
Perl version 5.14.2 documentation - perlunicode

Page 1http://perldoc.perl.org

NAME
perlunicode - Unicode support in Perl

DESCRIPTION
Important Caveats

Unicode support is an extensive requirement. While Perl does not
 implement the Unicode standard or
the accompanying technical reports
 from cover to cover, Perl does support many Unicode features.

People who want to learn to use Unicode in Perl, should probably read
 the Perl Unicode tutorial,
perlunitut and perluniintro, before reading
 this reference document.

Also, the use of Unicode may present security issues that aren't obvious.
 Read Unicode Security
Considerations.

Safest if you "use feature 'unicode_strings'"

In order to preserve backward compatibility, Perl does not turn
 on full internal Unicode support
unless the pragma use feature 'unicode_strings' is specified. (This is automatically

selected if you use use 5.012 or higher.) Failure to do this can
 trigger unexpected surprises.
See The "Unicode Bug" below.

This pragma doesn't affect I/O, and there are still several places
 where Unicode isn't fully
supported, such as in filenames.

Input and Output Layers

Perl knows when a filehandle uses Perl's internal Unicode encodings
 (UTF-8, or UTF-EBCDIC
if in EBCDIC) if the filehandle is opened with
 the ":encoding(utf8)" layer. Other encodings can
be converted to Perl's
 encoding on input or from Perl's encoding on output by use of the

":encoding(...)" layer. See open.

To indicate that Perl source itself is in UTF-8, use use utf8;.

use utf8 still needed to enable UTF-8/UTF-EBCDIC in scripts

As a compatibility measure, the use utf8 pragma must be explicitly
 included to enable
recognition of UTF-8 in the Perl scripts themselves
 (in string or regular expression literals, or
in identifier names) on
 ASCII-based machines or to recognize UTF-EBCDIC on
EBCDIC-based
 machines. These are the only times when an explicit use utf8
 is
needed. See utf8.

BOM-marked scripts and UTF-16 scripts autodetected

If a Perl script begins marked with the Unicode BOM (UTF-16LE, UTF16-BE,
 or UTF-8), or if
the script looks like non-BOM-marked UTF-16 of either
 endianness, Perl will correctly read in
the script as Unicode.
 (BOMless UTF-8 cannot be effectively recognized or differentiated from

ISO 8859-1 or other eight-bit encodings.)

use encoding needed to upgrade non-Latin-1 byte strings

By default, there is a fundamental asymmetry in Perl's Unicode model:
 implicit upgrading from
byte strings to Unicode strings assumes that
 they were encoded in ISO 8859-1 (Latin-1), but
Unicode strings are
 downgraded with UTF-8 encoding. This happens because the first 256

codepoints in Unicode happens to agree with Latin-1.

See Byte and Character Semantics for more details.

Byte and Character Semantics
Beginning with version 5.6, Perl uses logically-wide characters to
 represent strings internally.

Starting in Perl 5.14, Perl-level operations work with
 characters rather than bytes within the scope of a
use feature 'unicode_strings' (or equivalently use 5.012 or higher). (This is not true if
bytes have been
 explicitly requested by use bytes, nor necessarily true
 for interactions with the

Perl version 5.14.2 documentation - perlunicode

Page 2http://perldoc.perl.org

platform's operating system.)

For earlier Perls, and when unicode_strings is not in effect, Perl
 provides a fairly safe
environment that can handle both types of
 semantics in programs. For operations where Perl can
unambiguously
 decide that the input data are characters, Perl switches to character
 semantics. For
operations where this determination cannot be made
 without additional information from the user, Perl
decides in favor of
 compatibility and chooses to use byte semantics.

When use locale is in effect (which overrides use feature 'unicode_strings' in the same
scope), Perl uses the
 semantics associated
 with the current locale. Otherwise, Perl uses the
platform's native
 byte semantics for characters whose code points are less than 256, and
 Unicode
semantics for those greater than 255. On EBCDIC platforms, this
 is almost seamless, as the EBCDIC
code pages that Perl handles are
 equivalent to Unicode's first 256 code points. (The exception is that

EBCDIC regular expression case-insensitive matching rules are not as
 as robust as Unicode's.) But
on ASCII platforms, Perl uses US-ASCII
 (or Basic Latin in Unicode terminology) byte semantics,
meaning that characters
 whose ordinal numbers are in the range 128 - 255 are undefined except for
their
 ordinal numbers. This means that none have case (upper and lower), nor are any
 a member of
character classes, like [:alpha:] or \w. (But all do belong
 to the \W class or the Perl regular
expression extension [:^alpha:].)

This behavior preserves compatibility with earlier versions of Perl,
 which allowed byte semantics in
Perl operations only if
 none of the program's inputs were marked as being a source of Unicode

character data. Such data may come from filehandles, from calls to
 external programs, from
information provided by the system (such as %ENV),
 or from literals and constants in the source text.

The utf8 pragma is primarily a compatibility device that enables
 recognition of UTF-(8|EBCDIC) in
literals encountered by the parser.
 Note that this pragma is only required while Perl defaults to byte

semantics; when character semantics become the default, this pragma
 may become a no-op. See
utf8.

If strings operating under byte semantics and strings with Unicode
 character data are concatenated,
the new string will have
 character semantics. This can cause surprises: See BUGS, below.
 You can
choose to be warned when this happens. See encoding::warnings.

Under character semantics, many operations that formerly operated on
 bytes now operate on
characters. A character in Perl is
 logically just a number ranging from 0 to 2**31 or so. Larger

characters may encode into longer sequences of bytes internally, but
 this internal detail is mostly
hidden for Perl code.
 See perluniintro for more.

Effects of Character Semantics
Character semantics have the following effects:

Strings--including hash keys--and regular expression patterns may
 contain characters that
have an ordinal value larger than 255.

If you use a Unicode editor to edit your program, Unicode characters may
 occur directly within
the literal strings in UTF-8 encoding, or UTF-16.
 (The former requires a BOM or use utf8,
the latter requires a BOM.)

Unicode characters can also be added to a string by using the \N{U+...}
 notation. The
Unicode code for the desired character, in hexadecimal,
 should be placed in the braces, after
the U. For instance, a smiley face is \N{U+263A}.

Alternatively, you can use the \x{...} notation for characters 0x100 and
 above. For
characters below 0x100 you may get byte semantics instead of
 character semantics; see The
"Unicode Bug". On EBCDIC machines there is
 the additional problem that the value for such
characters gives the EBCDIC
 character rather than the Unicode one.

Additionally, if you

 use charnames ':full';

Perl version 5.14.2 documentation - perlunicode

Page 3http://perldoc.perl.org

you can use the \N{...} notation and put the official Unicode
 character name within the
braces, such as \N{WHITE SMILING FACE}.
 See charnames.

If an appropriate encoding is specified, identifiers within the
 Perl script may contain Unicode
alphanumeric characters, including
 ideographs. Perl does not currently attempt to canonicalize
variable
 names.

Regular expressions match characters instead of bytes. "." matches
 a character instead of a
byte.

Bracketed character classes in regular expressions match characters instead of
 bytes and
match against the character properties specified in the
 Unicode properties database. \w can
be used to match a Japanese
 ideograph, for instance.

Named Unicode properties, scripts, and block ranges may be used (like bracketed
 character
classes) by using the \p{} "matches property" construct and
 the \P{} negation, "doesn't
match property".
 See Unicode Character Properties for more details.

You can define your own character properties and use them
 in the regular expression with the
\p{} or \P{} construct.
 See User-Defined Character Properties for more details.

The special pattern \X matches a logical character, an "extended grapheme
 cluster" in
Standardese. In Unicode what appears to the user to be a single
 character, for example an
accented G, may in fact be composed of a sequence
 of characters, in this case a G followed
by an accent character. \X
 will match the entire sequence.

The tr/// operator translates characters instead of bytes. Note
 that the tr///CU
functionality has been removed. For similar
 functionality see pack('U0', ...) and pack('C0', ...).

Case translation operators use the Unicode case translation tables
 when character input is
provided. Note that uc(), or \U in
 interpolated strings, translates to uppercase, while
ucfirst,
 or \u in interpolated strings, translates to titlecase in languages
 that make the
distinction (which is equivalent to uppercase in languages
 without the distinction).

Most operators that deal with positions or lengths in a string will
 automatically switch to using
character positions, including chop(), chomp(), substr(), pos(), index(), rindex(),
sprintf(), write(), and length(). An operator that
 specifically does not switch is vec()
. Operators that really don't
 care include operators that treat strings as a bucket of bits such as
sort(), and operators dealing with filenames.

The pack()/unpack() letter C does not change, since it is often
 used for byte-oriented
formats. Again, think char in the C language.

There is a new U specifier that converts between Unicode characters
 and code points. There
is also a W specifier that is the equivalent of chr/ord and properly handles character values
even if they are above 255.

The chr() and ord() functions work on characters, similar to pack("W") and
unpack("W"), not pack("C") and unpack("C"). pack("C") and unpack("C") are
methods for
 emulating byte-oriented chr() and ord() on Unicode strings.
 While these
methods reveal the internal encoding of Unicode strings,
 that is not something one normally
needs to care about at all.

The bit string operators, & | ^ ~, can operate on character data.
 However, for backward
compatibility, such as when using bit string
 operations when characters are all less than 256 in
ordinal value, one
 should not use ~ (the bit complement) with characters of both
 values less
than 256 and values greater than 256. Most importantly,
 DeMorgan's laws (~($x|$y) eq
~$x&~$y and ~($x&$y) eq ~$x|~$y)
 will not hold. The reason for this mathematical faux
pas is that
 the complement cannot return both the 8-bit (byte-wide) bit
 complement and the
full character-wide bit complement.

Perl version 5.14.2 documentation - perlunicode

Page 4http://perldoc.perl.org

You can define your own mappings to be used in lc(), lcfirst(), uc(), and ucfirst()
(or their double-quoted string inlined
 versions such as \U). See User-Defined Case-Mappings

for more details.

And finally, scalar reverse() reverses by character rather than by byte.

Unicode Character Properties
(The only time that Perl considers a sequence of individual code
 points as a single logical character is
in the \X construct, already
 mentioned above. Therefore "character" in this discussion means a single
Unicode code point.)

Very nearly all Unicode character properties are accessible through
 regular expressions by using the
\p{} "matches property" construct
 and the \P{} "doesn't match property" for its negation.

For instance, \p{Uppercase} matches any single character with the Unicode
 "Uppercase" property,
while \p{L} matches any character with a
 General_Category of "L" (letter) property. Brackets are not
required for single letter property names, so \p{L} is equivalent to \pL.

More formally, \p{Uppercase} matches any single character whose Unicode
 Uppercase property
value is True, and \P{Uppercase} matches any character
 whose Uppercase property value is
False, and they could have been written as \p{Uppercase=True} and \p{Uppercase=False},
respectively.

This formality is needed when properties are not binary; that is, if they can
 take on more values than
just True and False. For example, the Bidi_Class (see Bidirectional Character Types below), can take
on several different
 values, such as Left, Right, Whitespace, and others. To match these, one needs

to specify the property name (Bidi_Class), AND the value being matched against
 (Left, Right, etc.).
This is done, as in the examples above, by having the
 two components separated by an equal sign
(or interchangeably, a colon), like \p{Bidi_Class: Left}.

All Unicode-defined character properties may be written in these compound forms
 of
\p{property=value} or \p{property:value}, but Perl provides some
 additional properties that
are written only in the single form, as well as
 single-form short-cuts for all binary properties and
certain others described
 below, in which you may omit the property name and the equals or colon

separator.

Most Unicode character properties have at least two synonyms (or aliases if you
 prefer): a short one
that is easier to type and a longer one that is more
 descriptive and hence easier to understand. Thus
the "L" and "Letter" properties
 above are equivalent and can be used interchangeably. Likewise,

"Upper" is a synonym for "Uppercase", and we could have written \p{Uppercase} equivalently as
\p{Upper}. Also, there are typically
 various synonyms for the values the property can be. For binary
properties,
 "True" has 3 synonyms: "T", "Yes", and "Y"; and "False has correspondingly "F",
 "No", and
"N". But be careful. A short form of a value for one property may
 not mean the same thing as the
same short form for another. Thus, for the
 General_Category property, "L" means "Letter", but for the
Bidi_Class property,
 "L" means "Left". A complete list of properties and synonyms is in perluniprops.

Upper/lower case differences in property names and values are irrelevant;
 thus \p{Upper} means
the same thing as \p{upper} or even \p{UpPeR}.
 Similarly, you can add or subtract underscores
anywhere in the middle of a
 word, so that these are also equivalent to \p{U_p_p_e_r}. And white
space
 is irrelevant adjacent to non-word characters, such as the braces and the equals
 or colon
separators, so \p{ Upper } and \p{ Upper_case : Y } are
 equivalent to these as well. In
fact, white space and even
 hyphens can usually be added or deleted anywhere. So even \p{
Up-per case = Yes} is
 equivalent. All this is called "loose-matching" by Unicode. The few places

where stricter matching is used is in the middle of numbers, and in the Perl
 extension properties that
begin or end with an underscore. Stricter matching
 cares about white space (except adjacent to
non-word characters),
 hyphens, and non-interior underscores.

You can also use negation in both \p{} and \P{} by introducing a caret
 (^) between the first brace
and the property name: \p{^Tamil} is
 equal to \P{Tamil}.

Perl version 5.14.2 documentation - perlunicode

Page 5http://perldoc.perl.org

Almost all properties are immune to case-insensitive matching. That is,
 adding a /i regular
expression modifier does not change what they
 match. There are two sets that are affected.
 The first
set is Uppercase_Letter, Lowercase_Letter,
 and Titlecase_Letter,
 all of which match
Cased_Letter under /i matching.
 And the second set is Uppercase, Lowercase,
 and
Titlecase,
 all of which match Cased under /i matching.
 This set also includes its subsets
PosixUpper and PosixLower both
 of which under /i matching match PosixAlpha.
 (The
difference between these sets is that some things, such as Roman
 numerals, come in both upper and
lower case so they are Cased, but aren't considered
 letters, so they aren't Cased_Letters.)

General_Category

Every Unicode character is assigned a general category, which is the "most
 usual categorization of a
character" (from http://www.unicode.org/reports/tr44).

The compound way of writing these is like \p{General_Category=Number}
 (short, \p{gc:n}).
But Perl furnishes shortcuts in which everything up
 through the equal or colon separator is omitted.
So you can instead just write \pN.

Here are the short and long forms of the General Category properties:

 Short Long

 L Letter
 LC, L& Cased_Letter (that is: [\p{Ll}\p{Lu}\p{Lt}])
 Lu Uppercase_Letter
 Ll Lowercase_Letter
 Lt Titlecase_Letter
 Lm Modifier_Letter
 Lo Other_Letter

 M Mark
 Mn Nonspacing_Mark
 Mc Spacing_Mark
 Me Enclosing_Mark

 N Number
 Nd Decimal_Number (also Digit)
 Nl Letter_Number
 No Other_Number

 P Punctuation (also Punct)
 Pc Connector_Punctuation
 Pd Dash_Punctuation
 Ps Open_Punctuation
 Pe Close_Punctuation
 Pi Initial_Punctuation
 (may behave like Ps or Pe depending on usage)
 Pf Final_Punctuation
 (may behave like Ps or Pe depending on usage)
 Po Other_Punctuation

 S Symbol
 Sm Math_Symbol
 Sc Currency_Symbol
 Sk Modifier_Symbol
 So Other_Symbol

Perl version 5.14.2 documentation - perlunicode

Page 6http://perldoc.perl.org

 Z Separator
 Zs Space_Separator
 Zl Line_Separator
 Zp Paragraph_Separator

 C Other
 Cc Control (also Cntrl)
 Cf Format
 Cs Surrogate
 Co Private_Use
 Cn Unassigned

Single-letter properties match all characters in any of the
 two-letter sub-properties starting with the
same letter. LC and L& are special: both are aliases for the set consisting of everything matched by
Ll, Lu, and Lt.

Bidirectional Character Types

Because scripts differ in their directionality (Hebrew and Arabic are
 written right to left, for example)
Unicode supplies these properties in
 the Bidi_Class class:

 Property Meaning

 L Left-to-Right
 LRE Left-to-Right Embedding
 LRO Left-to-Right Override
 R Right-to-Left
 AL Arabic Letter
 RLE Right-to-Left Embedding
 RLO Right-to-Left Override
 PDF Pop Directional Format
 EN European Number
 ES European Separator
 ET European Terminator
 AN Arabic Number
 CS Common Separator
 NSM Non-Spacing Mark
 BN Boundary Neutral
 B Paragraph Separator
 S Segment Separator
 WS Whitespace
 ON Other Neutrals

This property is always written in the compound form.
 For example, \p{Bidi_Class:R} matches
characters that are normally
 written right to left.

Scripts

The world's languages are written in many different scripts. This sentence
 (unless you're reading it in
translation) is written in Latin, while Russian is
 written in Cyrillic, and Greek is written in, well, Greek;
Japanese mainly in
 Hiragana or Katakana. There are many more.

The Unicode Script property gives what script a given character is in,
 and the property can be
specified with the compound form like \p{Script=Hebrew} (short: \p{sc=hebr}). Perl furnishes
shortcuts for all
 script names. You can omit everything up through the equals (or colon), and
 simply
write \p{Latin} or \P{Cyrillic}.

A complete list of scripts and their shortcuts is in perluniprops.

Perl version 5.14.2 documentation - perlunicode

Page 7http://perldoc.perl.org

Use of "Is" Prefix

For backward compatibility (with Perl 5.6), all properties mentioned
 so far may have Is or Is_
prepended to their name, so \P{Is_Lu}, for
 example, is equal to \P{Lu}, and
\p{IsScript:Arabic} is equal to \p{Arabic}.

Blocks

In addition to scripts, Unicode also defines blocks of
 characters. The difference between scripts and
blocks is that the
 concept of scripts is closer to natural languages, while the concept
 of blocks is more
of an artificial grouping based on groups of Unicode
 characters with consecutive ordinal values. For
example, the "Basic Latin"
 block is all characters whose ordinals are between 0 and 127, inclusive; in

other words, the ASCII characters. The "Latin" script contains some letters
 from this as well as
several other blocks, like "Latin-1 Supplement",
 "Latin Extended-A", etc., but it does not contain all the
characters from
 those blocks. It does not, for example, contain the digits 0-9, because
 those digits are
shared across many scripts. The digits 0-9 and similar groups,
 like punctuation, are in the script called
Common. There is also a
 script called Inherited for characters that modify other characters,
 and
inherit the script value of the controlling character. (Note that
 there are several different sets of digits
in Unicode that are
 equivalent to 0-9 and are matchable by \d in a regular expression.
 If they are
used in a single language only, they are in that language's
 script. Only sets are used across several
languages are in the Common script.)

For more about scripts versus blocks, see UAX#24 "Unicode Script Property":
http://www.unicode.org/reports/tr24

The Script property is likely to be the one you want to use when processing
 natural language; the
Block property may occasionally be useful in working
 with the nuts and bolts of Unicode.

Block names are matched in the compound form, like \p{Block: Arrows} or \p{Blk=Hebrew}.
Unlike most other properties, only a few block names have a
 Unicode-defined short name. But Perl
does provide a (slight) shortcut: You
 can say, for example \p{In_Arrows} or \p{In_Hebrew}. For
backwards
 compatibility, the In prefix may be omitted if there is no naming conflict
 with a script or
any other property, and you can even use an Is prefix
 instead in those cases. But it is not a good
idea to do this, for a couple
 reasons:

1 It is confusing. There are many naming conflicts, and you may forget some.
 For example,
\p{Hebrew} means the script Hebrew, and NOT the block
 Hebrew. But would you remember
that 6 months from now?

2 It is unstable. A new version of Unicode may pre-empt the current meaning by
 creating a
property with the same name. There was a time in very early Unicode
 releases when
\p{Hebrew} would have matched the block Hebrew; now it
 doesn't.

Some people prefer to always use \p{Block: foo} and \p{Script: bar}
 instead of the
shortcuts, whether for clarity, because they can't remember the
 difference between 'In' and 'Is'
anyway, or they aren't confident that those who
 eventually will read their code will know that
difference.

A complete list of blocks and their shortcuts is in perluniprops.

Other Properties

There are many more properties than the very basic ones described here.
 A complete list is in
perluniprops.

Unicode defines all its properties in the compound form, so all single-form
 properties are Perl
extensions. Most of these are just synonyms for the
 Unicode ones, but some are genuine extensions,
including several that are in
 the compound form. And quite a few of these are actually recommended
by Unicode
 (in http://www.unicode.org/reports/tr18).

This section gives some details on all extensions that aren't synonyms for
 compound-form Unicode
properties (for those, you'll have to refer to the Unicode Standard.

Perl version 5.14.2 documentation - perlunicode

Page 8http://perldoc.perl.org

\p{All}

This matches any of the 1_114_112 Unicode code points. It is a synonym for \p{Any}.

\p{Alnum}

This matches any \p{Alphabetic} or \p{Decimal_Number} character.

\p{Any}

This matches any of the 1_114_112 Unicode code points. It is a synonym for \p{All}.

\p{ASCII}

This matches any of the 128 characters in the US-ASCII character set,
 which is a subset of
Unicode.

\p{Assigned}

This matches any assigned code point; that is, any code point whose general
 category is not
Unassigned (or equivalently, not Cn).

\p{Blank}

This is the same as \h and \p{HorizSpace}: A character that changes the
 spacing
horizontally.

\p{Decomposition_Type: Non_Canonical} (Short: \p{Dt=NonCanon})

Matches a character that has a non-canonical decomposition.

To understand the use of this rarely used property=value combination, it is
 necessary to know
some basics about decomposition.
 Consider a character, say H. It could appear with various
marks around it,
 such as an acute accent, or a circumflex, or various hooks, circles, arrows,
etc., above, below, to one side or the other, etc. There are many
 possibilities among the
world's languages. The number of combinations is
 astronomical, and if there were a character
for each combination, it would
 soon exhaust Unicode's more than a million possible
characters. So Unicode
 took a different approach: there is a character for the base H, and a

character for each of the possible marks, and these can be variously combined
 to get a final
logical character. So a logical character--what appears to be a
 single character--can be a
sequence of more than one individual characters.
 This is called an "extended grapheme
cluster"; Perl furnishes the \X
 regular expression construct to match such sequences.

But Unicode's intent is to unify the existing character set standards and
 practices, and several
pre-existing standards have single characters that
 mean the same thing as some of these
combinations. An example is ISO-8859-1,
 which has quite a few of these in the Latin-1 range,
an example being "LATIN
 CAPITAL LETTER E WITH ACUTE". Because this character was in
this pre-existing
 standard, Unicode added it to its repertoire. But this character is considered

by Unicode to be equivalent to the sequence consisting of the character
 "LATIN CAPITAL
LETTER E" followed by the character "COMBINING ACUTE ACCENT".

"LATIN CAPITAL LETTER E WITH ACUTE" is called a "pre-composed" character, and
 its
equivalence with the sequence is called canonical equivalence. All
 pre-composed characters
are said to have a decomposition (into the equivalent
 sequence), and the decomposition type
is also called canonical.

However, many more characters have a different type of decomposition, a
 "compatible" or
"non-canonical" decomposition. The sequences that form these
 decompositions are not
considered canonically equivalent to the pre-composed
 character. An example, again in the
Latin-1 range, is the "SUPERSCRIPT ONE".
 It is somewhat like a regular digit 1, but not
exactly; its decomposition
 into the digit 1 is called a "compatible" decomposition, specifically a

"super" decomposition. There are several such compatibility
 decompositions (see
http://www.unicode.org/reports/tr44), including one
 called "compat", which means some
miscellaneous type of decomposition
 that doesn't fit into the decomposition categories that
Unicode has chosen.

Perl version 5.14.2 documentation - perlunicode

Page 9http://perldoc.perl.org

Note that most Unicode characters don't have a decomposition, so their
 decomposition type is
"None".

For your convenience, Perl has added the Non_Canonical decomposition
 type to mean any
of the several compatibility decompositions.

\p{Graph}

Matches any character that is graphic. Theoretically, this means a character
 that on a printer
would cause ink to be used.

\p{HorizSpace}

This is the same as \h and \p{Blank}: a character that changes the
 spacing horizontally.

\p{In=*}

This is a synonym for \p{Present_In=*}

\p{PerlSpace}

This is the same as \s, restricted to ASCII, namely [\f\n\r\t].

Mnemonic: Perl's (original) space

\p{PerlWord}

This is the same as \w, restricted to ASCII, namely [A-Za-z0-9_]

Mnemonic: Perl's (original) word.

\p{Posix...}

There are several of these, which are equivalents using the \p
 notation for Posix classes and
are described in "POSIX Character Classes" in perlrecharclass.

\p{Present_In: *} (Short: \p{In=*})

This property is used when you need to know in what Unicode version(s) a
 character is.

The "*" above stands for some two digit Unicode version number, such as 1.1 or 4.0; or the
"*" can also be Unassigned. This property will
 match the code points whose final disposition
has been settled as of the
 Unicode release given by the version number; \p{Present_In:
Unassigned}
 will match those code points whose meaning has yet to be assigned.

For example, U+0041 "LATIN CAPITAL LETTER A" was present in the very first
 Unicode
release available, which is 1.1, so this property is true for all
 valid "*" versions. On the other
hand, U+1EFF was not assigned until version
 5.1 when it became "LATIN SMALL LETTER Y
WITH LOOP", so the only "*" that
 would match it are 5.1, 5.2, and later.

Unicode furnishes the Age property from which this is derived. The problem
 with Age is that a
strict interpretation of it (which Perl takes) has it
 matching the precise release a code point's
meaning is introduced in. Thus U+0041 would match only 1.1; and U+1EFF only 5.1. This is
not usually what
 you want.

Some non-Perl implementations of the Age property may change its meaning to be
 the same
as the Perl Present_In property; just be aware of that.

Another confusion with both these properties is that the definition is not
 that the code point has
been assigned, but that the meaning of the code point
 has been determined. This is because
66 code points will always be
 unassigned, and so the Age for them is the Unicode version in
which the decision
 to make them so was made. For example, U+FDD0 is to be permanently

unassigned to a character, and the decision to do that was made in version 3.1,
 so
\p{Age=3.1} matches this character, as also does \p{Present_In: 3.1} and up.

\p{Print}

This matches any character that is graphical or blank, except controls.

\p{SpacePerl}

Perl version 5.14.2 documentation - perlunicode

Page 10http://perldoc.perl.org

This is the same as \s, including beyond ASCII.

Mnemonic: Space, as modified by Perl. (It doesn't include the vertical tab
 which both the Posix
standard and Unicode consider white space.)

\p{VertSpace}

This is the same as \v: A character that changes the spacing vertically.

\p{Word}

This is the same as \w, including over 100_000 characters beyond ASCII.

\p{XPosix...}

There are several of these, which are the standard Posix classes
 extended to the full Unicode
range. They are described in "POSIX Character Classes" in perlrecharclass.

User-Defined Character Properties
You can define your own binary character properties by defining subroutines
 whose names begin with
"In" or "Is". The subroutines can be defined in any
 package. The user-defined properties can be used
in the regular expression \p and \P constructs; if you are using a user-defined property from a

package other than the one you are in, you must specify its package in the \p or \P construct.

 # assuming property Is_Foreign defined in Lang::
 package main; # property package name required
 if ($txt =~ /\p{Lang::IsForeign}+/) { ... }

 package Lang; # property package name not required
 if ($txt =~ /\p{IsForeign}+/) { ... }

Note that the effect is compile-time and immutable once defined.
 However, the subroutines are
passed a single parameter, which is 0 if
 case-sensitive matching is in effect and non-zero if caseless
matching
 is in effect. The subroutine may return different values depending on
 the value of the flag,
and one set of values will immutably be in effect
 for all case-sensitive matches, and the other set for
all case-insensitive
 matches.

Note that if the regular expression is tainted, then Perl will die rather
 than calling the subroutine,
where the name of the subroutine is
 determined by the tainted data.

The subroutines must return a specially-formatted string, with one
 or more newline-separated lines.
Each line must be one of the following:

A single hexadecimal number denoting a Unicode code point to include.

Two hexadecimal numbers separated by horizontal whitespace (space or
 tabular characters)
denoting a range of Unicode code points to include.

Something to include, prefixed by "+": a built-in character
 property (prefixed by "utf8::") or a
user-defined character property,
 to represent all the characters in that property; two
hexadecimal code
 points for a range; or a single hexadecimal code point.

Something to exclude, prefixed by "-": an existing character
 property (prefixed by "utf8::") or a
user-defined character property,
 to represent all the characters in that property; two
hexadecimal code
 points for a range; or a single hexadecimal code point.

Something to negate, prefixed "!": an existing character
 property (prefixed by "utf8::") or a
user-defined character property,
 to represent all the characters in that property; two
hexadecimal code
 points for a range; or a single hexadecimal code point.

Something to intersect with, prefixed by "&": an existing character
 property (prefixed by
"utf8::") or a user-defined character property,
 for all the characters except the characters in the

Perl version 5.14.2 documentation - perlunicode

Page 11http://perldoc.perl.org

property; two
 hexadecimal code points for a range; or a single hexadecimal code point.

For example, to define a property that covers both the Japanese
 syllabaries (hiragana and katakana),
you can define

 sub InKana {
 return <<END;
 3040\t309F
 30A0\t30FF
 END
 }

Imagine that the here-doc end marker is at the beginning of the line.
 Now you can use \p{InKana}
and \P{InKana}.

You could also have used the existing block property names:

 sub InKana {
 return <<'END';
 +utf8::InHiragana
 +utf8::InKatakana
 END
 }

Suppose you wanted to match only the allocated characters,
 not the raw block ranges: in other words,
you want to remove
 the non-characters:

 sub InKana {
 return <<'END';
 +utf8::InHiragana
 +utf8::InKatakana
 -utf8::IsCn
 END
 }

The negation is useful for defining (surprise!) negated classes.

 sub InNotKana {
 return <<'END';
 !utf8::InHiragana
 -utf8::InKatakana
 +utf8::IsCn
 END
 }

Intersection is useful for getting the common characters matched by
 two (or more) classes.

 sub InFooAndBar {
 return <<'END';
 +main::Foo
 &main::Bar
 END
 }

It's important to remember not to use "&" for the first set; that
 would be intersecting with nothing,
resulting in an empty set.

Perl version 5.14.2 documentation - perlunicode

Page 12http://perldoc.perl.org

User-Defined Case Mappings (for serious hackers only)
This featured is deprecated and is scheduled to be removed in Perl
 5.16.
 The CPAN module
Unicode::Casing provides better functionality
 without the drawbacks described below.

You can define your own mappings to be used in lc(), lcfirst(), uc(), and ucfirst() (or their
string-inlined versions, \L, \l, \U, and \u). The mappings are currently only valid
 on strings encoded
in UTF-8, but see below for a partial workaround for
 this restriction.

The principle is similar to that of user-defined character
 properties: define subroutines that do the
mappings. ToLower is used for lc(), \L, lcfirst(), and \l; ToTitle for ucfirst() and \u;
and ToUpper for uc() and \U.

ToUpper() should look something like this:

 sub ToUpper {
 return <<END;
 0061\t007A\t0041
 0101\t\t0100
 END
 }

This sample ToUpper() has the effect of mapping "a-z" to "A-Z", 0x101
 to 0x100, and all other
characters map to themselves. The first
 returned line means to map the code point at 0x61 ("a") to
0x41 ("A"),
 the code point at 0x62 ("b") to 0x42 ("B"), ..., 0x7A ("z") to 0x5A
 ("Z"). The second line
maps just the code point 0x101 to 0x100. Since
 there are no other mappings defined, all other code
points map to
 themselves.

This mechanism is not well behaved as far as affecting other packages
 and scopes. All non-threaded
programs have exactly one uppercasing
 behavior, one lowercasing behavior, and one titlecasing
behavior in
 effect for utf8-encoded strings for the duration of the program. Each
 of these behaviors is
irrevocably determined the first time the
 corresponding function is called to change a utf8-encoded
string's case.
 If a corresponding To- function has been defined in the package that
 makes that first
call, the mapping defined by that function will be the
 mapping used for the duration of the program's
execution across all
 packages and scopes. If no corresponding To- function has been
 defined in that
package, the standard official mapping will be used for
 all packages and scopes, and any
corresponding To- function anywhere
 will be ignored. Threaded programs have similar behavior. If
the
 program's casing behavior has been decided at the time of a thread's
 creation, the thread will
inherit that behavior. But, if the behavior
 hasn't been decided, the thread gets to decide for itself, and
its
 decision does not affect other threads nor its creator.

As shown by the example above, you have to furnish a complete mapping;
 you can't just override a
couple of characters and leave the rest
 unchanged. You can find all the official mappings in the
directory $Config{privlib}/unicore/To/. The mapping data is returned as the
 here-document. The
utf8::ToSpecFoo hashes in those files are special
 exception mappings derived from
$Config{privlib}/unicore/SpecialCasing.txt. (The "Digit" and
 "Fold" mappings that one can see in
the directory are not directly
 user-accessible, one can use either the Unicode::UCD module, or just
match
 case-insensitively, which is what uses the "Fold" mapping. Neither are user
 overridable.)

If you have many mappings to change, you can take the official mapping data,
 change by hand the
affected code points, and place the whole thing into your
 subroutine. But this will only be valid on
Perls that use the same Unicode
 version. Another option would be to have your subroutine read the
official
 mapping files and overwrite the affected code points.

If you have only a few mappings to change, starting in 5.14 you can use the
 following trick, here
illustrated for Turkish.

 use Config;
 use charnames ":full";

Perl version 5.14.2 documentation - perlunicode

Page 13http://perldoc.perl.org

 sub ToUpper {
 my $official = do "$Config{privlib}/unicore/To/Upper.pl";
 $utf8::ToSpecUpper{'i'} =
 "\N{LATIN CAPITAL LETTER I WITH DOT ABOVE}";
 return $official;
 }

This takes the official mappings and overrides just one, for "LATIN SMALL
 LETTER I". The keys to
the hash must be the bytes that form the UTF-8
 (on EBCDIC platforms, UTF-EBCDIC) of the
character, as illustrated by
 the inverse function.

 sub ToLower {
 my $official = do $lower;
 $utf8::ToSpecLower{"\xc4\xb0"} = "i";
 return $official;
 }

This example is for an ASCII platform, and \xc4\xb0 is the string of
 bytes that together form the
UTF-8 that represents \N{LATIN CAPITAL
 LETTER I WITH DOT ABOVE}, U+0130. You can
avoid having to figure out
 these bytes, and at the same time make it work on all platforms by
 instead
writing:

 sub ToLower {
 my $official = do $lower;
 my $sequence = "\N{LATIN CAPITAL LETTER I WITH DOT ABOVE}";
 utf8::encode($sequence);
 $utf8::ToSpecLower{$sequence} = "i";
 return $official;
 }

This works because utf8::encode() takes the single character and
 converts it to the sequence of
bytes that constitute it. Note that we took
 advantage of the fact that "i" is the same in UTF-8 or
UTF_EBCIDIC as not;
 otherwise we would have had to write

 $utf8::ToSpecLower{$sequence} = "\N{LATIN SMALL LETTER I}";

in the ToLower example, and in the ToUpper example, use

 my $sequence = "\N{LATIN SMALL LETTER I}";
 utf8::encode($sequence);

A big caveat to the above trick and to this whole mechanism in general,
 is that they work only on
strings encoded in UTF-8. You can partially
 get around this by using use subs. (But better to just
convert to
 use Unicode::Casing.) For example:
 (The trick illustrated here does work in earlier
releases, but only if all the
 characters you want to override have ordinal values of 256 or higher, or
 if
you use the other tricks given just below.)

The mappings are in effect only for the package they are defined in, and only
 on scalars that have
been marked as having Unicode characters, for example by
 using utf8::upgrade(). Although
probably not advisable, you can
 cause the mappings to be used globally by importing into
CORE::GLOBAL
 (see CORE).

You can partially get around the restriction that the source strings
 must be in utf8 by using use subs
(or by importing into CORE::GLOBAL) by:

 use subs qw(uc ucfirst lc lcfirst);

Perl version 5.14.2 documentation - perlunicode

Page 14http://perldoc.perl.org

 sub uc($) {
 my $string = shift;
 utf8::upgrade($string);
 return CORE::uc($string);
 }

 sub lc($) {
 my $string = shift;
 utf8::upgrade($string);

 # Unless an I is before a dot_above, it turns into a dotless i.
 # (The character class with the combining classes matches non-above
 # marks following the I. Any number of these may be between the 'I'
and
 # the dot_above, and the dot_above will still apply to the 'I'.
 use charnames ":full";
 $string =~
 s/I
 (?! [^\p{ccc=0}\p{ccc=Above}]* \N{COMBINING DOT ABOVE})
 /\N{LATIN SMALL LETTER DOTLESS I}/gx;

 # But when the I is followed by a dot_above, remove the
 # dot_above so the end result will be i.
 $string =~ s/I
 ([^\p{ccc=0}\p{ccc=Above}]*)
 \N{COMBINING DOT ABOVE}
 /i$1/gx;
 return CORE::lc($string);
 }

These examples (also for Turkish) make sure the input is in UTF-8, and then
 call the corresponding
official function, which will use the ToUpper() and ToLower() functions you have defined.
 (For
Turkish, there are other required functions: ucfirst, lcfirst,
 and ToTitle. These are very
similar to the ones given above.)

The reason this is only a partial fix is that it doesn't affect the \l, \L, \u, and \U case-change
operations in regular expressions,
 which still require the source to be encoded in utf8 (see The
"Unicode Bug"). (Again, use Unicode::Casing instead.)

The lc() example shows how you can add context-dependent casing. Note
 that context-dependent
casing suffers from the problem that the string
 passed to the casing function may not have sufficient
context to make
 the proper choice. Also, it will not be called for \l, \L, \u,
 and \U.

Character Encodings for Input and Output
See Encode.

Unicode Regular Expression Support Level
The following list of Unicode supported features for regular expressions describes
 all features
currently directly supported by core Perl. The references to "Level N"
 and the section numbers refer to
the Unicode Technical Standard #18,
 "Unicode Regular Expressions", version 13, from August 2008.

Level 1 - Basic Unicode Support

 RL1.1 Hex Notation - done [1]
 RL1.2 Properties - done
[2][3]

Perl version 5.14.2 documentation - perlunicode

Page 15http://perldoc.perl.org

 RL1.2a Compatibility Properties - done [4]
 RL1.3 Subtraction and Intersection - MISSING [5]
 RL1.4 Simple Word Boundaries - done [6]
 RL1.5 Simple Loose Matches - done [7]
 RL1.6 Line Boundaries - MISSING
[8][9]
 RL1.7 Supplementary Code Points - done [10]

 [1] \x{...}
 [2] \p{...} \P{...}
 [3] supports not only minimal list, but all Unicode
character
 properties (see L</Unicode Character Properties>)
 [4] \d \D \s \S \w \W \X [:prop:] [:^prop:]
 [5] can use regular expression look-ahead [a] or
 user-defined character properties [b] to emulate set
 operations
 [6] \b \B
 [7] note that Perl does Full case-folding in matching (but
with
 bugs), not Simple: for example U+1F88 is equivalent to
 U+1F00 U+03B9, not with 1F80. This difference matters
 mainly for certain Greek capital letters with certain
 modifiers: the Full case-folding decomposes the letter,
 while the Simple case-folding would map it to a single
 character.
 [8] should do ^ and $ also on U+000B (\v in C), FF (\f), CR
 (\r), CRLF (\r\n), NEL (U+0085), LS (U+2028), and PS
 (U+2029); should also affect <>, $., and script line
 numbers; should not split lines within CRLF [c] (i.e.
there
 is no empty line between \r and \n)
	 [9] Linebreaking conformant with UAX#14 "Unicode Line Breaking
	 Algorithm" is available through the Unicode::LineBreaking
	 module.
 [10] UTF-8/UTF-EBDDIC used in Perl allows not only U+10000 to
 U+10FFFF but also beyond U+10FFFF

[a] You can mimic class subtraction using lookahead.
 For example, what UTS#18 might write
as

 [{Greek}-[{UNASSIGNED}]]

in Perl can be written as:

 (?!\p{Unassigned})\p{InGreekAndCoptic}
 (?=\p{Assigned})\p{InGreekAndCoptic}

But in this particular example, you probably really want

 \p{GreekAndCoptic}

which will match assigned characters known to be part of the Greek script.

Also see the Unicode::Regex::Set module, it does implement the full
 UTS#18 grouping,
intersection, union, and removal (subtraction) syntax.

[b] '+' for union, '-' for removal (set-difference), '&' for intersection
 (see User-Defined Character
Properties)

Perl version 5.14.2 documentation - perlunicode

Page 16http://perldoc.perl.org

[c] Try the :crlf layer (see PerlIO).

Level 2 - Extended Unicode Support

 RL2.1 Canonical Equivalents - MISSING
[10][11]
 RL2.2 Default Grapheme Clusters - MISSING [12]
 RL2.3 Default Word Boundaries - MISSING [14]
 RL2.4 Default Loose Matches - MISSING [15]
 RL2.5 Name Properties - MISSING [16]
 RL2.6 Wildcard Properties - MISSING

 [10] see UAX#15 "Unicode Normalization Forms"
 [11] have Unicode::Normalize but not integrated to regexes
 [12] have \X but we don't have a "Grapheme Cluster Mode"
 [14] see UAX#29, Word Boundaries
 [15] see UAX#21 "Case Mappings"
 [16] missing loose match [e]

[e] \N{...} allows namespaces (see charnames).

Level 3 - Tailored Support

 RL3.1 Tailored Punctuation - MISSING
 RL3.2 Tailored Grapheme Clusters - MISSING
[17][18]
 RL3.3 Tailored Word Boundaries - MISSING
 RL3.4 Tailored Loose Matches - MISSING
 RL3.5 Tailored Ranges - MISSING
 RL3.6 Context Matching - MISSING [19]
 RL3.7 Incremental Matches - MISSING
 (RL3.8 Unicode Set Sharing)
 RL3.9 Possible Match Sets - MISSING
 RL3.10 Folded Matching - MISSING [20]
 RL3.11 Submatchers - MISSING

 [17] see UAX#10 "Unicode Collation Algorithms"
 [18] have Unicode::Collate but not integrated to regexes
 [19] have (?<=x) and (?=x), but look-aheads or look-behinds
 should see outside of the target substring
 [20] need insensitive matching for linguistic features other
 than case; for example, hiragana to katakana, wide and
 narrow, simplified Han to traditional Han (see UTR#30
 "Character Foldings")

Unicode Encodings
Unicode characters are assigned to code points, which are abstract
 numbers. To use these numbers,
various encodings are needed.

UTF-8

UTF-8 is a variable-length (1 to 4 bytes), byte-order independent
 encoding. For ASCII (and we
really do mean 7-bit ASCII, not another
 8-bit encoding), UTF-8 is transparent.

The following table is from Unicode 3.2.

 Code Points 1st Byte 2nd Byte 3rd Byte 4th Byte

 U+0000..U+007F 00..7F
 U+0080..U+07FF * C2..DF 80..BF

Perl version 5.14.2 documentation - perlunicode

Page 17http://perldoc.perl.org

 U+0800..U+0FFF E0 * A0..BF 80..BF
 U+1000..U+CFFF E1..EC 80..BF 80..BF
 U+D000..U+D7FF ED 80..9F 80..BF
 U+D800..U+DFFF +++++++ utf16 surrogates, not legal utf8
+++++++
 U+E000..U+FFFF EE..EF 80..BF 80..BF
 U+10000..U+3FFFF F0 * 90..BF 80..BF 80..BF
 U+40000..U+FFFFF F1..F3 80..BF 80..BF 80..BF
 U+100000..U+10FFFF F4 80..8F 80..BF 80..BF

Note the gaps marked by "*" before several of the byte entries above. These are
 caused by
legal UTF-8 avoiding non-shortest encodings: it is technically
 possible to UTF-8-encode a
single code point in different ways, but that is
 explicitly forbidden, and the shortest possible
encoding should always be used
 (and that is what Perl does).

Another way to look at it is via bits:

 Code Points 1st Byte 2nd Byte 3rd Byte 4th
Byte

 0aaaaaaa 0aaaaaaa
 00000bbbbbaaaaaa 110bbbbb 10aaaaaa
 ccccbbbbbbaaaaaa 1110cccc 10bbbbbb 10aaaaaa
 00000dddccccccbbbbbbaaaaaa 11110ddd 10cccccc 10bbbbbb
10aaaaaa

As you can see, the continuation bytes all begin with "10", and the
 leading bits of the start byte
tell how many bytes there are in the
 encoded character.

The original UTF-8 specification allowed up to 6 bytes, to allow
 encoding of numbers up to
0x7FFF_FFFF. Perl continues to allow those,
 and has extended that up to 13 bytes to encode
code points up to what
 can fit in a 64-bit word. However, Perl will warn if you output any of

these as being non-portable; and under strict UTF-8 input protocols,
 they are forbidden.

The Unicode non-character code points are also disallowed in UTF-8 in
 "open interchange".
See Non-character code points.

UTF-EBCDIC

Like UTF-8 but EBCDIC-safe, in the way that UTF-8 is ASCII-safe.

UTF-16, UTF-16BE, UTF-16LE, Surrogates, and BOMs (Byte Order Marks)

The followings items are mostly for reference and general Unicode
 knowledge, Perl doesn't
use these constructs internally.

Like UTF-8, UTF-16 is a variable-width encoding, but where
 UTF-8 uses 8-bit code units,
UTF-16 uses 16-bit code units.
 All code points occupy either 2 or 4 bytes in UTF-16: code
points U+0000..U+FFFF are stored in a single 16-bit unit, and code
 points
U+10000..U+10FFFF in two 16-bit units. The latter case is
 using surrogates, the first 16-bit
unit being the high
 surrogate, and the second being the low surrogate.

Surrogates are code points set aside to encode the U+10000..U+10FFFF
 range of Unicode
code points in pairs of 16-bit units. The high
 surrogates are the range U+D800..U+DBFF and
the low surrogates
 are the range U+DC00..U+DFFF. The surrogate encoding is

 $hi = ($uni - 0x10000) / 0x400 + 0xD800;
 $lo = ($uni - 0x10000) % 0x400 + 0xDC00;

and the decoding is

 $uni = 0x10000 + ($hi - 0xD800) * 0x400 + ($lo - 0xDC00);

Perl version 5.14.2 documentation - perlunicode

Page 18http://perldoc.perl.org

Because of the 16-bitness, UTF-16 is byte-order dependent. UTF-16
 itself can be used for
in-memory computations, but if storage or
 transfer is required either UTF-16BE (big-endian) or
UTF-16LE
 (little-endian) encodings must be chosen.

This introduces another problem: what if you just know that your data
 is UTF-16, but you don't
know which endianness? Byte Order Marks, or
 BOMs, are a solution to this. A special
character has been reserved
 in Unicode to function as a byte order marker: the character with
the
 code point U+FEFF is the BOM.

The trick is that if you read a BOM, you will know the byte order,
 since if it was written on a
big-endian platform, you will read the
 bytes 0xFE 0xFF, but if it was written on a little-endian
platform,
 you will read the bytes 0xFF 0xFE. (And if the originating platform
 was writing in
UTF-8, you will read the bytes 0xEF 0xBB 0xBF.)

The way this trick works is that the character with the code point U+FFFE is not supposed to
be in input streams, so the
 sequence of bytes 0xFF 0xFE is unambiguously "BOM,
represented in
 little-endian format" and cannot be U+FFFE, represented in big-endian
 format".

Surrogates have no meaning in Unicode outside their use in pairs to
 represent other code
points. However, Perl allows them to be
 represented individually internally, for example by
saying chr(0xD801), so that all code points, not just those valid for open
 interchange, are

representable. Unicode does define semantics for them, such as their
 General Category is
"Cs". But because their use is somewhat dangerous,
 Perl will warn (using the warning
category "surrogate", which is a
 sub-category of "utf8") if an attempt is made
 to do things like
take the lower case of one, or match
 case-insensitively, or to output them. (But don't try this on
Perls
 before 5.14.)

UTF-32, UTF-32BE, UTF-32LE

The UTF-32 family is pretty much like the UTF-16 family, expect that
 the units are 32-bit, and
therefore the surrogate scheme is not
 needed. UTF-32 is a fixed-width encoding. The BOM
signatures are 0x00 0x00 0xFE 0xFF for BE and 0xFF 0xFE 0x00 0x00 for LE.

UCS-2, UCS-4

Legacy, fixed-width encodings defined by the ISO 10646 standard. UCS-2 is a 16-bit

encoding. Unlike UTF-16, UCS-2 is not extensible beyond U+FFFF,
 because it does not use
surrogates. UCS-4 is a 32-bit encoding,
 functionally identical to UTF-32 (the difference being
that
 UCS-4 forbids neither surrogates nor code points larger than 0x10_FFFF).

UTF-7

A seven-bit safe (non-eight-bit) encoding, which is useful if the
 transport or storage is not
eight-bit safe. Defined by RFC 2152.

Non-character code points
66 code points are set aside in Unicode as "non-character code points".
 These all have the
Unassigned (Cn) General Category, and they never will
 be assigned. These are never supposed to
be in legal Unicode input
 streams, so that code can use them as sentinels that can be mixed in
 with
character data, and they always will be distinguishable from that data.
 To keep them out of Perl input
streams, strict UTF-8 should be
 specified, such as by using the layer :encoding('UTF-8'). The

non-character code points are the 32 between U+FDD0 and U+FDEF, and the
 34 code points
U+FFFE, U+FFFF, U+1FFFE, U+1FFFF, ... U+10FFFE, U+10FFFF.
 Some people are under the
mistaken impression that these are "illegal",
 but that is not true. An application or cooperating set of
applications
 can legally use them at will internally; but these code points are
 "illegal for open
interchange". Therefore, Perl will not accept these
 from input streams unless lax rules are being used,
and will warn
 (using the warning category "nonchar", which is a sub-category of "utf8") if
 an attempt is
made to output them.

Beyond Unicode code points
The maximum Unicode code point is U+10FFFF. But Perl accepts code
 points up to the maximum
permissible unsigned number available on the
 platform. However, Perl will not accept these from input

Perl version 5.14.2 documentation - perlunicode

Page 19http://perldoc.perl.org

streams unless
 lax rules are being used, and will warn (using the warning category
 "non_unicode",
which is a sub-category of "utf8") if an attempt is made to
 operate on or output them. For example,
uc(0x11_0000) will generate
 this warning, returning the input parameter as its result, as the upper

case of every non-Unicode code point is the code point itself.

Security Implications of Unicode
Read Unicode Security Considerations.
 Also, note the following:

Malformed UTF-8

Unfortunately, the original specification of UTF-8 leaves some room for
 interpretation of how
many bytes of encoded output one should generate
 from one input Unicode character. Strictly
speaking, the shortest
 possible sequence of UTF-8 bytes should be generated,
 because
otherwise there is potential for an input buffer overflow at
 the receiving end of a UTF-8
connection. Perl always generates the
 shortest length UTF-8, and with warnings on, Perl will
warn about
 non-shortest length UTF-8 along with other malformations, such as the
 surrogates,
which are not Unicode code points valid for interchange.

Regular expression pattern matching may surprise you if you're not
 accustomed to Unicode.
Starting in Perl 5.14, several pattern
 modifiers are available to control this, called the character
set
 modifiers. Details are given in "Character set modifiers" in perlre.

As discussed elsewhere, Perl has one foot (two hooves?) planted in
 each of two worlds: the old world
of bytes and the new world of
 characters, upgrading from bytes to characters when necessary.
 If your
legacy code does not explicitly use Unicode, no automatic
 switch-over to characters should happen.
Characters shouldn't get
 downgraded to bytes, either. It is possible to accidentally mix bytes
 and
characters, however (see perluniintro), in which case \w in
 regular expressions might start behaving
differently (unless the /a
 modifier is in effect). Review your code. Use warnings and the strict
pragma.

Unicode in Perl on EBCDIC
The way Unicode is handled on EBCDIC platforms is still
 experimental. On such platforms, references
to UTF-8 encoding in this
 document and elsewhere should be read as meaning the UTF-EBCDIC

specified in Unicode Technical Report 16, unless ASCII vs. EBCDIC issues
 are specifically discussed.
There is no utfebcdic pragma or
 ":utfebcdic" layer; rather, "utf8" and ":utf8" are reused to mean
 the
platform's "natural" 8-bit encoding of Unicode. See perlebcdic
 for more discussion of the issues.

Locales
See "Unicode and UTF-8" in perllocale

When Unicode Does Not Happen
While Perl does have extensive ways to input and output in Unicode,
 and a few other "entry points"
like the @ARGV array (which can sometimes be
 interpreted as UTF-8), there are still many places
where Unicode
 (in some encoding or another) could be given as arguments or received as
 results, or
both, but it is not.

The following are such interfaces. Also, see The "Unicode Bug".
 For all of these interfaces Perl

currently (as of 5.8.3) simply assumes byte strings both as arguments
 and results, or UTF-8 strings if
the (problematic) encoding pragma has been used.

One reason that Perl does not attempt to resolve the role of Unicode in
 these situations is that the
answers are highly dependent on the operating
 system and the file system(s). For example, whether
filenames can be
 in Unicode and in exactly what kind of encoding, is not exactly a
 portable concept.
Similarly for qx and system: how well will the
 "command-line interface" (and which of them?) handle
Unicode?

chdir, chmod, chown, chroot, exec, link, lstat, mkdir,
 rename, rmdir, stat, symlink, truncate,
unlink, utime, -X

Perl version 5.14.2 documentation - perlunicode

Page 20http://perldoc.perl.org

%ENV

glob (aka the <*>)

open, opendir, sysopen

qx (aka the backtick operator), system

readdir, readlink

The "Unicode Bug"
The term, the "Unicode bug" has been applied to an inconsistency
 on ASCII platforms with the

Unicode code points in the Latin-1 Supplement block, that
 is, between 128 and 255. Without a locale
specified, unlike all other
 characters or code points, these characters have very different semantics in

byte semantics versus character semantics, unless use feature 'unicode_strings' is
specified.
 (The lesson here is to specify unicode_strings to avoid the
 headaches.)

In character semantics they are interpreted as Unicode code points, which means
 they have the same
semantics as Latin-1 (ISO-8859-1).

In byte semantics, they are considered to be unassigned characters, meaning
 that the only semantics
they have is their ordinal numbers, and that they are
 not members of various character classes. None
are considered to match \w
 for example, but all match \W.

The behavior is known to have effects on these areas:

Changing the case of a scalar, that is, using uc(), ucfirst(), lc(),
 and lcfirst(), or
\L, \U, \u and \l in regular expression
 substitutions.

Using caseless (/i) regular expression matching

Matching any of several properties in regular expressions, namely \b, \B, \s, \S, \w, \W, and
all the Posix character classes except [[:ascii:]].

In quotemeta or its inline equivalent \Q, no characters
 code points above 127 are quoted in
UTF-8 encoded strings, but in
 byte encoded strings, code points between 128-255 are always
quoted.

User-defined case change mappings. You can create a ToUpper() function, for
 example,
which overrides Perl's built-in case mappings. The scalar must be
 encoded in utf8 for your
function to actually be invoked.

This behavior can lead to unexpected results in which a string's semantics
 suddenly change if a code
point above 255 is appended to or removed from it,
 which changes the string's semantics from byte to
character or vice versa. As
 an example, consider the following program and its output:

 $ perl -le'
 no feature 'unicode_strings';
 $s1 = "\xC2";
 $s2 = "\x{2660}";
 for ($s1, $s2, $s1.$s2) {
 print /\w/ || 0;
 }
 '
 0
 0
 1

If there's no \w in s1 or in s2, why does their concatenation have one?

This anomaly stems from Perl's attempt to not disturb older programs that
 didn't use Unicode, and

Perl version 5.14.2 documentation - perlunicode

Page 21http://perldoc.perl.org

hence had no semantics for characters outside of the
 ASCII range (except in a locale), along with
Perl's desire to add Unicode
 support seamlessly. The result wasn't seamless: these characters were

orphaned.

Starting in Perl 5.14, use feature 'unicode_strings' can be used to
 cause Perl to use
Unicode semantics on all string operations within the
 scope of the feature subpragma. Regular
expressions compiled in its
 scope retain that behavior even when executed or compiled into larger

regular expressions outside the scope. (The pragma does not, however,
 affect the quotemeta
behavior. Nor does it affect the deprecated
 user-defined case changing operations--these still require
a UTF-8
 encoded string to operate.)

In Perl 5.12, the subpragma affected casing changes, but not regular
 expressions. See "lc" in perlfunc
for details on how this pragma works in
 combination with various others for casing.

For earlier Perls, or when a string is passed to a function outside the
 subpragma's scope, a
workaround is to always call utf8::upgrade($string),
 or to use the standard module Encode.
Also, a scalar that has any characters
 whose ordinal is above 0x100, or which were specified using
either of the \N{...} notations, will automatically have character semantics.

Forcing Unicode in Perl (Or Unforcing Unicode in Perl)
Sometimes (see When Unicode Does Not Happen or The "Unicode Bug")
 there are situations where
you simply need to force a byte
 string into UTF-8, or vice versa. The low-level calls

utf8::upgrade($bytestring) and utf8::downgrade($utf8string[, FAIL_OK]) are
 the answers.

Note that utf8::downgrade() can fail if the string contains characters
 that don't fit into a byte.

Calling either function on a string that already is in the desired state is a
 no-op.

Using Unicode in XS
If you want to handle Perl Unicode in XS extensions, you may find the
 following C APIs useful. See
also "Unicode Support" in perlguts for an
 explanation about Unicode at the XS level, and perlapi for
the API
 details.

DO_UTF8(sv) returns true if the UTF8 flag is on and the bytes
 pragma is not in effect.
SvUTF8(sv) returns true if the UTF8
 flag is on; the bytes pragma is ignored. The UTF8 flag
being on
 does not mean that there are any characters of code points greater
 than 255 (or
127) in the scalar or that there are even any characters
 in the scalar. What the UTF8 flag
means is that the sequence of
 octets in the representation of the scalar is the sequence of
UTF-8
 encoded code points of the characters of a string. The UTF8 flag
 being off means that
each octet in this representation encodes a
 single character with code point 0..255 within the
string. Perl's
 Unicode model is not to use UTF-8 until it is absolutely necessary.

uvchr_to_utf8(buf, chr) writes a Unicode character code point into
 a buffer encoding
the code point as UTF-8, and returns a pointer
 pointing after the UTF-8 bytes. It works
appropriately on EBCDIC machines.

utf8_to_uvchr(buf, lenp) reads UTF-8 encoded bytes from a buffer and
 returns the
Unicode character code point and, optionally, the length of
 the UTF-8 byte sequence. It works
appropriately on EBCDIC machines.

utf8_length(start, end) returns the length of the UTF-8 encoded buffer
 in characters.
sv_len_utf8(sv) returns the length of the UTF-8 encoded
 scalar.

sv_utf8_upgrade(sv) converts the string of the scalar to its UTF-8
 encoded form.
sv_utf8_downgrade(sv) does the opposite, if
 possible. sv_utf8_encode(sv) is like
sv_utf8_upgrade except that
 it does not set the UTF8 flag. sv_utf8_decode() does the

opposite of sv_utf8_encode(). Note that none of these are to be
 used as general-purpose
encoding or decoding interfaces: use Encode
 for that. sv_utf8_upgrade() is affected by
the encoding pragma
 but sv_utf8_downgrade() is not (since the encoding pragma is

Perl version 5.14.2 documentation - perlunicode

Page 22http://perldoc.perl.org

designed to be a one-way street).

is_utf8_char(s) returns true if the pointer points to a valid UTF-8
 character.

is_utf8_string(buf, len) returns true if len bytes of the buffer
 are valid UTF-8.

UTF8SKIP(buf) will return the number of bytes in the UTF-8 encoded
 character in the buffer.
UNISKIP(chr) will return the number of bytes
 required to UTF-8-encode the Unicode
character code point. UTF8SKIP()
 is useful for example for iterating over the characters of a
UTF-8
 encoded buffer; UNISKIP() is useful, for example, in computing
 the size required for a
UTF-8 encoded buffer.

utf8_distance(a, b) will tell the distance in characters between the
 two pointers pointing
to the same UTF-8 encoded buffer.

utf8_hop(s, off) will return a pointer to a UTF-8 encoded buffer
 that is off (positive or
negative) Unicode characters displaced
 from the UTF-8 buffer s. Be careful not to overstep
the buffer: utf8_hop() will merrily run off the end or the beginning of the
 buffer if told to do
so.

pv_uni_display(dsv, spv, len, pvlim, flags) and sv_uni_display(dsv,
ssv, pvlim, flags) are useful for debugging the
 output of Unicode strings and scalars.
By default they are useful
 only for debugging--they display all characters as hexadecimal code
points--but with the flags UNI_DISPLAY_ISPRINT, UNI_DISPLAY_BACKSLASH, and
UNI_DISPLAY_QQ you can make the
 output more readable.

foldEQ_utf8(s1, pe1, l1, u1, s2, pe2, l2, u2) can be used to
 compare two
strings case-insensitively in Unicode. For case-sensitive
 comparisons you can just use
memEQ() and memNE() as usual, except
 if one string is in utf8 and the other isn't.

For more information, see perlapi, and utf8.c and utf8.h
 in the Perl source code distribution.

Hacking Perl to work on earlier Unicode versions (for very serious hackers only)
Perl by default comes with the latest supported Unicode version built in, but
 you can change to use
any earlier one.

Download the files in the desired version of Unicode from the Unicode web
 site
http://www.unicode.org). These should replace the existing files in lib/unicore in the Perl source tree.
Follow the instructions in README.perl in that directory to change some of their names, and then
build
 perl (see INSTALL).

It is even possible to copy the built files to a different directory, and then
 change utf8_heavy.pl in the
directory $Config{privlib} to point to the
 new directory, or maybe make a copy of that directory
before making the change,
 and using @INC or the -I run-time flag to switch between versions at will

(but because of caching, not in the middle of a process), but all this is
 beyond the scope of these
instructions.

BUGS
Interaction with Locales

See "Unicode and UTF-8" in perllocale

Problems with characters in the Latin-1 Supplement range
See The "Unicode Bug"

Interaction with Extensions
When Perl exchanges data with an extension, the extension should be
 able to understand the UTF8
flag and act accordingly. If the
 extension doesn't recognize that flag, it's likely that the extension
 will
return incorrectly-flagged data.

Perl version 5.14.2 documentation - perlunicode

Page 23http://perldoc.perl.org

So if you're working with Unicode data, consult the documentation of
 every module you're using if
there are any issues with Unicode data
 exchange. If the documentation does not talk about Unicode
at all,
 suspect the worst and probably look at the source to learn how the
 module is implemented.
Modules written completely in Perl shouldn't
 cause problems. Modules that directly or indirectly
access code written
 in other programming languages are at risk.

For affected functions, the simple strategy to avoid data corruption is
 to always make the encoding of
the exchanged data explicit. Choose an
 encoding that you know the extension can handle. Convert
arguments passed
 to the extensions to that encoding and convert results back from that
 encoding.
Write wrapper functions that do the conversions for you, so
 you can later change the functions when
the extension catches up.

To provide an example, let's say the popular Foo::Bar::escape_html
 function doesn't deal with
Unicode data yet. The wrapper function
 would convert the argument to raw UTF-8 and convert the
result back to
 Perl's internal representation like so:

 sub my_escape_html ($) {
 my($what) = shift;
 return unless defined $what;
 Encode::decode_utf8(Foo::Bar::escape_html(
 Encode::encode_utf8($what)));
 }

Sometimes, when the extension does not convert data but just stores
 and retrieves them, you will be
able to use the otherwise
 dangerous Encode::_utf8_on() function. Let's say the popular Foo::Bar
extension, written in C, provides a param method that
 lets you store and retrieve data according to
these prototypes:

 $self->param($name, $value); # set a scalar
 $value = $self->param($name); # retrieve a scalar

If it does not yet provide support for any encoding, one could write a
 derived class with such a param
method:

 sub param {
 my($self,$name,$value) = @_;
 utf8::upgrade($name); # make sure it is UTF-8 encoded
 if (defined $value) {
 utf8::upgrade($value); # make sure it is UTF-8 encoded
 return $self->SUPER::param($name,$value);
 } else {
 my $ret = $self->SUPER::param($name);
 Encode::_utf8_on($ret); # we know, it is UTF-8 encoded
 return $ret;
 }
 }

Some extensions provide filters on data entry/exit points, such as
 DB_File::filter_store_key and family.
Look out for such filters in
 the documentation of your extensions, they can make the transition to

Unicode data much easier.

Speed
Some functions are slower when working on UTF-8 encoded strings than
 on byte encoded strings. All
functions that need to hop over
 characters such as length(), substr() or index(), or matching regular

expressions can work much faster when the underlying data are
 byte-encoded.

In Perl 5.8.0 the slowness was often quite spectacular; in Perl 5.8.1
 a caching scheme was introduced

Perl version 5.14.2 documentation - perlunicode

Page 24http://perldoc.perl.org

which will hopefully make the slowness
 somewhat less spectacular, at least for some operations. In
general,
 operations with UTF-8 encoded strings are still slower. As an example,
 the Unicode
properties (character classes) like \p{Nd} are known to
 be quite a bit slower (5-20 times) than their
simpler counterparts
 like \d (then again, there are hundreds of Unicode characters matching Nd

compared with the 10 ASCII characters matching d).

Problems on EBCDIC platforms
There are several known problems with Perl on EBCDIC platforms. If you
 want to use Perl there, send
email to perlbug@perl.org.

In earlier versions, when byte and character data were concatenated,
 the new string was sometimes
created by
 decoding the byte strings as ISO 8859-1 (Latin-1), even if the
 old Unicode string used
EBCDIC.

If you find any of these, please report them as bugs.

Porting code from perl-5.6.X
Perl 5.8 has a different Unicode model from 5.6. In 5.6 the programmer
 was required to use the utf8
pragma to declare that a given scope
 expected to deal with Unicode data and had to make sure that
only
 Unicode data were reaching that scope. If you have code that is
 working with 5.6, you will need
some of the following adjustments to
 your code. The examples are written such that the code will
continue
 to work under 5.6, so you should be safe to try them out.

A filehandle that should read or write UTF-8

 if ($] > 5.007) {
 binmode $fh, ":encoding(utf8)";
 }

A scalar that is going to be passed to some extension

Be it Compress::Zlib, Apache::Request or any extension that has no
 mention of Unicode in the
manpage, you need to make sure that the
 UTF8 flag is stripped off. Note that at the time of
this writing
 (October 2002) the mentioned modules are not UTF-8-aware. Please
 check the
documentation to verify if this is still true.

 if ($] > 5.007) {
 require Encode;
 $val = Encode::encode_utf8($val); # make octets
 }

A scalar we got back from an extension

If you believe the scalar comes back as UTF-8, you will most likely
 want the UTF8 flag
restored:

 if ($] > 5.007) {
 require Encode;
 $val = Encode::decode_utf8($val);
 }

Same thing, if you are really sure it is UTF-8

 if ($] > 5.007) {
 require Encode;
 Encode::_utf8_on($val);
 }

A wrapper for fetchrow_array and fetchrow_hashref

Perl version 5.14.2 documentation - perlunicode

Page 25http://perldoc.perl.org

When the database contains only UTF-8, a wrapper function or method is
 a convenient way to
replace all your fetchrow_array and
 fetchrow_hashref calls. A wrapper function will also make
it easier to
 adapt to future enhancements in your database driver. Note that at the
 time of this
writing (October 2002), the DBI has no standardized way
 to deal with UTF-8 data. Please
check the documentation to verify if
 that is still true.

 sub fetchrow {
 # $what is one of fetchrow_{array,hashref}
 my($self, $sth, $what) = @_;
 if ($] < 5.007) {
 return $sth->$what;
 } else {
 require Encode;
 if (wantarray) {
 my @arr = $sth->$what;
 for (@arr) {
 defined && /[^\000-\177]/ && Encode::_utf8_on($_);
 }
 return @arr;
 } else {
 my $ret = $sth->$what;
 if (ref $ret) {
 for my $k (keys %$ret) {
 defined
 && /[^\000-\177]/
 && Encode::_utf8_on($_) for $ret->{$k};
 }
 return $ret;
 } else {
 defined && /[^\000-\177]/ && Encode::_utf8_on($_) for $ret;
 return $ret;
 }
 }
 }
 }

A large scalar that you know can only contain ASCII

Scalars that contain only ASCII and are marked as UTF-8 are sometimes
 a drag to your
program. If you recognize such a situation, just remove
 the UTF8 flag:

 utf8::downgrade($val) if $] > 5.007;

SEE ALSO
perlunitut, perluniintro, perluniprops, Encode, open, utf8, bytes, perlretut, "${^UNICODE}" in perlvar
http://www.unicode.org/reports/tr44).

