
Perl version 5.16.2 documentation - List::Util

Page 1http://perldoc.perl.org

NAME
List::Util - A selection of general-utility list subroutines

SYNOPSIS
 use List::Util qw(first max maxstr min minstr reduce shuffle sum);

DESCRIPTION
List::Util contains a selection of subroutines that people have
 expressed would be nice to have
in the perl core, but the usage would
 not really be high enough to warrant the use of a keyword, and
the size
 so small such that being individual extensions would be wasteful.

By default List::Util does not export any subroutines. The
 subroutines defined are

first BLOCK LIST

Similar to grep in that it evaluates BLOCK setting $_ to each element
 of LIST in turn. first
returns the first element where the result from
 BLOCK is a true value. If BLOCK never returns
true or LIST was empty then undef is returned.

 $foo = first { defined($_) } @list # first defined value in
@list
 $foo = first { $_ > $value } @list # first value in @list
which
 # is greater than $value

This function could be implemented using reduce like this

 $foo = reduce { defined($a) ? $a : wanted($b) ? $b : undef }
undef, @list

for example wanted() could be defined() which would return the first
 defined value in @list

max LIST

Returns the entry in the list with the highest numerical value. If the
 list is empty then undef is
returned.

 $foo = max 1..10 # 10
 $foo = max 3,9,12 # 12
 $foo = max @bar, @baz # whatever

This function could be implemented using reduce like this

 $foo = reduce { $a > $b ? $a : $b } 1..10

maxstr LIST

Similar to max, but treats all the entries in the list as strings
 and returns the highest string as
defined by the gt operator.
 If the list is empty then undef is returned.

 $foo = maxstr 'A'..'Z' # 'Z'
 $foo = maxstr "hello","world" # "world"
 $foo = maxstr @bar, @baz # whatever

This function could be implemented using reduce like this

 $foo = reduce { $a gt $b ? $a : $b } 'A'..'Z'

min LIST

Similar to max but returns the entry in the list with the lowest
 numerical value. If the list is
empty then undef is returned.

Perl version 5.16.2 documentation - List::Util

Page 2http://perldoc.perl.org

 $foo = min 1..10 # 1
 $foo = min 3,9,12 # 3
 $foo = min @bar, @baz # whatever

This function could be implemented using reduce like this

 $foo = reduce { $a < $b ? $a : $b } 1..10

minstr LIST

Similar to min, but treats all the entries in the list as strings
 and returns the lowest string as
defined by the lt operator.
 If the list is empty then undef is returned.

 $foo = minstr 'A'..'Z' # 'A'
 $foo = minstr "hello","world" # "hello"
 $foo = minstr @bar, @baz # whatever

This function could be implemented using reduce like this

 $foo = reduce { $a lt $b ? $a : $b } 'A'..'Z'

reduce BLOCK LIST

Reduces LIST by calling BLOCK, in a scalar context, multiple times,
 setting $a and $b each
time. The first call will be with $a
 and $b set to the first two elements of the list, subsequent

calls will be done by setting $a to the result of the previous
 call and $b to the next element in
the list.

Returns the result of the last call to BLOCK. If LIST is empty then undef is returned. If LIST
only contains one element then that
 element is returned and BLOCK is not executed.

 $foo = reduce { $a < $b ? $a : $b } 1..10 # min
 $foo = reduce { $a lt $b ? $a : $b } 'aa'..'zz' # minstr
 $foo = reduce { $a + $b } 1 .. 10 # sum
 $foo = reduce { $a . $b } @bar # concat

If your algorithm requires that reduce produce an identity value, then
 make sure that you
always pass that identity value as the first argument to prevent undef being returned

 $foo = reduce { $a + $b } 0, @values; # sum with 0
identity value

shuffle LIST

Returns the elements of LIST in a random order

 @cards = shuffle 0..51 # 0..51 in a random order

sum LIST

Returns the sum of all the elements in LIST. If LIST is empty then undef is returned.

 $foo = sum 1..10 # 55
 $foo = sum 3,9,12 # 24
 $foo = sum @bar, @baz # whatever

This function could be implemented using reduce like this

 $foo = reduce { $a + $b } 1..10

If your algorithm requires that sum produce an identity of 0, then
 make sure that you always
pass 0 as the first argument to prevent undef being returned

 $foo = sum 0, @values;

Perl version 5.16.2 documentation - List::Util

Page 3http://perldoc.perl.org

KNOWN BUGS
With perl versions prior to 5.005 there are some cases where reduce
 will return an incorrect result.
This will show up as test 7 of
 reduce.t failing.

SUGGESTED ADDITIONS
The following are additions that have been requested, but I have been reluctant
 to add due to them
being very simple to implement in perl

 # One argument is true

 sub any { $_ && return 1 for @_; 0 }

 # All arguments are true

 sub all { $_ || return 0 for @_; 1 }

 # All arguments are false

 sub none { $_ && return 0 for @_; 1 }

 # One argument is false

 sub notall { $_ || return 1 for @_; 0 }

 # How many elements are true

 sub true { scalar grep { $_ } @_ }

 # How many elements are false

 sub false { scalar grep { !$_ } @_ }

SEE ALSO
Scalar::Util, List::MoreUtils

COPYRIGHT
Copyright (c) 1997-2007 Graham Barr <gbarr@pobox.com>. All rights reserved.
 This program is free
software; you can redistribute it and/or
 modify it under the same terms as Perl itself.

