-Perl5 traps involving most data-types, and their usage
 within certain expressions and/or
context.

* Negative array subscripts now count from the end of array

Negative array subscripts now count from the end of the array.

 @a = (1, 2, 3, 4, 5);
 print "The third element of the array is $a[3] also expressed as
 $a[-2] \n";

 # perl4 prints: The third element of the array is 4 also
expressed as
 # perl5 prints: The third element of the array is 4 also
expressed as 4

* Setting $#array lower now discards array elements

Setting $#array lower now discards array elements, and makes them
 impossible to
recover.

 @a = (a,b,c,d,e);
 print "Before: ",join('',@a);
 $#a =1;
 print ", After: ",join('',@a);
 $#a =3;
 print ", Recovered: ",join('',@a),"\n";

 # perl4 prints: Before: abcde, After: ab, Recovered: abcd
 # perl5 prints: Before: abcde, After: ab, Recovered: ab

* Hashes get defined before use

Hashes get defined before use

 local($s,@a,%h);
 die "scalar \$s defined" if defined($s);
 die "array \@a defined" if defined(@a);
 die "hash \%h defined" if defined(%h);

 # perl4 prints:
 # perl5 dies: hash %h defined

Perl will now generate a warning when it sees defined(@a) and
 defined(%h).

* Glob assignment from localized variable to variable

glob assignment from variable to variable will fail if the assigned
 variable is localized
subsequent to the assignment

 @a = ("This is Perl 4");
 *b = *a;
 local(@a);
 print @b,"\n";

 # perl4 prints: This is Perl 4
 # perl5 prints:

* Assigning undef to glob

Perl version 5.14.2 documentation - perltrap

Page 11http://perldoc.perl.org

Assigning undef to a glob has no effect in Perl 5. In Perl 4
 it undefines the associated
scalar (but may have other side effects
 including SEGVs). Perl 5 will also warn if undef is
assigned to a
 typeglob. (Note that assigning undef to a typeglob is different
 than calling the
undef function on a typeglob (undef *foo), which
 has quite a few effects.

 $foo = "bar";
 *foo = undef;
 print $foo;

 # perl4 prints:
 # perl4 warns: "Use of uninitialized variable" if using -w
 # perl5 prints: bar
 # perl5 warns: "Undefined value assigned to typeglob" if using
-w

* Changes in unary negation (of strings)

Changes in unary negation (of strings)
 This change effects both the return value and what it

does to auto(magic)increment.

 $x = "aaa";
 print ++$x," : ";
 print -$x," : ";
 print ++$x,"\n";

 # perl4 prints: aab : -0 : 1
 # perl5 prints: aab : -aab : aac

* Modifying of constants prohibited

perl 4 lets you modify constants:

 $foo = "x";
 &mod($foo);
 for ($x = 0; $x < 3; $x++) {
 &mod("a");
 }
 sub mod {
 print "before: $_[0]";
 $_[0] = "m";
 print " after: $_[0]\n";
 }

 # perl4:
 # before: x after: m
 # before: a after: m
 # before: m after: m
 # before: m after: m

 # Perl5:
 # before: x after: m
 # Modification of a read-only value attempted at foo.pl line 12.
 # before: a

* defined $var behavior changed

The behavior is slightly different for:

 print "$x", defined $x

Perl version 5.14.2 documentation - perltrap

Page 12http://perldoc.perl.org

 # perl 4: 1
 # perl 5: <no output, $x is not called into existence>

* Variable Suicide

Variable suicide behavior is more consistent under Perl 5.
 Perl5 exhibits the same behavior
for hashes and scalars,
 that perl4 exhibits for only scalars.

 $aGlobal{ "aKey" } = "global value";
 print "MAIN:", $aGlobal{"aKey"}, "\n";
 $GlobalLevel = 0;
 &test(*aGlobal);

 sub test {
 local(*theArgument) = @_;
 local(%aNewLocal); # perl 4 != 5.001l,m
 $aNewLocal{"aKey"} = "this should never appear";
 print "SUB: ", $theArgument{"aKey"}, "\n";
 $aNewLocal{"aKey"} = "level $GlobalLevel"; # what should
print
 $GlobalLevel++;
 if($GlobalLevel<4) {
 &test(*aNewLocal);
 }
 }

 # Perl4:
 # MAIN:global value
 # SUB: global value
 # SUB: level 0
 # SUB: level 1
 # SUB: level 2

 # Perl5:
 # MAIN:global value
 # SUB: global value
 # SUB: this should never appear
 # SUB: this should never appear
 # SUB: this should never appear

Context Traps - scalar, list contexts
* Elements of argument lists for formats evaluated in list context

The elements of argument lists for formats are now evaluated in list
 context. This means you
can interpolate list values now.

 @fmt = ("foo","bar","baz");
 format STDOUT=
 @<<<<< @||||| @>>>>>
 @fmt;
 .
 write;

 # perl4 errors: Please use commas to separate fields in file
 # perl5 prints: foo bar baz

* caller() returns false value in scalar context if no caller present

Perl version 5.14.2 documentation - perltrap

Page 13http://perldoc.perl.org

The caller() function now returns a false value in a scalar context
 if there is no caller.
This lets library files determine if they're
 being required.

 caller() ? (print "You rang?\n") : (print "Got a 0\n");

 # perl4 errors: There is no caller
 # perl5 prints: Got a 0

* Comma operator in scalar context gives scalar context to args

The comma operator in a scalar context is now guaranteed to give a
 scalar context to its last
argument. It gives scalar or void context
 to any preceding arguments, depending on
circumstances.

 @y= ('a','b','c');
 $x = (1, 2, @y);
 print "x = $x\n";

 # Perl4 prints: x = c # Interpolates array @y into the list
 # Perl5 prints: x = 3 # Evaluates array @y in scalar context

* sprintf() prototyped as ($;@)

sprintf() is prototyped as ($;@), so its first argument is given scalar
 context. Thus, if
passed an array, it will probably not do what you want,
 unlike Perl 4:

 @z = ('%s%s', 'foo', 'bar');
 $x = sprintf(@z);
 print $x;

 # perl4 prints: foobar
 # perl5 prints: 3

printf() works the same as it did in Perl 4, though:

 @z = ('%s%s', 'foo', 'bar');
 printf STDOUT (@z);

 # perl4 prints: foobar
 # perl5 prints: foobar

Precedence Traps
Perl4-to-Perl5 traps involving precedence order.

Perl 4 has almost the same precedence rules as Perl 5 for the operators
 that they both have. Perl 4
however, seems to have had some
 inconsistencies that made the behavior differ from what was
documented.

* LHS vs. RHS of any assignment operator

LHS vs. RHS of any assignment operator. LHS is evaluated first
 in perl4, second in perl5;
this can affect the relationship
 between side-effects in sub-expressions.

 @arr = ('left', 'right');
 $a{shift @arr} = shift @arr;
 print join(' ', keys %a);

 # perl4 prints: left
 # perl5 prints: right

Perl version 5.14.2 documentation - perltrap

Page 14http://perldoc.perl.org

* Semantic errors introduced due to precedence

These are now semantic errors because of precedence:

 @list = (1,2,3,4,5);
 %map = ("a",1,"b",2,"c",3,"d",4);
 $n = shift @list + 2; # first item in list plus 2
 print "n is $n, ";
 $m = keys %map + 2; # number of items in hash plus 2
 print "m is $m\n";

 # perl4 prints: n is 3, m is 6
 # perl5 errors and fails to compile

* Precedence of assignment operators same as the precedence of assignment

The precedence of assignment operators is now the same as the precedence
 of
assignment. Perl 4 mistakenly gave them the precedence of the associated
 operator. So you
now must parenthesize them in expressions like

 /foo/ ? ($a += 2) : ($a -= 2);

Otherwise

 /foo/ ? $a += 2 : $a -= 2

would be erroneously parsed as

 (/foo/ ? $a += 2 : $a) -= 2;

On the other hand,

 $a += /foo/ ? 1 : 2;

now works as a C programmer would expect.

* open requires parentheses around filehandle

 open FOO || die;

is now incorrect. You need parentheses around the filehandle.
 Otherwise, perl5 leaves the
statement as its default precedence:

 open(FOO || die);

 # perl4 opens or dies
 # perl5 opens FOO, dying only if 'FOO' is false, i.e. never

* $: precedence over $:: gone

perl4 gives the special variable, $: precedence, where perl5
 treats $:: as main package

 $a = "x"; print "$::a";

 # perl 4 prints: -:a
 # perl 5 prints: x

* Precedence of file test operators documented

perl4 had buggy precedence for the file test operators vis-a-vis
 the assignment operators.
Thus, although the precedence table
 for perl4 leads one to believe -e $foo .= "q"
should parse as ((-e $foo) .= "q"), it actually parses as (-e ($foo .= "q")).
 In
perl5, the precedence is as documented.

Perl version 5.14.2 documentation - perltrap

Page 15http://perldoc.perl.org

 -e $foo .= "q"

 # perl4 prints: no output
 # perl5 prints: Can't modify -e in concatenation

* keys, each, values are regular named unary operators

In perl4, keys(), each() and values() were special high-precedence operators
 that operated
on a single hash, but in perl5, they are regular named unary
 operators. As documented,
named unary operators have lower precedence
 than the arithmetic and concatenation
operators + - ., but the perl4
 variants of these operators actually bind tighter than + - ..

Thus, for:

 %foo = 1..10;
 print keys %foo - 1

 # perl4 prints: 4
 # perl5 prints: Type of arg 1 to keys must be hash (not
subtraction)

The perl4 behavior was probably more useful, if less consistent.

General Regular Expression Traps using s///, etc.
All types of RE traps.

* s'lhs'rhs' interpolates on either side

s'lhs'rhs' now does no interpolation on either side. It used to
 interpolate $lhs but not
$rhs. (And still does not match a literal
 '$' in string)

 $a=1;$b=2;
 $string = '1 2 $a $b';
 $string =~ s'$a'$b';
 print $string,"\n";

 # perl4 prints: $b 2 $a $b
 # perl5 prints: 1 2 $a $b

* m//g attaches its state to the searched string

m//g now attaches its state to the searched string rather than the
 regular expression. (Once
the scope of a block is left for the sub, the
 state of the searched string is lost)

 $_ = "ababab";
 while(m/ab/g){
 &doit("blah");
 }
 sub doit{local($_) = shift; print "Got $_ "}

 # perl4 prints: Got blah Got blah Got blah Got blah
 # perl5 prints: infinite loop blah...

* m//o used within an anonymous sub

Currently, if you use the m//o qualifier on a regular expression
 within an anonymous sub, all
closures generated from that anonymous
 sub will use the regular expression as it was
compiled when it was used
 the very first time in any such closure. For instance, if you say

 sub build_match {
 my($left,$right) = @_;
 return sub { $_[0] =~ /$left stuff $right/o; };

Perl version 5.14.2 documentation - perltrap

Page 16http://perldoc.perl.org

 }
 $good = build_match('foo','bar');
 $bad = build_match('baz','blarch');
 print $good->('foo stuff bar') ? "ok\n" : "not ok\n";
 print $bad->('baz stuff blarch') ? "ok\n" : "not ok\n";
 print $bad->('foo stuff bar') ? "not ok\n" : "ok\n";

For most builds of Perl5, this will print:
 ok
 not ok
 not ok

build_match() will always return a sub which matches the contents of
 $left and $right as they
were the first time that build_match()
 was called, not as they are in the current call.

* $+ isn't set to whole match

If no parentheses are used in a match, Perl4 sets $+ to
 the whole match, just like $&. Perl5
does not.

 "abcdef" =~ /b.*e/;
 print "\$+ = $+\n";

 # perl4 prints: bcde
 # perl5 prints:

* Substitution now returns null string if it fails

substitution now returns the null string if it fails

 $string = "test";
 $value = ($string =~ s/foo//);
 print $value, "\n";

 # perl4 prints: 0
 # perl5 prints:

Also see Numerical Traps for another example of this new feature.

* s`lhs`rhs` is now a normal substitution

s`lhs`rhs` (using backticks) is now a normal substitution, with no
 backtick expansion

 $string = "";
 $string =~ s`^`hostname`;
 print $string, "\n";

 # perl4 prints: <the local hostname>
 # perl5 prints: hostname

* Stricter parsing of variables in regular expressions

Stricter parsing of variables used in regular expressions

 s/^([^$grpc]*$grpc[optplus$rep]?)//o;

 # perl4: compiles w/o error
 # perl5: with Scalar found where operator expected ..., near
"optplus"

an added component of this example, apparently from the same script, is
 the actual value of
the s'd string after the substitution. [$opt] is a character class in perl4 and an array
subscript in perl5

 $grpc = 'a';
 $opt = 'r';

Perl version 5.14.2 documentation - perltrap

Page 17http://perldoc.perl.org

 $_ = 'bar';
 s/^([^$grpc]*$grpc[$opt]?)/foo/;
 print;

 # perl4 prints: foo
 # perl5 prints: foobar

* m?x? matches only once

Under perl5, m?x? matches only once, like ?x?. Under perl4, it matched
 repeatedly, like
/x/ or m!x!.

 $test = "once";
 sub match { $test =~ m?once?; }
 &match();
 if(&match()) {
 # m?x? matches more then once
 print "perl4\n";
 } else {
 # m?x? matches only once
 print "perl5\n";
 }

 # perl4 prints: perl4
 # perl5 prints: perl5

* Failed matches don't reset the match variables

Unlike in Ruby, failed matches in Perl do not reset the match variables
 ($1, $2, ..., $`, ...).

Subroutine, Signal, Sorting Traps
The general group of Perl4-to-Perl5 traps having to do with
 Signals, Sorting, and their related
subroutines, as well as
 general subroutine traps. Includes some OS-Specific traps.

* Barewords that used to look like strings look like subroutine calls

Barewords that used to look like strings to Perl will now look like subroutine
 calls if a
subroutine by that name is defined before the compiler sees them.

 sub SeeYa { warn"Hasta la vista, baby!" }
 $SIG{'TERM'} = SeeYa;
 print "SIGTERM is now $SIG{'TERM'}\n";

 # perl4 prints: SIGTERM is now main'SeeYa
 # perl5 prints: SIGTERM is now main::1 (and warns "Hasta la
vista, baby!")

Use -w to catch this one

* Reverse is no longer allowed as the name of a sort subroutine

reverse is no longer allowed as the name of a sort subroutine.

 sub reverse{ print "yup "; $a <=> $b }
 print sort reverse (2,1,3);

 # perl4 prints: yup yup 123
 # perl5 prints: 123
 # perl5 warns (if using -w): Ambiguous call resolved as
CORE::reverse()

Perl version 5.14.2 documentation - perltrap

Page 18http://perldoc.perl.org

* warn() won't let you specify a filehandle.

Although it _always_ printed to STDERR, warn() would let you specify a
 filehandle in perl4.
With perl5 it does not.

 warn STDERR "Foo!";

 # perl4 prints: Foo!
 # perl5 prints: String found where operator expected

OS Traps
* SysV resets signal handler correctly

Under HPUX, and some other SysV OSes, one had to reset any signal handler,
 within the
signal handler function, each time a signal was handled with
 perl4. With perl5, the reset is
now done correctly. Any code relying
 on the handler _not_ being reset will have to be
reworked.

Since version 5.002, Perl uses sigaction() under SysV.

 sub gotit {
 print "Got @_... ";
 }
 $SIG{'INT'} = 'gotit';

 $| = 1;
 $pid = fork;
 if ($pid) {
 kill('INT', $pid);
 sleep(1);
 kill('INT', $pid);
 } else {
 while (1) {sleep(10);}
 }

 # perl4 (HPUX) prints: Got INT...
 # perl5 (HPUX) prints: Got INT... Got INT...

* SysV seek() appends correctly

Under SysV OSes, seek() on a file opened to append >> now does
 the right thing w.r.t. the
fopen() manpage. e.g., - When a file is opened
 for append, it is impossible to overwrite
information already in
 the file.

 open(TEST,">>seek.test");
 $start = tell TEST;
 foreach(1 .. 9){
 print TEST "$_ ";
 }
 $end = tell TEST;
 seek(TEST,$start,0);
 print TEST "18 characters here";

 # perl4 (solaris) seek.test has: 18 characters here
 # perl5 (solaris) seek.test has: 1 2 3 4 5 6 7 8 9 18 characters
 here

Perl version 5.14.2 documentation - perltrap

Page 19http://perldoc.perl.org

Interpolation Traps
Perl4-to-Perl5 traps having to do with how things get interpolated
 within certain expressions,
statements, contexts, or whatever.

* @ always interpolates an array in double-quotish strings

@ now always interpolates an array in double-quotish strings.

 print "To: someone@somewhere.com\n";

 # perl4 prints: To:someone@somewhere.com
 # perl < 5.6.1, error : In string, @somewhere now must be
written as \@somewhere
 # perl >= 5.6.1, warning : Possible unintended interpolation of
@somewhere in string

* Double-quoted strings may no longer end with an unescaped $

Double-quoted strings may no longer end with an unescaped $.

 $foo = "foo$";
 print "foo is $foo\n";

 # perl4 prints: foo is foo$
 # perl5 errors: Final $ should be \$ or $name

Note: perl5 DOES NOT error on the terminating @ in $bar

* Arbitrary expressions are evaluated inside braces within double quotes

Perl now sometimes evaluates arbitrary expressions inside braces that occur
 within double
quotes (usually when the opening brace is preceded by $
 or @).

 @www = "buz";
 $foo = "foo";
 $bar = "bar";
 sub foo { return "bar" };
 print "|@{w.w.w}|${main'foo}|";

 # perl4 prints: |@{w.w.w}|foo|
 # perl5 prints: |buz|bar|

Note that you can use strict; to ward off such trappiness under perl5.

* $$x now tries to dereference $x

The construct "this is $$x" used to interpolate the pid at that point, but
 now tries to
dereference $x. $$ by itself still works fine, however.

 $s = "a reference";
 $x = *s;
 print "this is $$x\n";

 # perl4 prints: this is XXXx (XXX is the current pid)
 # perl5 prints: this is a reference

* Creation of hashes on the fly with eval "EXPR" requires protection

Creation of hashes on the fly with eval "EXPR" now requires either both $'s to be
protected in the specification of the hash name, or both curlies
 to be protected. If both
curlies are protected, the result will be compatible
 with perl4 and perl5. This is a very
common practice, and should be changed
 to use the block form of eval{} if possible.

Perl version 5.14.2 documentation - perltrap

Page 20http://perldoc.perl.org

 $hashname = "foobar";
 $key = "baz";
 $value = 1234;
 eval "\$$hashname{'$key'} = q|$value|";
 (defined($foobar{'baz'})) ? (print "Yup") : (print "Nope");

 # perl4 prints: Yup
 # perl5 prints: Nope

Changing

 eval "\$$hashname{'$key'} = q|$value|";

to

 eval "\$\$hashname{'$key'} = q|$value|";

causes the following result:

 # perl4 prints: Nope
 # perl5 prints: Yup

or, changing to

 eval "\$$hashname\{'$key'\} = q|$value|";

causes the following result:

 # perl4 prints: Yup
 # perl5 prints: Yup
 # and is compatible for both versions

* Bugs in earlier perl versions

perl4 programs which unconsciously rely on the bugs in earlier perl versions.

 perl -e '$bar=q/not/; print "This is $foo{$bar} perl5"'

 # perl4 prints: This is not perl5
 # perl5 prints: This is perl5

* Array and hash brackets during interpolation

You also have to be careful about array and hash brackets during
 interpolation.

 print "$foo["

 perl 4 prints: [
 perl 5 prints: syntax error

 print "$foo{"

 perl 4 prints: {
 perl 5 prints: syntax error

Perl 5 is expecting to find an index or key name following the respective
 brackets, as well as
an ending bracket of the appropriate type. In order
 to mimic the behavior of Perl 4, you must
escape the bracket like so.

 print "$foo\[";
 print "$foo\{";

Perl version 5.14.2 documentation - perltrap

Page 21http://perldoc.perl.org

* Interpolation of \$$foo{bar}

Similarly, watch out for: \$$foo{bar}

 $foo = "baz";
 print "\$$foo{bar}\n";

 # perl4 prints: $baz{bar}
 # perl5 prints: $

Perl 5 is looking for $foo{bar} which doesn't exist, but perl 4 is
 happy just to expand $foo
to "baz" by itself. Watch out for this
 especially in eval's.

* qq() string passed to eval will not find string terminator

qq() string passed to eval

 eval qq(
 foreach \$y (keys %\$x\) {
 \$count++;
 }
);

 # perl4 runs this ok
 # perl5 prints: Can't find string terminator ")"

DBM Traps
General DBM traps.

* Perl5 must have been linked with same dbm/ndbm as the default for dbmopen()

Existing dbm databases created under perl4 (or any other dbm/ndbm tool)
 may cause the
same script, run under perl5, to fail. The build of perl5
 must have been linked with the same
dbm/ndbm as the default for dbmopen()
 to function properly without tie'ing to an
extension dbm implementation.

 dbmopen (%dbm, "file", undef);
 print "ok\n";

 # perl4 prints: ok
 # perl5 prints: ok (IFF linked with -ldbm or -lndbm)

* DBM exceeding limit on the key/value size will cause perl5 to exit immediately

Existing dbm databases created under perl4 (or any other dbm/ndbm tool)
 may cause the
same script, run under perl5, to fail. The error generated
 when exceeding the limit on the
key/value size will cause perl5 to exit
 immediately.

 dbmopen(DB, "testdb",0600) || die "couldn't open db! $!";
 $DB{'trap'} = "x" x 1024; # value too large for most dbm/ndbm
 print "YUP\n";

 # perl4 prints:
 dbm store returned -1, errno 28, key "trap" at - line 3.
 YUP

 # perl5 prints:
 dbm store returned -1, errno 28, key "trap" at - line 3.

Perl version 5.14.2 documentation - perltrap

Page 22http://perldoc.perl.org

Unclassified Traps
Everything else.

* require/do trap using returned value

If the file doit.pl has:

 sub foo {
 $rc = do "./do.pl";
 return 8;
 }
 print &foo, "\n";

And the do.pl file has the following single line:

 return 3;

Running doit.pl gives the following:

 # perl 4 prints: 3 (aborts the subroutine early)
 # perl 5 prints: 8

Same behavior if you replace do with require.

* split on empty string with LIMIT specified

 $string = '';
 @list = split(/foo/, $string, 2)

Perl4 returns a one element list containing the empty string but Perl5
 returns an empty list.

As always, if any of these are ever officially declared as bugs,
 they'll be fixed and removed.

